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Predictability of South-Asian monsoon rainfall beyond the
legacy of Tropical Ocean Global Atmosphere program
(TOGA)
B. N. Goswami 1✉, Deepayan Chakraborty 2, P. V. Rajesh1 and Adway Mitra2

In the backdrop of overwhelming evidences of associations between North-Atlantic (NA) sea-surface temperature (SST) and the
Indian summer Monsoon Rainfall (ISMR), the lack of a quantitative nonlinear causal inference has been a roadblock for advancing
ISMR predictability. Here, we advance a hypothesis of teleconnection between the NA-SST and ISMR, and establish the causality
between the two using two different nonlinear causal inference techniques. We unravel that the NA-SST and the El Nino and
Southern Oscillation (ENSO) are two independent drivers of ISMR with the former contributing as much to ISMR variability as does
the latter. Observations and climate model simulations support the NA-SST–ISMR causality through a Rossby wave-train driven by
NA-SST that modulates the seasonal mean by forcing long active (break) spells of ISMR.
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INTRODUCTION
With the country’s food production and economy depending on
it1,2, the Indian summer monsoon rainfall (ISMR) is the lifeline of
one-fifth of the world’s population living in the region. It is not
surprising, therefore, that developing a model for forewarning of
ISMR one season in advance has a history of more than a century
in India led by the pioneering work of Blanford3. Despite great
advances in ocean-atmosphere observation, computing resources,
development of improved empirical4,5 and coupled climate
models for ISMR prediction, the prediction of ISMR remains a
grand challenge problem in climate science6. Although many
different predictors have been identified for predicting ISMR since
then7, the El Nino and Southern Oscillation (ENSO) has remained
the leading predictable driver of ISMR, even though the relation-
ship between ISMR and an ENSO index shows a weakening trend
in recent decades (Supplementary Fig. 1b8) with a tendency for
recovery to higher negative correlations in more recent years.
With ISMR defined from another dataset9, however, the
ENSO–ISMR correlation continues to decrease in recent years.
Further, the maximum negative correlation between ISMR and
Nino3.4 SST takes place 3–4 months after the peak of ISMR
(Supplementary Fig. 1c), suggesting a potential role of ISMR in
driving the ENSO. In fact the lead–lag relationship (Supplementary
Fig. 1c) indicates that the ISMR could feedback and influence the
ENSO10 making the ENSO–ISMR relationship tangled11,12 and
potentially a bi-directional causality. It is also notable that the
ENSO–ISMR relationship undergoes a multi-decadal variation
(Supplementary Fig. 1b13) implying that there are periods when
ENSO could explain up to 35% of inter-annual variability of ISMR
while there are periods when it could explain less than 10% of
ISMR variability. Further, it is noted that a nearly equal number of
floods and droughts occur without a La Nina or an El Nino
(Supplementary Fig. 1a), indicating the role of non-ENSO drivers
on observed inter-annual variability of ISMR.
A recent study14 argues that the traditional “signal-to-noise”

estimates of “potential skill” or limit of potential predictability are
underestimated and a model-based estimate of “potential skill”

indicates that it could be much higher than previously thought
explaining up to 70% of inter-annual variability of ISMR, far
beyond that could be explained by association with the ENSO.
Some additional sources of ISMR predictability come from other
slowly varying potential drivers like the Eurasian snow cover15–18,
Pacific Decadal Oscillation (PDO)19,20, Indian Ocean Dipole
Mode21–23, the Atlantic Nino24–27 and Atlantic tripole28, have
been explored recently. However, the physical mechanisms
through which they influence the ISMR, the robustness of the
relationships, and the fraction of ISMR variability explained by
them are still being debated. As a result, the causality and the
direction of causality between these potential drivers and ISMR
are neither well established nor their independence from the
ENSO and the North-Atlantic sea-surface temperature (SST)
variability is established.
In addition to the ENSO, there is considerable evidence that cold

NA SSTs are associated with mega-droughts of Indian monsoon in
the past29,30. In recent years, the NA SST is also linked with ISMR on
multi-decadal time-scales28,31–35. While the North-Atlantic multi-
decadal variability (alternately also known as the Atlantic multi-
decadal oscillation, AMO) could be modified by either natural or
anthropogenic aerosols36–39, ocean-atmosphere feedback is critical
for the basic multi-decadal variability in the Atlantic33,40,41. With
considerable evidence of decadal predictability of the North-
Atlantic climate and the AMO42–45, it represents an extra-tropical
predictable driver for ISMR. In addition, the Southern Annular
Mode (SAM) also has a notable association with the ISMR
variability46–49. While the SAM is a manifestation of “internal”
atmospheric dynamics with typical auto-correlation of ~2 weeks, it
also has a forced or coupled component with modest seasonal
predictability50 due to its significant association and linkage with
the ENSO51–53. Therefore, the SAM is unlikely to contribute to ISMR
predictability over and above that arises from association between
ENSO and ISMR.
The primary objective of this article is to establish beyond

