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Heatwave–blocking relation change likely dominates over
decrease in blocking frequency under global warming
Pak Wah Chan 1✉, Jennifer L. Catto 1 and Matthew Collins 1

Extra-tropical continental summer heatwaves often occur under persistent anticyclones or blocking. Here we partition heatwave
changes into contributions from blocking changes, heatwave–blocking relation change and mean temperature increase, under
global warming in climate models. We employ an optimized blocking index that best correlates with heatwaves (Pearson
correlation of 0.7) and find heatwave-driving blocking decreases but the change in heatwave–blocking relation likely dominates.
Over Europe, with a historical heatwave frequency of 2.5%, less blocking will cause 0.6% fewer heatwaves, steepened
heatwave–blocking relation will cause 1.4% more heatwaves, and the mean temperature increase will cause 60% more heatwaves.
Over Greenland, flattened heatwave–blocking relation will dominate over the insignificant decrease in blocking. The future increase
in heatwave frequency is not caused by changes in blocking frequency, but by factors such as thermodynamics, that enhance the
capacity of blocking to drive heatwaves.
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INTRODUCTION
Heatwaves pose substantial threats to human society and will be
more frequent under global warming (ref. 1 and references
therein). Climate model simulations project the extra-tropical
continental summer heatwave frequency (when the temperature
exceeds the 90th percentile of the recent past for at least 6
consecutive days) to increase from 2.3% in the recent past to 61%
by the end of this century, in the scenario of greatest further
global warming of 4.2K (shared socioeconomic pathway 5–8.5 or
SSP585, see the section “Methods”).
Key factors controlling heatwave frequency include, e.g., the

increase in mean temperature2, soil moisture deficits3–5, and
atmospheric circulation patterns. Regarding atmospheric circula-
tion, studies come to rather divided conclusions on whether
future circulation will favour more heatwaves or fewer (references
in refs. 1,6–9). Studies of blocking anticyclones find less blocking
and heatwaves thus caused8. On the other hand, Mann et al.10 and
Pfleiderer et al.11 proposed an increase in the occurrence of quasi-
resonant amplification events and weakened storm track,
suggesting that the circulation will change to favour more
heatwaves.
Heatwave-driving circulation systems are often composed of

blocking anticyclones1—large-scale, quasi-stationary anticyclones
that block or divert the jet for extended periods. Blocking
anticyclones (or simply ‘blocking’) drives heatwaves by clear-sky
radiative forcing12, anomalous warm advection13,14, and subsi-
dence15. Given the importance of blocking, the objective of our
study is to partition the heatwave changes under future global
warming into contributions from blocking changes, changes in
heatwave–blocking relation, and mean temperature increase.

RESULTS
An optimized blocking index that best correlates with
heatwaves
Blocking may be of different configurations, different amplitudes,
different durations, residing over land or ocean, and may or may

not lead to heatwaves14. Different blocking indices pick different
subjective choices of these blocking characteristics (elaborated in
subsection “Blocking identification”). Such diversity of blocking
indices hinders the future projection of blocking and the
heatwaves they drive14.
Here, we employ the framework first introduced by Chan

et al.16, which is an impact-oriented approach (similar to ref. 17).
That is, we objectively evaluate different subjective choices in
blocking characteristics and find the optimized index defining the
‘heatwave-driving’ blocking that best correlates with summer
continental heatwave frequency north of 40°N, where most
Northern Hemisphere summer blocking occurs (see the section
“Methods” for details).
Unlike Chan et al.16, which used reanalysis data, we use 13

models from the Coupled Model Intercomparison Project Phase
6 (CMIP6, see the subsection “Data”). CMIP6 gives us more data
to make statistically robust conclusions. Also, the future
simulations in CMIP6 give us the opportunity to make a
quantitative projection of heatwaves and blocking in the
warmer future.
We find that the Dole and Gordon18 index, which identifies

