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The impact of long-term memory on the climate response to
greenhouse gas emissions
Naiming Yuan1,2,3, Christian L. E. Franzke 4,5✉, Feilin Xiong6, Zuntao Fu7 and Wenjie Dong1,2,3

Global warming exerts a strong impact on the Earth system. Despite recent progress, Earth System Models still project a large range
of possible warming levels. Here we employ a generalized stochastic climate model to derive a response operator which computes
the global mean surface temperature given specific forcing scenarios to quantify the impact of past emissions on current warming.
This approach enables us to systematically separate between the “forcing-induced direct” and the “memory-induced indirect”
trends. Based on historical records, we find that the direct-forcing-response is weak, while we attribute the major portion of the
observed global warming trend to the indirect-memory responses that are accumulated from past emissions. Compared to
CMIP6 simulations, our data-driven approach projects lower global warming levels over the next few decades. Our results suggest
that CMIP6 models may have a higher transient climate sensitivity than warranted from the observational record, due to them
having larger long-term memory than observed.
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INTRODUCTION
The climate crisis is of utmost concern to both the climate science
community and the public1. The 2015 Paris Agreement has set a
target of limiting the global temperature increase in this century
to 2.0 oC, while trying at the same time to pursue a more
ambitious target to limit the increase to 1.5 oC. Substantially
different impacts between the warming of 1.5 and 2.0 oC have
been widely reported2,3. To cope with this unprecedented
challenge, effective actions are urgently needed4,5, and reliable
estimations of climate response to anthropogenic greenhouse gas
emissions are required.
The global climate system has a huge inertia6, delaying the

temperature response to changes in greenhouse gas concentra-
tions. Of the heat resulting from anthropogenic greenhouse gas
emissions, more than 90% is stored in the ocean7. The ocean can
in turn affect the air temperatures as well as the entire climate
system in a slow and persistent way. Accordingly, even if no more
carbon dioxide were emitted to the atmosphere now, or more
realistically speaking, if the target of carbon neutralization were
achieved, the global temperature may still rise for decades to
reach an equilibrium state. For instance, for the estimation of the
Equilibrium Climate Sensitivity (ECS), thousands of years of model
simulations are needed to obtain the ECS8, which requires massive
computational resources, but the estimate would still have a large
uncertainty attached to it due to structural model issues9,10. Note
that a more popular way, compared to the way of running models
for thousands of years, is to estimate the ECS from a short, e.g.,
4 × CO2 climate model experiment assuming the relationship
between the top-of-atmosphere (TOA) radiative imbalance N and
the global mean surface temperature change ΔT is linear as
N= F− λΔT11. However, the facts that (i) the climate response is
nonlinear12 and (ii) the feedback parameter λ varies over time
scales13 make the estimation still challenging. In order to better
design adaptation strategies, understanding how the global

temperature reacts to the anthropogenic radiative forcing is an
urgent issue.
Ever since the middle of the last century, when the “Hurst

Phenomenon” was discovered14,15, it has been recognized that
many climate variables are characterized by long-term climate
memory14,16–19, which is relevant for understanding the inertia in
the climate system. Different from the short-term memory, which
describes the persistence of a given process on weather scales
(i.e., a few days to around two weeks), long-term climate memory
depicts the scaling behavior of multiple processes of different
time scales. This cascade represents how multi-scale processes
affect each other, i.e., fast processes may force slow processes to
change, while slow processes may modulate the variations of fast
processes on a longer scale20. Consequently, time series with
scaling behaviors are characterized by the persistence of much
longer time scales. This property is called long-term memory14.
Based on the classical Brownian Motion and Random Walk
theories, various approaches such as the Fluctuation Analysis
(FA)21, the Detrended Fluctuation Analysis (DFA)22, have been
developed and widely used over the past few decades to quantify
the strength of the long-term climate memory in different climatic
variables ranging from surface air temperatures19,23, sea surface
temperatures24 and precipitation18, to relative humidity16, sea
level17, and the atmospheric general circulation25. A physically
understandable finding was that the air temperatures of islands
have stronger long-term climate memory than those from inner
continents, thus highlighting the impacts of the ocean heat
capacity24,26. If large-scale spatially averaged temperatures (e.g.,
global mean surface temperature) are considered, strong climate
memory has been reported27, which is in line with the fact that the
ocean may store the heat and release it back to the atmosphere
slowly, hence, producing a delayed response.
Over the past years, many efforts have been devoted to study