reasonable doubt that the NA-SST or the AMO is an independent
driver of the ISMR variability. For establishing the same, first, we
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need a physical mechanism connecting the NA SST and ISMR. A
framework for such a physical teleconnection mechanism has
emerged from several recent studies28,31,32,54–56. According to it,
positive (negative) NA SST drives a large-scale anticyclonic
(cyclonic) barotropic vorticity over it on intraseasonal time-
scales and sets up an upper level zonal-wave number four Rossby
wave-train that produce significant upper level anticyclonic
(cyclonic) vorticity over the Indian region that in turn strengthen
(weaken) low-level cyclonic vorticity associated with the Indian
monsoon. Long active (break) spells as a result of clustering of
the spells lead to strengthening (weakening) of the seasonal
mean ISMR. The Rossby wave-train represents a North-
Atlantic–Indian (NAI) teleconnection pattern for linking extra-
tropical NA SST to tropical ISMR.
In the present study, we start by describing the NAI pattern of

teleconnection between NA SST and ISMR. However, a missing
element of the puzzle of teleconnection between the AMO and
the ISMR is, how the NA extra-tropical SST drive the local
barotropic vorticity on intraseasonal time-scales The conventional
wisdom indicates that unlike in the tropics, the atmosphere drives
SST anomalies in the extra-tropics. While that may be true on
synoptic time-scales, here we provide evidence that indeed the
NA SST could drive barotropic vorticity above it on intraseasonal
time-scales bridging the missing link in the teleconnection
between the AMO and the ISMR. The last important remaining
issue is that the causality has not been quantified rigorously.
Although the functional relationship between the driver time
series like the AMO and the ISMR is intrinsically nonlinear, the
causal inference algorithms used so far are all based on linear
correlations and regressions and do not adequately address the
independence of AMO–ISMR relationship from that with other
potential drivers. To test the robustness of our conclusions, we
quantify the causality between the AMO and the ISMR in the
presence of a number of other potential drivers using two
different advanced nonlinear causal inference algorithms and
unravel that the NA SST is indeed a driver of the ISMR through a
simultaneous atmospheric bridge independent of the ENSO and
its impact on the ISMR is comparable to that of the ENSO. We
further show that it achieves the same through the NA SST driving
a intraseasonal barotropic vorticity above it, which in turn drives
extended intraseasonal spells of rainfall over the Indian monsoon
region that leads to seasonal mean ISMR anomalies.

RESULTS
North-Atlantic and Indian Monsoon (NAI) teleconnection
Extra-tropical climate teleconnection via the wave-train associated
with the Pacific North American (PNA) pattern has been shown to
be driven by tropical heat source linked with ENSO SST57,58.
However, a similar theoretical support for the generation of the
Rossby wave-train connecting NA SST and ISMR is lacking. Here,
we contrast the Rossby wave-train connecting the extra-tropics to
the tropics (Fig. 1a, c) with the tropical ENSO SST to extra-tropical
teleconnection through the PNA pattern (Fig. 1b).
The teleconnection between the extra-tropical AMO and the

tropical ISMR through the Rossby wave-train has been shown in
some detail in Rajesh and Goswami54. The tropical SST to
extratropical climate teleconnection via the wave-train associated
with the Pacific North American (PNA) pattern has been shown to
be driven by tropical heat source linked with ENSO SST57,58.
However, a similar theoretical support for the generation of the
Rossby wave-train connecting NA SST and ISMR is lacking. Here,
we contrast the Rossby wave-train connecting the extra-tropical
NA-SST to the tropics (Fig. 1a, c) with the tropical ENSO SST to
extra-tropical teleconnection through the PNA pattern (Fig. 1b).
The regression of the multi-decadal mode of JJAS AMO and