persistent positive geopotential anomalies, computed over land
points only, with an amplitude threshold of 1.0 standard deviation
and duration threshold of 5 days (hereafter ‘optimized blocking
index’) best correlates with summer continental heatwave
frequency north of 40°N. The optimized blocking index gives a
multi-model-mean cross-validation R2 of 0.50 (or Pearson correla-
tion r of 0.74) between blocking and heatwaves. The scatter plot
from a representative model is shown in Fig. 1. Supplementary
Methods discusses how the best correlations between blocking
and heatwaves are achieved by (1) excluding blocking over the
ocean when continental heatwaves are concerned, (2) tuning the
thresholds for amplitude and duration, (3) imposing a duration
requirement on each gridpoint to mandate perfect stationarity of
blocking, and (4) detecting only anticyclonic anomalies but not
mean flow reversals.
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Sole effect of blocking changes on heatwave frequency: scalar
projection
The optimized blocking index projects a decrease in future
blocking frequency when averaged over all Northern Hemisphere
land points north of 40°N (Fig. 2a, a multi-model-mean decrease of
1.2% relative to 6.4% in the historical period). We may quantify the
sole effect of blocking frequency on future heatwaves and ignore
other major factors, by assuming an unchanged
heatwave–blocking relationship in the future (change in the
relationship will be studied in the subsection “Change in
heatwave–blocking relation”). Given a future blocking frequency,

we use the linear regression coefficients fitted from the historical
data, to project a future heatwave frequency. The uncertainty in so
doing is estimated by cross-validation (subsection “Uncertainty
estimate”) and shown by the error bars in Fig. 1 for one of the
models. Averaging all 13 models, the decrease of blocking
frequency alone is projected to give a multi-model-mean
frequency decrease of 0.4% in heatwave frequency (Fig. 2b),
which is one-fifth of the historical frequency of 2.3%. This change
occurs when the globe warms by 4.2K (multi-model average) in
SSP585 (2060–2099) as compared to historical (1966–2005).
A historical heatwave frequency of 2.3% means that over 40

years (1966–2005) of summer (60 days from 20 June to 18 August),
there are, on average, 54 heatwave days over continents north of
40∘N. The decrease in heatwave-driving blocking alone is
projected to give 10 fewer heatwave days in 40 years in the
future (2060–2099). A simple average of 1σ uncertainty of 10-year-
mean heatwave frequency is 0.24% (Fig. 2b and see the
subsection “Uncertainty estimate”).

Sole effect of blocking changes on heatwave frequency:
spatial pattern
On the spatial projection of blocking, previous studies have
projected a decrease over the North Atlantic and the North
Pacific8,14,19–21 and potentially a localized increase near the Urals
(refs. 14,20,21 and references therein). Here, the SSP585 runs
together with our optimized blocking index project a decrease in
summer blocking frequency in the mid-latitudes and a weaker
increase over the Arctic Ocean (Fig. 3c), which is consistent with
the poleward shift seen in previous studies (ref. 6 and references
therein). The strongest decrease happens over the North Atlantic
and the North Pacific, and the decrease near the Urals is not
statistically significant (more discussion on the Ural blocking in
Supplementary Discussion). Averaging over land points north of
40°N, blocking decreases (see also Fig. 2a). Chan et al.16 speculated
that excluding oceanic blocking might make a difference to future
projections of heatwave-driving blocking and here we find that it
does not make a qualitative difference.
Figure 3d shows the spatial projection of heatwaves when the

linear regression approach is applied to co-located heatwaves and
blocking on a coarsened grid (the reduced spatial resolution
allows for more robust statistics, due to the infrequent nature of
heatwaves). Counting only the effect of blocking frequency, the
projection of heatwaves also shows a decrease in the mid-
latitudes and a weak increase near the polar regions. Stronger
decreases occur along the west coast of continents (the northwest

Fig. 1 Optimized blocking index correlates well with heatwave
frequency. Scatter plots of heatwave frequency versus optimized
blocking index, both averaged over land points north of 40°N, in the
MPI-ESM1-2-LR model. Each point represents the mean over one
summer (two trailing digits of the year labelled). The ordinary least-
squares linear regression line is plotted in yellow. The vertical error
bars show the 1σ ranges in estimating the 10-year-mean heatwave
frequency using the mean blocking frequency of the historical run
(yellow, 1966–2005) and SSP585 run (blue, 2060–2099). r and R2 are
shown (based only on one model and therefore slightly deviate
from the multi-model mean).

Fig. 2 The decrease of blocking alone is projected to give a one-fifth decrease in heatwave frequency. a Projected change in blocking
frequency versus historical blocking frequency. b Projected change in heatwave frequency contributed by a change in blocking frequency
alone, versus historical heatwave frequency, with 1σ error bars of 10-year-mean heatwave frequency (see the subsection “Uncertainty
estimate”). Projections from 13 models are plotted in pink, and a simple arithmetic multi-model mean is plotted in purple. The one-fifth
decrease in heatwaves is seen by comparing −0.4% on the y-axis to 2.3% on the x-axis (b).
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US, the British Isles), central Siberia, and eastern Europe, where the
decrease of blocking is strongest.