the climate memory effects26,28–41. Beyond the classical energy-

1School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China. 2Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai 519082,
China. 3Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China. 4Center for Climate Physics, Institute for Basic Science, Busan 46241, Republic of
Korea. 5Pusan National University, Busan 46241, Republic of Korea. 6Beijing Municipal Climate Center, Beijing 100089, China. 7School of Physics, Peking University, Beijing 100871,
China. ✉email: christian.franzke@gmail.com

www.nature.com/npjclimatsci

Published in partnership with CECCR at King Abdulaziz University

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41612-022-00298-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41612-022-00298-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41612-022-00298-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41612-022-00298-8&domain=pdf
http://orcid.org/0000-0003-4111-1228
http://orcid.org/0000-0003-4111-1228
http://orcid.org/0000-0003-4111-1228
http://orcid.org/0000-0003-4111-1228
http://orcid.org/0000-0003-4111-1228
https://doi.org/10.1038/s41612-022-00298-8
mailto:christian.franzke@gmail.com
www.nature.com/npjclimatsci


balance model (EBM) of a finite number of boxes26,28–32, recent
studies have introduced the concept of scaling among multiple
time scales to lift the restrictions of a single e-folding time in a box
model33,34. By further exploiting the large memory characterized
by scaling behavior, several advanced models such as the
fractional energy balance equation (FEBE)35, have been developed
to simulate and predict global temperatures35–39. In these models,
there are usually 2–3 parameters that need to be fitted using both
the historical temperature records and the forcing data. By further
feeding radiative forcing (RF) data into the model, one, thus, can
estimate external forcing-induced trends and extract the residual
internal variability. However, with the current models it is still not
clear how much of the warming is directly induced by the external
forcings and how much is due to the climate memory effects,
which is a crucial question for Detection and Attribution (D & A)
studies. According to the concept of stochastic climate models
(SCM) that was first proposed by Hasselmann in 197642, the slow
processes in the climate system can be regarded as accumulative
responses to continual excitations. If the continual excitations are
considered as the fast external forcing, while the accumulative
responses as the long-term internal memory, a straightforward
question thus is, can we study global warming by separately
considering the “forcing-induced direct trend” and the “memory-
induced indirect trend”?
To address this question, we use the Fractional Integral

Statistical Model (FISM)20,43. The FISM is a generalized version of
the classic SCM. It incorporates fractional integral techniques and
has been shown to be able to decompose a given climatic time
series x(t) into two components,

xðtÞ ¼ MðtÞ þ εðtÞ; (1)

where ε(t) represents the continual excitations (hereafter the
direct-forcing-response), and M(t) the accumulated responses to
the historical ε (hereafter the indirect-memory-response). Both ε(t)
and M(t) have the same unit as the variable x(t), i.e., when studying
temperatures, the unit is degree Celsius. One advantage of the
FISM is that only one parameter (the integral order q, see the
“Methods” section) is required to extract the direct-forcing-
response and the indirect-memory-response from x(t), and the
parameter can be objectively measured from the climatic variable
of interest. Accordingly, the FISM has been successfully applied for
various aspects, e.g., estimating climate predictability with climate
memory effects properly considered44, correcting tree-ring width
based paleo-reconstructions with non-climatic persistence reason-
ably removed45, among others. Here in this study, we focus on
global mean surface temperature anomalies (GMTA). By employ-
ing FISM, we aim to (i) detect the “direct responses” of the GMTA
to radiative forcings (RFs) and the “indirect responses” of the
GMTA accumulated from climate memory, and (ii) depict a new
picture of how the GMTA changes under the combined effects of
external forcings and internal memory. Moreover, a new method
for projecting the future warming trend is discussed.

RESULTS
The “direct-forcing-response” and “indirect-memory-
response”
In order to extract the “direct-forcing-response” and the “indirect-
memory-response” from the GMTA, we first need to measure the
strength of the long-term climate memory in GMTA. Here, we
apply the Detrended Fluctuation Analysis of second order
(DFA2)46 to the monthly GMTA obtained from the Met Office
Hadley Centre (HadCRUT5.0.1, anomaly data from 1850-2020,
relative to the reference period 1850–1900). DFA2 calculates the
fluctuation function F(s). If F(s) increases with the time scale s as a
power law, F(s) ~ sα with α > 0.5, then long-term climate memory is
present in the time series. As shown in Fig. 1a, a clear power law