deviations from zonal mean of anomalies of JJAS 200 hPa

geopotential height (Fig. 1a) and 200 hPa winds (Fig. 1c) illustrate
the Rossby wave-train associated with the North-Atlantic SST on
multi-decadal time-scale. A similar Rossby wave-train linking NA
and the Indian monsoon region was also identified by Joshi and
Ha59. A nearly identical wave-train is found to connect the NA SST
to ISMR on seasonal and inter-annual time-scale56 too. We call this
the North-Atlantic–Indian (NAI) teleconnection pattern. The NAI
pattern is similar to the circumglobal teleconnection pattern of
the northern hemisphere summer time climate described by Ding
and Wang60. Difference between the two is that their pattern is
related to the ENSO while NAI is unrelated to the ENSO. A similar
regression between JJAS Nino3.4 SST and geopotential height on
inter-annual time-scale shows the PNA type of pattern in NH
(Fig. 1b). Unlike the tropics to extra-tropics teleconnection, which
is achieved through the meridionally propagating group of Rossby
waves along a great circle arc, the extra-tropical to tropical Rossby
wave-train is essentially anomaly of the climatological zonal winds
over the extra-tropics. While Hoskins and Karoly57 clarified some
initial apprehension regarding how the waves could travel from
mean easterlies through the subtropical westerly jet to deep extra-
tropics in the PNA type teleconnections, there is no conceptual
difficulty in the zonal propagation of the Rossby waves on a
largely westerly background mean flow.
Similar to how the lower-stratospheric quasi-biennial oscillation

(QBO) modulates tropical deep convection by influencing the
vertical wind shear and vorticity at the upper troposphere and
lower stratosphere (UTLS) region61,62, persistent divergence
(convergence) at an upper level over the Indian monsoon region
by the NAI vortex facilitates (inhibits) deep convection frequency
leading to strengthening (weakening) of the ISMR. A recent
study56 shows that during non-ENSO droughts, it leads to a
clustering of “break”monsoon conditions and results in a negative
seasonal mean ISMR anomaly. A similar mechanism operates even
on different phases of the AMO as well54. This sub-seasonal
manifestation of this teleconnection between NA and ISMR could
be seen in the composite of daily intraseasonal rainfall anomaly
averaged over central India (72°E–86°E, 14°N–28°N) over 20 years
(1935–1955) around a peak positive phase of the AMO multi-
decadal mode (Supplementary Fig. 2). It shows that the higher
than average seasonal mean ISMR arises from two phase-locked
“active” spells during the season. Similar phase locking (or
climatological intraseasonal oscillation) is seen for upper level
(200 hPa) anticyclonic vorticity and lower level (850 hPa) cyclonic
vorticity over the region that facilitates the sustenance of the
active spells (Supplementary Fig. 2). Linear lead–lag relationships
between barotropic vorticity above NA SST and upper level
vorticity over the Indian region and Indian monsoon rainfall on
intraseasonal time-scale are an indication that the upper level
anticyclonic vorticity over India is not a response of the stronger
monsoon but likely to be driven by the NA-barotropic vorticity.
The indications from this linear analysis are confirmed in the
following sections using a nonlinear causal inference technique,
where we show that the NA SST indeed drives the barotropic
vorticity above it, which in turn drives the upper level vorticity
over Indian monsoon region that drives the long active or breaks
spells over the Indian monsoon region.

SST and barotropic vorticity on sub-seasonal time-scales
The vertical structures of extra-tropical low-frequency (compared
to synoptic) intraseasonal variations are known to be barotropic in
nature while those associated with high-frequency (synoptic)
disturbances are baroclinic63. The existence of the stationary
Rossby wave-train associated with the NAI pattern driven by an
episodic barotropic vorticity source, therefore, is understandable.
Also the association between the barotropic vorticity source and
the underlying SST is unambiguous54,56. However, it is not clear
whether the underlying SST drives the low-frequency barotropic
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vorticity or the atmospheric circulation drives SST and related
fluxes. In order to bring out the large-scale barotropic vorticity and
to remove the influence of high-frequency spatial variability, both
SST data and atmospheric vorticity are averaged to a common
resolution of 1o x 1o boxes and we create weekly averages of the
daily SST and vorticity. Using JJAS SST and circulation from NOAA
20CRv3 and ERA5, the correlations calculated between SST leading
the barotropic vorticity up to 3-weeks to lagging by a week (Fig. 2)
show large regions of negative correlations over the North-
Atlantic and north Pacific consistent with earlier findings54,56 that
warm (cold) waters are overlaid by anticyclonic (cyclonic)
barotropic vorticity, which is in contrast to the warm tropical
oceanic regions. The fact that the correlations peak with SST
leading the vorticity by 1–2 weeks is a strong indication that the

SST is the driver for the generation of barotropic vorticity and not
a response. This conclusion is supported by nonlinear causal
inference calculations in the following sections.
While our analysis provides evidence that the extra-tropical SST

could be a driver of atmospheric circulation variations on sub-
seasonal time-scales, how the SST achieves this eluded consensus.
As a result, what produces the deep barotropic vorticity response
above the SST has remained an open question. Here a mechanistic
explanation about the underlying process is proposed based on a
hypothesis is that the SST does this by modulating the North-
Atlantic Oscillation (NAO)31. However, we realize that the
teleconnection between NA SST, barotropic vorticity (BV) above
it, Indian upper level vorticity (IUV) and ISMR takes place on an
intraseasonal time-scale (Supplementary Fig. 2).