Change in heatwave–blocking relation
The actual change in heatwave frequency (when the mean
temperature increase is removed, Fig. 4) does not resemble the
overall decrease considering only the effect of blocking changes
(Fig. 3d). Instead, the actual heatwave change is mostly
insignificant. This suggests a change in the relationship between
heatwaves and blocking. Few regions show significant heatwave
change—a significant increase over Europe and a significant
decrease over Greenland2 —which we will study in more detail.
Regarding the change in the heatwave–blocking relation,

previous studies22,23 found no significant change in the
heatwave–blocking relation in the future, when heatwaves are
calculated relative to the respective climate. Here, we calculate
heatwaves relative to the historical percentiles (after removing the
mean temperature increase). Over Europe (land points in
40°N–60°N, 10°W–30°E), the linear regression slope between
heatwaves and blocking steepens statistically significantly (Fig.
5b), indicating a higher frequency of heatwaves for the same
frequency of blocking. The steepened heatwave–blocking relation
could be a result of depleted soil moisture and enhanced
land–atmosphere coupling3–5, which enhance the capacity of
blocking in driving heatwaves. Over Greenland (land points in

Fig. 3 Spatial projection of summer blocking and heatwaves. a, b The multi-model-mean historical (1966–2005) frequency of blocking (a)
and heatwaves (b). c, d The multi-model-mean frequency change, in SSP585 (2060–2099) minus historical, of blocking (c) and heatwaves
(d, counting only the effect of blocking changes). Dots enclosed in grey contours in c denote regions where the changes are NOT statistically
significant.

Fig. 4 Few regions show significant heatwave change on top of
the mean temperature increase. Shadings show the multi-model-
mean change in heatwave frequency when mean temperature
increase is removed, in SSP585 (2060–2099) minus historical
(1966–2005). Dots enclosed in grey contours denote regions where
the changes are NOT statistically significant. Europe and Greenland
(land points in green boxes) are studied in more detail.
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60°N–84°N, 52°W–27°W), the heatwave–blocking slope decreases
significantly (Fig. 5c). The temperature there will be less negative
in the future warmer summers. The melting of ice, which requires
the absorption of latent heat, will occur more frequently and limit
the temperature variability and blocking’s capacity in driving
heatwaves (Fig. 6).
Over Europe, though the heatwave–blocking slope increases

significantly, the correlation between heatwaves and blocking
varies insignificantly in the future (Fig. 7), and it is still the same
type of blocking anticyclones (i.e., measured with the same
amplitude threshold of 1.0 standard deviation and duration
threshold of 5–6 days) that best correlates with heatwaves, which
is in contrast with ref. 24. Over Greenland, the heatwave–blocking
correlation decreases significantly, perhaps because of the scarcity
of future heatwaves. Note that the large spread in
heatwave–blocking correlation among models (Fig. 7) unlikely

comes from model biases, as the inter-model variations of R2 in
historical do not correlate with those in SSP585. Instead, the large
spread in R2 may come from random sampling, as supported by a
similarly large spread in correlation being also found among
different realizations of the same model (Table 2 in ref. 23).
Putting different factors together, over Europe, with an average

historical heatwave frequency of 2.5%, the steepened
heatwave–blocking relation causes, on average, a 1.4% increase
in heatwave frequency (the bold red line segments in Fig. 5b). This
overwhelms the effect of blocking frequency decrease (0.6%
decrease in heatwave frequency on average, the bold blue line
segments in Fig. 5b). Over Greenland, with historical heatwave
frequency of 2.6%, the flattened heatwave–blocking relation will
cause a 1.1% decrease in heatwave frequency (Fig. 5c). This

Fig. 5 Sole effect of blocking decrease dominated by the change in heatwave–blocking relation. a Scatter plot of heatwave frequency
versus optimized blocking index, both averaged over Europe (land points in 40°N–60°N, 10°W–30°E) for historical (1966–2005, yellow) and
SSP585 (2060–2099, blue), in the NorESM2-LM model. Also shown are the mean blocking frequencies (vertical lines) and linear regression
lines. Bold line segments show how heatwave changes are contributed by blocking changes (blue) and heatwave–blocking relation change
(red). b, c As a, but for 13 CMIP6 models over Europe (b) and Greenland (c, land points in 60°N–84°N, 52°W–27°W). Individual plots for 13
models are in Supplementary Figs. 1 and 2.