relation between F(s) and s is found with a slope of 0.90. This means
that the GMTA is characterized by strong long-term climate
memory. Based on this result, we further apply the Fractional
Integral Statistical Model (FISM) to the GMTA with a proper
fractional integral order q= 0.4 (see the “Methods” section,
q= α− 0.5). After estimating the historical εðt0Þ (see Eq. (4) in the
“Methods” section, t0 < t, t0 represents the historical time point and t
is the considered present time point), we calculated the
corresponding indirect-memory-response accumulated at t, M(t)
(see Eq. (3) in the “Methods” section). From Fig. 1b, one can see a
clear warming trend of the GMTA, especially during the past half
century. We attribute most of the warming trend to the indirect-
memory-response, as the direct-forcing-response (the blue curve)
provides only a small contribution. Taking the global mean
temperatures during 1850–1900 as a reference, the GMTA has
increased by about 1.2 oC, and the climate memory-induced
“indirect” trend accounts for more than 90% of the total warming
trend. This is reasonable given the fact that more than 90% of the
heat resulting from anthropogenic greenhouse gas emissions is
stored in the ocean, and the surface temperature would respond to
external forcings on long-time scales32. Regarding the forcing-
induced “direct” trend (denoted as εd), although it is weak, one
should note that it is actually the source of the warming trend in
GMTA (see Eq. (3) in the “Methods” section). For instance, if the
weak trend εd (i.e., see the inserted sub-figure in Fig. 1b) is removed
from ε, by putting the detrended part (denoted as εs) into the FISM
model (Eq. (4)), only natural variabilities of the GMTA are
reproduced (the red curve in Fig. 1c). Therefore, although the
trend of ε(t) is weak, it is only a “direct” response to the increased
radiative forcing. Since the GMTA is characterized by strong long-
term climate memory, after the direct response, the climate system
(especially the ocean) may store the heat and release it slowly back
to the atmosphere: this is what causes the climate memory, and
here it is quantified as the indirect-memory-response M(t).
To better demonstrate the meaning of ε(t), we further

investigated the relations between the ε(t) extracted from the
GMTA and the historical effective radiative forcing (ERF) data.
According to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change (IPCC AR5), the ERF is defined as the
change in net top-of-the-atmosphere downward radiative flux after
allowing rapid adjustments including changes to atmospheric
temperatures, water vapor and clouds47. In this study, the historical
annual ERF estimates are from the IPCC AR547, and they are further
extended to 2017 by Dessler and Foster48. These data are available
at the KNMI Climate Explorer. Figure 2a shows the trend of the ε(t)
(εd(t), the red curve) from 1850 to 2020 and the total ERF (black
curve) from 1850 to 2017. In order to avoid a priori restrictions of
the trend type, the Ensemble Empirical Mode Decomposition
analysis (EEMD)49 was employed to estimate the trend of the ε(t).
There seems to be a good linear relationship between the trend of
the ε(t) and the trend of the ERF, despite the sharp down turns in
the total ERF due to volcanic activities. Note that the units and the
y-axes of the two variables in Fig. 2a are different. To confirm the
linear relationship between the ε(t) and the ERF, we compared in
detail the trend of the ε(t) with the trend of the anthropogenic ERF
data (Fig. 2b). The EEMD analysis was employed again to estimate
the trends. In view of (i) the poor data coverage for the calculation
of GMTA in the 19th century (Supplementary Fig. 1) and (ii) the
boundary effects of the EEMD analysis, we only consider the trends
in the 20th century (1901-–2000). As shown in Fig. 2b, the trend of
the ε(t) (red curve) agrees very well with the trend of the
anthropogenic ERF (asterisk-dashed curve). From this linear
relationship, one can easily obtain an empirical formula that
connects the trends of the ε(t) and the anthropogenic ERF,

εdðtÞ ¼ a � Anth ERFd þ b; (2)

where the subscript d denotes “trend” of the corresponding
variable, a= 0.037, and b=−0.0043. Note the parameter “a” has
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units of “Celsius ⋅ Square meter/Watts”, while “b” has units of
“Celsius”. Apparently, εd(t) and Anth ERFd are almost proportional,
and “a” determines the instantaneous responses of the GMTA to
the changes of Anth ERFd. Since in ε(t) the indirect-memory-
responses have been removed, this parameter “a” might be
considered as an intrinsic measure of the instantaneous sensitivity.
In addition to the analyses using observational data, to better
understand the meaning of the ε(t), we also examined historical
CMIP model simulations that were forced by different forcings (i.e.,
greenhouse-gas-only (Hist-GHG), anthropogenic-aerosol-only
(Hist-AA), Solar-only (Hist-SI), volcanic-only (Hist-VI)). For this
examination we consider a CMIP5 model (the Community Climate
System Model version 4, CCSM4) and a CMIP6 model (the
Community Earth System Model version 2, CESM2). Based on
the simulated global mean surface temperatures, we repeated the
above calculations and extracted ε(t) from the simulated GMTA
under different forcings. Supplementary Fig. 2 shows the relation-
ships between the extracted ε(t) (black curves) and the
corresponding ERF data (red dashed lines). The ε(t) captures very
well the long-term trends of the greenhouse gas forcing and the
anthropogenic aerosol forcing (Supplementary Fig. 2a, b, e, f), as
well as some inter-annual variations of the volcanic forcing and
the solar forcing (Supplementary Fig. 2c, d, 3). Recall the definition
of ε(t) in the FISM, this term extracted from the GMTA indeed is

closely related to the natural and anthropogenic external forcings.
It varies instantaneously with the changes of the external forcings
and, thus, represents the “direct” responses of the GMTA to the
external forcings. The memory term, on the other hand, is driven
by the ε(t) (see Eq. (3) in the “Methods” section) and exhibits the
responses in a much slower way (indirect-memory-responses). It is
worth noting that we also examined the simulated relation
between the trend of ε(t) and the trend of the ERF. Using historical
simulations with all forcings included, we repeated the above
calculations and found much smaller a and b parameters in
CESM2 (aALL= 0.018 oCm2/W, bALL=−0.001 oC). A small “a”
indicates a weak instantaneous sensitivity in the model. More
specifically, the direct responses of the GMTA to the increase of
the anthropogenic ERF are weaker in the model than in the
observations. To reproduce the observed warming trend in the
GMTA, the indirect memory response from the model simulations,
thus, have to contribute more to the warming trend, in which case
the long-term climate memory strength would need to be
stronger (i.e., with larger q, see the next section). Besides the
estimation of a using simulations with all forcings, we also
examined the results from different forcing experiments, i.e., Hist-
GHG and Hist-AA. It is well known that the greenhouse-gas forcing
is the main contributor to global warming, while after removing
the long-term climate memory impacts, the instantaneous

Fig. 1 DFA results of the GMTA and the corresponding extracted direct-forcing-response. a The DFA result of the historical global mean
surface temperature anomalies (GMTA), and b the extracted direct-forcing-response. In the inserted sub-figure, the trend of the direct-forcing-
response (denoted as εd) detected from the Ensemble Empirical Mode Decomposition (EEMD) analysis is shown. By feeding the extracted
direct-forcing-response back to the FISM model, the historical GMTA is fully reproduced, see the black curve in (c). If εd is removed, however, by
feeding the detrended direct-forcing-response to FISM, only natural variabilities of the GMTA are reproduced without long-term warming
trend, see the red curve in (c).
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response parameter aGHG (0.019 oCm2/W) is found to be nearly
identical with aALL (0.018 oCm2/W) if simulations from the same
model (i.e., CESM2) are analyzed. As for the CESM2 simulation
forced by Hist-AA, a remarkable GMTA cooling is revealed in the
second half of the 20th century (−0.09 oC/decade). After separat-
ing the GMTA into the “direct-forcing-response” and the “indirect-
memory-response”, more than 90% of the cooling in this period is
attributed to the memory term, and the instantaneous response
parameter aAA is estimated to be 0.026 oCm2/W, which is only
slightly higher than aALL. These similar a values from the same
model (under different forcings) again support the physical
meaning of a as an intrinsic measure of the instantaneous
sensitivity. Moreover, by comparing the parameter a from model
simulations with that from observations, it may also be used as a
new test-bed for model evaluations.