Fig. 6 Ice melting limits temperature variability in future Green-
land summer. Time series of daily maximum near-surface tempera-
ture (tasmax) at a grid point over Greenland in the ACCESS-CM2
model, for historical (yellow, 1966–2005) and SSP585 (blue,
2060–2099). The red line marks the ice melting point.

Fig. 7 Correlation between heatwaves and blocking varies
insignificantly in the future over continents north of 40°N and
Europe. Cross-validation R2 of 13 CMIP6 models over different
regions are shown for historical (yellow, 1966–2005) and SSP585
(blue, 2060–2099). Bigger crosses show the multi-model mean. R2

decreases significantly in the future over Greenland, perhaps
because of the scarcity of future heatwaves.
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dominates over the effect of insignificant blocking frequency
decrease (0.1% decrease in heatwave frequency, Fig. 5c).

DISCUSSION
Blocking plays a crucial role in driving heatwaves. To quantify the
effect of blocking changes on heatwave frequency, we find an
optimized blocking index defining ‘heatwave-driving blocking’
that best correlates with summer continental heatwave frequency
north of 40°N. The optimized blocking index gives a multi-model-
mean cross-validation R2 of 0.50 (or Pearson correlation of 0.74)
between blocking and heatwaves.
For continents north of 40°N, applying the optimized blocking

index to 13 CMIP6 models simulating SSP585 (2060–2099,
scenario of the greatest future warming of 4.2K), we find that
the average frequency of heatwave-driving blocking will drop by
1.2%, from 6.4% in the historical period. Counting only the effect
of less heatwave-driving blocking, heatwave frequency will be
one-fifth less (Fig. 2b, a frequency decrease of 0.4 ± 0.2% in
comparison with the historical frequency of 2.3%). The simple 1σ
uncertainty in projecting the 10-year-mean heatwave frequency
is 0.24%.
Interesting though in Europe, the heatwave–blocking slope

steepens significantly in the future (Fig. 5b) while the
heatwave–blocking correlation varies insignificantly (Fig. 7). The
increase in heatwave frequency is partitioned into 1.4% increase
from the change in heatwave–blocking relation, 0.6% decrease
from less blocking, and about 60% increase from the mean
temperature increase. Over Greenland, the heatwave–blocking
slope flattens significantly in the future (Fig. 5c). The increase in
heatwave frequency is partitioned into a 1.1% decrease from the
change in heatwave–blocking relation, 0.1% decrease from
insignificantly less blocking, and 71% increase from the mean
temperature increase. Hence, apart from the mean temperature
increase and the change in the seasonal cycle2,25, there are still
important thermodynamic factors that enhance the capacity of
blocking to drive heatwaves, e.g., depleted soil moisture and
enhanced land–atmosphere coupling3–5 that dominate the trends.
Therefore, studies are needed to better understand the enhancing
factors that cause a steepened heatwave–blocking relation.
The decrease in blocking we find is in line with the emerging

consensus that blocking will decrease with global warming8, and
the argument that blocking decreases with Arctic amplification as
the variance of 500-hPa height (zg500) decreases26,27. However,
the decrease is in contrast with studies suggesting that circulation
will change in a way favoring more heatwaves under global
warming10,11,28–30. Some of those studies included the increase in
zg500 mean state29,30, which is excluded in this study. Some
studies considered other circulation patterns conducive to
heatwaves, e.g., quasi-resonant amplification events10 and a
weakened storm track11. A rigorous comparison of different
heatwave-conducive circulation patterns is still needed9.
Note that our optimized blocking index measures the variability

of zg500, which might not be purely dynamic but influenced by
thermodynamic factors like soil moisture31. But in the climate
model projections, even when soil moisture is projected to
decrease (which tends to increase zg500 variability), the zg500
variability is actually projected to decrease. This would suggest an
inherent decrease in the dynamic effect. Also, note that this study
only looks into the frequency of blocking and heatwaves each
using one single duration threshold and no size threshold. So, it is
only a bulk summary and may not fit all purposes in measuring
impact, especially when blocking duration or size may change
under climate change32.
The framework introduced here can well be used to study other

types of weather extremes that are associated with blocking, such
as cold spells and heavy precipitation.