A new method for future GMTA projection
Based on the above findings, the observed warming trend in
GMTA is explained by considering both the “direct” trend from the
direct-forcing-response ε(t) and the “indirect” trend from the
indirect-memory-response M(t). If the memory strength (i.e., the
DFA exponent α) is known, the GMTA can be simulated by
substituting the ε(t) into the FISM model. For example, the
observed GMTA is well reproduced (see the black curve in Fig. 1c)
by conducting a fractional integration (q= 0.4) on the direct-
forcing response shown in Fig. 1b (the blue curve). Considering
that the direct-forcing-response is closely related to the ERF data,
using their relationship (e.g., Eq. (2)), the future GMTA trend under
a given scenario (e.g., RCPs, SSPs) may be projected assuming the
memory strength in GMTA remains unchanged. Following this
idea, we conducted a projection of the future GMTA trend under
the Shared Socioeconomic Pathways (SSP)50, scenario SSP2-4.5
(for details of the approach, please refer to the “Methods” section).
This scenario is an update of RCP4.5 in CMIP5 and combines
intermediate societal vulnerability51. It has been widely used by
several CMIP6 Model Intercomparison Projects (MIPs), such as the
Decadal Climate Prediction Project (DCPP)52, and the Detection
and Attribution MIP (DAMIP)53. In this study, we used the radiative
forcing data under SSP2-4.5 calculated by the MESSAGE-GLOBIOM

model54 (Supplementary Fig. 4). By estimating the corresponding
trend of the direct-forcing-response using Eq. (2), we are able to
project the future GMTA trend. Note that besides the future
projection, similarly we could also perform a historical simulation
based on the trend of the direct-forcing-response that is
estimated from the historical radiative forcing data. By considering
the long-term climate memory impacts from the past 100 years,
Fig. 3 shows the GMTA simulation from 1951 and the projection

Fig. 3 GMTA simulation and projection based on the FISM-based
response model. Using the linear (nearly proportional) relations as
shown in Eq. (2), the trend of the direct-forcing-response from 1951
to 2014 is calculated from the historical anthropogenic ERF data,
and the trend of the direct-forcing-response from 2015 to 2100 is
estimated from SSP2-4.5 data. The simulated historical GMTAs are
shown in blue color, where the blue area indicates the 95%
boundaries of 1000 realizations and the thicker blue line represents
the mean simulation. The projected future GMTAs are shown in
yellow color. The black curve represents the HadCRUT5 GMTA. It is
worth noting that the simulation and projection are made by
considering the climate memory impacts from the past 100 years,
i.e., for the simulation of GMTA in 2001, climate memory impacts
from 1901 to 2000 are taken into account.

Fig. 2 Comparison of the direct-forcing-response trend extracted from the GMTA and the historical effective radiative forcing (ERF)
estimates. The ERF estimates are from the IPCC AR547, and they are further extended to 2017 by Dessler and Foster47,48. a a rough comparison
of the direct-forcing-response trend with the historical ERF. Using the EEMD method, the trend of the direct-forcing-response is detected as
the residual component of the EEMD analysis (see also Fig. 1e) and shown here as the red curve. The two variables have different units, but
from this rough comparison, a close relationship between the trend of the ε(t) and the trend of the ERF can be observed. b a detailed
comparison of the trend of the ε(t) (the red curve) with the trend of the historical anthropogenic ERF data (the black asterisk-dashed curve).
Again, the EEMD method is used to detect the trend of the historical anthropogenic ERF data. In view of the poor data coverage for the
calculation of GMTA in the 19th century and the boundary effects of the EEMD analysis, the comparison is made over the time of the 20th
century (the blue box). A close relationship between the two trends can be observed.
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from 2015. The blue and yellow areas indicate the 95% boundaries
of 1000 realizations, while the thicker blue and yellow lines are the
simulation and projection means, respectively. The simulations
capture well the historical warming trend from 1951 to 2014, and
the uncertainty interval covers nearly all the fluctuations around
the warming trend. This indicates that the new approach indeed
projects accurately the GMTA trend, as long as the radiative
forcing data and the memory strength are known. It is worth
noting that here each realization was calculated by feeding the
estimated trend of the direct-forcing-response (ε0d) as well as a
randomly shuffled fluctuation (ε0s) into the FISM model (see the
“Method” section). The fluctuation ε0s is shuffled from the
detrended historical direct-forcing-response εs, thus by shuffling
for 1000 times one can simulate a possible uncertainty interval of
the natural variability around the trend. For the future projections,
the calculations in this study are based on a given radiative forcing
pathway (SSP2-4.5) provided by the MESSAGE-GLOBIOM model54,
and the uncertainty around the projected future warming trend is
estimated in the same way as that in the historical simulation. One
should note that here the uncertainty interval does not include
uncertainty in the underlying radiative forcing series. Accordingly,
in this study we mainly focus on the projected mean trend (see
Supplementary Fig. 4, however, for the projection of a single run).
From Fig. 3, we found that the future GMTA may rise by around
2.6 oC by the end of the 21st century under the SSP2-4.5 scenario,
and it crosses 1.5 oC and 2.0 oC in the late 2030s and early 2060s,
respectively. Compared to CMIP6 model simulations, this projec-
tion is more optimistic. As shown in Fig. 4a, 16 CMIP6 models (see
Supplementary Table 1) project a mean warming of around 3 oC
by the end of the 21st century under SSP2-4.5, indicating stronger
climate sensitivities. This discrepancy may be attributed to the
issue that coupled dynamical models usually have a too large
long-term climate memory in their simulated GMTA27. As shown in
Fig. 4b and Supplementary Table 1 where the climate memory
strengths calculated from the historical simulations of the CMIP6
models are presented, of the 16 CMIP6 models, 15 models have

significantly larger α values in their GMTA simulations. There is
only one model (MRI-ESM2-0) that shows identical climate
memory strength as that in the HadCRUT data. This overestimated
climate memory indicates more persistent warming signals and,
thus, may induce stronger warming trends. As shown in
Supplementary Fig. 5, the transient climate response (TCR)
estimated by our method tends to increase with the enhancement
of climate memory. Of course, one should also note that the
simulated relations between εd(t) and Anth ERFd (i.e., Eq. (2)) may
be different (see the previous section). Since the “indirect-
memory-response” is an integral of ε(t), the estimated parameter
“a” is not only relevant for the instantaneous responses of the
GMTA as indicated in Eq. (2), it also affects the simulated warming
trend (see Supplementary Fig. 5a for the proportional dependence
of the TCR on different parameter values “a”).

DISCUSSION
In this study, using a generalized stochastic climate model we
derived a response operator that can be used to quantify the
impact of climate memory. By decomposing the temperature
records (i.e., the GMTA) into the “direct-forcing-response” and the
“indirect-memory-response”, one advantage of our approach is
that it allows us to distinguish the forcing-induced instantaneous
trend and the memory-induced indirect trend. This trend
detection considers the long-lasting impacts of external forcings,
thus may support a proper attribution of external forcings to
global warming, which is a key issue in the D & A studies.
Moreover, compared to the widely used “optimal fingerprinting
(OFP)” method55,56 that relies on model simulations, our approach
is data-driven. In addition, the linear relationship between εd(t)
and Anth ERFd (Eq. (2)) allows us to simulate temperature
responses to a given radiative forcing data. Using this relationship,
we provide a new, computationally efficient, way of projecting
future climate change. Compared to widely used dynamical
models (e.g., CMIP6 models) or the existing temperature response

Fig. 4 Comparison of the GMTA projections by CMIP6 models and those by the FISM-based response model. In sub-figure (a), the thicker
blue and yellow curves are respectively the multi-model-mean (16 CMIP6 models) historical GMTA simulation and future projection under the
SSP2-4.5 scenario. The blue and yellow areas represent the uncertainties among the 16 CMIP6 models. The yellow dashed line shows the
mean projection by the FISM-based response model (see also in Fig. 3). The projected GMTA warming trend is faster in the CMIP6 models,
which may be associated with the too large long-term climate memory strength. As shown in (b), the simulated GMTAs from 15 (out of 16)
models have shown significantly stronger memory strength with larger DFA exponent α. The red dashed line indicates the 95% upper bound
of the uncertainty of the α value obtained from the HadCRTU data (based on Monte-Carlo test).
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models such as multi-box EBMs, our approach only requires three
parameters (q in FISM, a and b in Eq. (2)), which is comparable to
the recently proposed scaling based models (e.g., FEBE)35,39. Our
observational data-driven projections show a lower warming
trend compared to CMIP6 simulations, which may be associated
with the too large long-term climate memory simulated by CMIP6
models. This is consistent with previous studies30, which showed
that most climate models are too sluggish in their response to
climate forcing. It is worth noting that one may also estimate the
radiative forcings using Eq. (2), assuming the temperature
response is known. This is actually a widely used idea to infer
historical radiative forcings. Compared to the existing methods
that relies on model step-change experiment13 or using model
calibrated k-box EBMs57, etc., the advantages of (i) data-driven and
(ii) requiring only three parameters may make our approach a
potential new way for the radiative forcing estimation, but great
efforts are still needed in this direction.
Here, long-term climate memory is suggested as an important