METHODS
Data
We use 40 years each from ‘historical’ (1966–2005) and ‘SSP585’
(2060–2099) runs in Coupled Model Intercomparison Project Phase 6
(CMIP6)33. Daily maximum near-surface temperatures (tasmax) are used to
identify heatwaves, and daily 500-hPa geopotential heights (zg500) are
used to identify blocking. We also use monthly near-surface temperature
(tas) and find that the global mean temperature is 4.2 K higher in SSP585
than historical (recent past, not pre-industrial, multi-model mean).
Thirteen models (ACCESS-CM2, CMCC-ESM2, CNRM-CM6-1, CNRM-ESM2-

1, CanESM5, EC-Earth3-Veg-LR, HadGEM3-GC31-LL, HadGEM3-GC31-MM,
IPSL-CM6A-LR, MIROC-ES2L, MPI-ESM1-2-LR, NorESM2-LM, UKESM1-0-LL)
have the desired variables at the desired frequency, and the first
variant_label from each model is used in this study. All variables are first
regridded to a 128 × 64 Gaussian grid (approximately 2.8° resolution).
We focus on areas north of 40°N, where summer blocking often occurs.

Following Chan et al.16, we focus on 20 June to 18 August (simply referred
to as ‘summer’), which are the hottest 60 days for continental areas north
of 40°N16 (see also ref. 34).

Heatwave identification
Following Chan et al.16, we first remove the seasonal cycle and long-term
trend from daily maximum near-surface temperatures (tasmax), by
subtracting 29-day × 11-year moving averages. Eleven years are equally
weighted, while the moving averages for 29 days are done by Tsmth=
movmean(movmean(T)), where function movmean is a 15-day equally-
weighted moving average defined as movmeanðTÞ ¼ P7

Δt¼�7 TΔt=15,
where Δt is the relative time in days. Two successive 15-day moving
averages will effectively involve 29 days of data in the averaging as follows:

movmeanðmovmeanðTÞÞ ¼
X14

Δt¼�14

15� jΔtj
225

TΔt : (1)

This approach removes the seasonal cycle thoroughly, by allowing the
seasonal cycle to slowly vary from year to year. By removing the seasonal
cycle from the anomalies, the change of the seasonal cycle is not
considered as a change in variability25, but a change in the mean2.
Following the warm spell duration index (WSDI)35, heatwaves are defined
as tasmax > 90th percentile for at least 6 consecutive days. The percentiles
in the respective ‘historical’ data are used, and the bootstrap procedure36 is
used in the ‘historical’ period. Finally, summer-averaged heatwave
frequencies are averaged over continents north of 40°N to obtain a time
series of interannual variations. Multi-model-mean heatwave frequency is
2.3% in historical, and 61% in SSP585 if the mean summer temperature
increase is added.

Blocking identification
There are some subjective choices in measuring blocking (‘blocking index’),
e.g., meteorological variables to use, features to detect, parameters and
thresholds, quasi-stationarity criteria and how spatial maps are pre-
sented14,16,19,37. Briefly, regarding meteorological variables, some use 500-
hPa geopotential height; some use vertically averaged potential vorticity
(PV); some use potential temperature on 2-PV-unit surface. For features to
detect, some detect strong anticyclonic anomaly; some detect reversal of
the mean flow; some detect both of them. Blocking indices also have some
parameters and thresholds, such as amplitude threshold and duration
threshold, which are often subjectively chosen. Blocking indices have
different ways of ensuring that blocking is quasi-stationary. Some require
perfect stationarity by imposing the duration requirement gridpoint by
gridpoint (e.g., ref. 18). Some only require quasi-stationarity by imposing
the duration requirement and overlapping requirement to a contiguous
group of gridpoints (e.g., refs. 19,38). Spatial maps of blocking frequencies
are reported in different ways. Some report the hemispheric average (e.g.,
refs. 19,27,39,40). Some report on several preferred locations of blocking
(e.g., ref. 40). Some only report on continents41. With such a variety, it is
not surprising that blocking indices do not give consistent statis-
tics14,16,19,42. Nevertheless, these indices are used to draw important
conclusions about future changes in weather extremes and underlying
dynamics27,43–45, even though their correlation with weather extremes has
rarely been evaluated.
Supplementary Methods study four of these subjective choices in

blocking indices, namely, features to detect, parameters and thresholds,
quasi-stationarity criteria, and how spatial maps are presented. We do not
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study choices on meteorological variables and use only 500-hPa
geopotential height (zg500) because PV diagnostics are not commonly
available in CMIP6 data. We select two zg500-based two-dimensional
blocking indices from Dole and Gordon18 (DG83) and Dunn-Sigouin et al.38

(D13), which correlate better with heatwaves than some other indices16.
We also create an anomaly-only version of D13, in which we remove the
reversal requirement (Table 1).
For all indices, anomalies of zg500 are calculated first by subtracting the

29-day × 11-year moving averages as described in the subsection
“Heatwave identification”. These anomalies are then scaled by
sin 45�= sinϕ following Eq. (1) in Dole and Gordon18. Next, the scaled
anomalies are normalized by the standard deviation (in the respective
‘historical’ data, unless otherwise specified). Specifically, the standard
deviation is a model-specific scalar calculated as the 5-day-moving mean
of area-weighted root-mean-square of the 40-year standard deviation of
scaled zg500 anomalies, over all gridpoints north of 40°N. After that, the
normalized scaled anomalies go through each of the blocking indices.
Finally, summer-averaged blocking frequencies are averaged north of 40°N
to give time series of interannual variations.

Measuring the correlation between blocking and heatwaves
To measure the association between blocking and heatwaves, we recall
that our objective is to quantify the sole effect of blocking changes on
heatwaves under future global warming. Concretely, we want to provide a
quantitative projection of future heatwaves, when future blocking statistics
are given (by CMIP6). The association between blocking and heatwaves (or
extremes in general) has previously been studied using case studies (e.g.,
ref. 46), composite analysis (e.g., refs. 15,47), probability of detection12, odds
ratio48, and Spearman’s rank correlation23. These approaches have
difficulties in getting a quantitative projection of future heatwaves, or an
uncertainty estimate of such a projection.
This study follows Chan et al.16 in using linear regression, which is a

simple approach that provides a quantitative projection of future
heatwave frequency when future blocking frequency is given. We consider
this problem as a ‘model selection’ problem in statistics and machine
learning, where we are selecting a blocking index, trained by the ‘historical’
data and projecting into the ‘SSP585’ period. For this out-of-sample
prediction problem, we use cross-validation, as it can avoid over-fitting
features that do not robustly recur in the training data. Four-fold cross-
validation is conducted 50 times. Each time the data are randomly
permutated and split into four subsets (‘folds’) of 10 years. Holding out one
fold for validation, interannual variations of heatwave frequency are
linearly regressed on interannual variations of blocking frequency over the
other three folds of training data. Because we are interested in a time scale
of 10 or more years, the validation is to calculate the squared difference
between the 10-year-mean heatwave frequency (mean of the validation
fold) and the projection using the 10-year-mean blocking frequency. We
use ‘MSE’ to denote the mean of the 200 squared differences, from 50
times of four-fold cross-validation.
For easier comprehension, we normalize and convert MSE to R2 as

follows. We calculate a baseline MSE like the above procedure, but instead
of using blocking data, we simply project heatwave frequency to be the
mean in training data, not to fit the linear regression slope against
blocking. We calculate R2 as

R2 ¼ 1� MSE
MSEbaseline

: (2)

The R2 is similar to, and usually slightly smaller than the square of the
Pearson correlation (denoted as r2 in small letter), because the cross-
validation R2 measures out-of-sample validation error while the Pearson
correlation measures in-sample training error. The square of Pearson

correlation r2 cannot be negative, but the cross-validation R2 can be
negative if blocking correlates poorly with heatwaves. In such cases, fitting
the linear regression slope gives extra variability and thus a higher MSE
than the baseline MSE, which does not fit the linear regression slope. Chan
et al.16 also normalized the cross-validation MSE similarly, and the e2 in
their study is converted to R2 as R2= 1−e2.
We process each model separately and average together the R2, without

assuming inter-model correlation. To test the statistical significance of one
blocking index giving higher R2 than another, we do a t-test on the 13
paired differences of R2 from the 13 models, to test whether their mean
deviates from zero.

Uncertainty estimate
The square root of MSE is our 1σ estimate of uncertainty when 30 years are
used in training to project a 10-year-mean heatwave frequency. The
uncertainty will be smaller if we are projecting the mean of more years, or
if we use more years in training. This uncertainty reflects only the
uncertainty of the linear regression coefficients, but not the uncertainty in
blocking frequency, nor the uncertainty in the optimized thresholds
(because the thresholds are hyper-parameters in the cross-validation). The
bold purple error bar in Fig. 2b shows the simple arithmetic mean of the 13
error bars. So the uncertainty does not include the inter-model spread, nor
decrease due to a multi-model approach.
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