feature to consider for a better understanding of global warming
as well as future projections. However, a further relevant question
arises from this perspective: how long can the distant past affect
today’s climate? Since the DFA can reliably detect long-term
climate memory on time scales up to a quarter of the data
length58, we can infer from the current instrumental data (~170
years) that long-term memory on time scales up to 40 years.
Moreover, insights from paleoclimate studies have suggested that
the long-term memory in temperature may still be present on
centennial time scales59. Hence, considering the historical
influences over the past hundred years seems to be reasonable.
However, we cannot rule out the possibility that the historical
influences from more than 100 years ago may still have a slight
impact on the current state: this might be due to the deep ocean.
Suppose the long-term memory measured from the instrumental
data holds on longer (>100 years) time scales, by taking the
longest possible historical impacts into account (i.e., from 1850),
slight changes are found (i.e., the global warming by 2100 is
0.15 oC higher than the projection that only considers the memory
effects of the past 100 years, see Supplementary Fig. 6a), but the
conclusion that the projected warming trend is weaker than those
from CMIP6 simulations, remains unchanged. In addition, it is
worth noting that if we only consider the historical impacts since
1900 (Supplementary Fig. 6b), the projected warming trend is
nearly identical to that when longer historical impacts are
included (Supplementary Fig. 6a). This is attributed to the very
weak trend of the ε(t) before the 20th century, which has nearly no
contribution to the warming trend in the years afterwards. In other
words, the projection with the longest possible historical impacts
taken into account (Supplementary Fig. 6a) can be considered as
an upper bound of the projected warming trend. A more accurate
projection of the future warming relies on how long the long-term
climate memory effects can last, which is still an open and vital
question that deserves more attention in the future.
In the end, we would like to point out that although our

approach has shown a good ability in projecting future warming
trends, there is still room for further improvement. For example,
the simulation/projection in Fig. 3 have not taken the ERF-related
uncertainties into account. Considering the historical radiative
forcing is still largely uncertain (particularly due to the aero-
sols)35,39, taking this uncertainty into account may lead to
uncertainties in the parameter a, which may further affect the
projected warming trend. In addition, to measure the parameter a
we estimated the trends in ε(t) and the ERF data using the EEMD
analysis (i.e., Fig. 2), which has the advantage of not preselecting
the trend form, but follows the Definition of Trend as an
intrinsically fitted monotonic function or a function in which there
can be at most one extremum within a given data span60. This
allows objective analyses of the trends, but may also bring
difficulties for parameter estimation. Such as the case in CCSM4

(Supplementary Fig. 7), the EEMD analysis of the anthropogenic
ERF data gives a long-term monotonic trend in the 20th century,
while for ε(t) the EEMD residual carries an oscillation that appears
to correspond to some extent with the multi-decadal variation of
the anthropogenic ERF. Since this curve satisfies the Definition of
Trend in the EEMD method, the EEMD calculation stops here, but
the extracted trend cannot support a reliable parameter estima-
tion in Eq. (2). Accordingly, although we have revealed a close
relationship between the radiative forcings and the ε(t) as shown
in Fig. 2, more detailed work such as including the uncertainties of
radiative forcings in the approach, properly extracting signals from
the ε(t), etc., are still required in the future.

METHODS
Quantification of the memory strength
The Detrended Fluctuation Analysis of second order (DFA2)46 is
used to quantify the memory strength in the global mean surface
temperature anomalies (GMTA). Suppose we have a time series
x(t), t= 1, 2,⋯ , N, in DFA2, one first calculates the cumulative sum
(profile) YðtÞ ¼ Pt

k¼1 xðkÞ, and divides the profile into non-
overlapping windows of size s. In each window ν, the variance
of Y(t) around the best polynomial fit of second order are
determined as F2νðsÞ, and an average over all windows is further
obtained as F2(s). If the square root of the F2(s), F(s), increases with
s as a power law, F(s) ~ sα, and the exponent α is larger than 0.5,
the long-term climate memory is detected. The larger α is, the
stronger the long-term climate memory will be. It is worth noting
that the order of the DFA is related to the order of the polynomial
fit to Y(t) in each window. As introduced in previous studies46, by
removing the nth order polynomial fit of Y(t), one is able to
remove the (n− 1)th order trend effects in the original time series
x(t) on the estimation of the memory strength. This is the main
feature of the DFA compared to other approaches such as the
Fluctuation Analysis (FA) or the widely used multitaper spectrum
method. Since the main target of this work is to distinguish the
“forcing-induced direct trend” and the “memory-induced indirect
trend” in the GMTA time series, we do not remove the warming
trend before analysis. In this case, we decided to use the DFA of
higher order rather than DFA1 to remove the potential impacts of
trends on the estimation of memory strength. Since we found the
results from DFA2 and those from DFA3 are nearly identical, we
finally decided to use DFA2 in this work.

Extracting the “forcing-induced direct response” and the
“memory-induced indirect response”
We employed the Fractional Integral Statistical Model (FISM)43 to
extract the “direct-forcing-response” and the “indirect-memory-
response” in GMTA. FISM is a generalized version of the classical
SCM. It also considers the slow varying processes in the climate
system as accumulative responses to continual excitations.
Compared to the classical SCM, however, fractional integral
techniques are introduced to the FISM to better simulate the
processes of how the indirect-memory response arises20. For
instance, suppose we know a priori the direct-forcing-response,
then the indirect-memory-response can be estimated via frac-
tional integral of a proper order q, as shown below

MðtÞ ¼ 1
ΓðqÞ

Z t�δ

t0¼0

εðt0Þ
t � t0ð Þ1�q dt

0; (3)

where the Riemann-Liouville fractional integral formula is used,
and the integral order q is related to the DFA exponent α as an
affine function q(α)= α− 0.520. In this equation, εðt0Þ represents
the direct-forcing-response before the present time t, t � t0
represents the distance between historical time point t0 and
present time t, δ is the sampling time interval (e.g., monthly), and Γ
denotes the gamma function. According to Eq. (1), the considered
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time series x(t) can thus be written as,

xðtÞ ¼ 1
ΓðqÞ

Z t�δ

t0¼0

εðt0Þ
t � t0ð Þ1�q dt

0 þ εðtÞ: (4)

Obviously, the magnitude of historical influences accumulated
from the past ε depends on the integral order q. For q= 0, no
integration is conducted (M(t)= 0) and x(t) is simply equal to the
direct-forcing-response ε(t). If q= 1, on the other hand, the FISM is
identical to the classical SCM by Hasselmann42, where a Brownian
Motion is simulated. In practice, for a given time series x(t), one
first determines the fractional integral order q from the DFA
exponent α. With q and x(t), the historical direct-forcing-response
εðt0Þ (t0 < t) can be further estimated by reversely deriving Eq. (4).
Note that in this way the long-term memory effects can be
removed and εðt0Þ has no long-term memory (Supplementary Fig.
8). After substituting εðt0Þ into Eq. (3), the indirect-memory-
response at the present time t, M(t), can be calculated. In this way,
we can further decompose the variable x at the present time t into
the indirect-memory-response and the direct-forcing-response,
according to Eq. (1). For details of how to reversely derive Eq. (4),
as well as how to separate the indirect-memory-response and the
direct-forcing-response, please refer to the “Method” section in
ref. 43.

FISM-based projection approach
Suppose we have radiative forcing data, e.g., under a given
scenario, here we summarize the detailed steps to project GMTA
trends using the FISM-based approach.

1. Estimate the trend of the direct-forcing-response (ε0d) from
the radiative forcing data (under a given scenario) using
Eq. (2).

2. Determine surrogate fluctuations (ε0s) around the ε0d by
shuffling the detrended historical direct-forcing-response εs.
Obtain a “future” direct-forcing-response time series as
ε0 ¼ ε0d þ ε0s.

3. Substitute the “future” ε0 into the FISM. By setting the
fractional integral order q as 0.4, compute a “future”
projection.

4. Perform a large number of Monte Carlo simulation using
steps 2 and 3 (e.g., 1000 times), and then project the future
GMTA trend as the mean of all the realizations and use the
ensemble spread as an estimate of the uncertainty.

It is worth noting that since the temporal resolution of the
historical GMTA data is monthly, the resolution for the detrended
historical direct-forcing-response εs is also monthly. In this case,
we make simulations/projections with monthly temporal resolu-
tion. For the radiative forcing data, which have coarser temporal
resolutions, since we mainly focus on the simulated/projected
trends, linear interpolations are made between every two adjacent
points before analysis. In addition, the core of this projection
approach is Eq. (2), which describes the relations between the
direct-forcing-response ε and the radiative forcing data. Since only
long-term trends of these two quantities are considered in Eq. (2),
whether the radiative forcing data itself has memory or not will
not have a big impact on the approach.
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