Fig. 1 Contrast between the North-Atlantic–Indian monsoon (NAI) and the Pacific–North-American (PNA) teleconnection patterns.
a Spatial pattern of geopotential height associated with the AMO. Regression of JJAS AMO multi-decadal mode on both the JJAS SST
(shading, K K−1) and deviation of JJAS 200 hPa geopotential height (contour lines, m2 s−2 K−1) from zonal mean. b Spatial pattern of
geopotential height associated with the ENSO. Regression of DJF Nino3.4 SST on DJF 200 hPa geopotential height (m2 s−2 K−1) as viewed
from NH (c). The Rossby wave-train associated with the AMO multi-decadal mode. Regression of JJAS AMO multi-decadal mode on JJAS SST
(shading, K K−1), deviations on JJAS 200 hPa winds (vectors, m s−1 K−1) and 200 hPa geopotential height from zonal mean (m2 s−2 K−1),
where blue curves represents –ve contours, red curves for +ve contours, and black curve represents zero contour. Data length is from
1850–2015, for which AMO MDM is obtained as the IMF-5 of AMO index. Hatching represents regions where winds are significant at 95% CI
using two-tailed t-test.
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The warmer (colder) SST relative to colder (warmer) SST to the
north leads to a north–south surface pressure gradient in the
region and results in modulating the strength of the summer
NAO. Therefore, we propose that the NA SST produces a similar
phase locking of the NAO with the seasonal cycle and thereby
produces a phase locking of the BV. A southward (northward) shift
of the storm track (on background zonal westerlies) represents an
anomalous vorticity forcing at low level. The episodes of
persistent spells of vorticity forcing can lead to the generation
of equivalent cyclonic or anticyclonic vorticity through vertical
propagation of the Rossby wave response. Thus, the NA SST forces
could, in principle, result in the genesis and maintenance of
observed equivalent barotropic vorticity response above it via
modulation of the MSLP and hence the NAO. The hypothesis is
tested by creating a summer NAO index defined by the difference
of JJAS MSLP between (40oW–30oW, 40oN–30oN) and
(30oW–20oW, 50oN–60oN). Recognizing that the relationships
between NA SST, NAO, BV and ISMR are intrinsically nonlinear,
we use a nonlinear causal inference algorithm to test this
hypothesis. Some modeling studies64,65 support that a barotropic
vorticity response can emerge from SST forcing in the extra-
tropics. Ferreira and Frankignoul65 examined the transient atmo-
spheric response to SST anomalies associated with NAO in a

coupled model of intermediate complexity and find that the air-
sea heat fluxes lead to a non-adiabatic heating of the atmosphere.
The final equilibrium response is barotropic that evolves from an
initial baroclinic response. More modeling and diagnostic studies
are required for a deeper understanding of the issue.
The absence of significant correlations between the weekly SST

and weekly barotropic vorticity at any lead or lag in the SH extra-
tropics (Supplementary Fig. 3) is consistent with the above
mechanism of generation of large-scale barotropic vorticity
through regional displacements of the storm tracks. The large
landmasses surrounding the SST in the north Pacific and North-
Atlantic facilitate the regional north–south (meridional) displace-
ments of the jetstream/storm tracks and in the generation of the
barotropic vorticity on a large-scale in the NH extra-tropics. The
absence of such landmasses in the SH extra-tropics makes it
difficult to generate similar SST anomalies to produce similar
north–south regional pressure differences and corresponding
regional displacements of the storm tracks.

Quantifying causal inference in the presence of multiple
interacting drivers
While pairwise correlations, linear regressions and lagged regres-
sions establish the associations between the ISMR and its potential

Fig. 2 Driving of northern hemisphere summer barotropic vorticity by SST on super-synoptic time-scales. a–h Lead–lag correlation maps
between weekly averaged values of SST and barotropic vorticity (vorticity averaged between 700 and 200 hPa). “SST lead1” refers to SST
leading the barotropic vorticity by 1-week and so on. Dotted area represents regions significant above 95% CI based on the cutoff critical
values for two-tail tests. The weekly data length spans from year 1982–2017.
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drivers like the ENSO, the AMO, the PDO, the NAO, the IOD and
the Atlantic Nino (At-Nino), these studies fail to quantify the causal
relationships due to the interdependence between the drivers and
nonlinearity of the relationships. Some of these drivers are
“confounders” that impact both the cause and the effect. Causal
discovery algorithms like the PCMCI+ and Granger causality help
us to quantify the causality by taking into account the conditional
independence between drivers and estimating the probability of a
particular directional causality at a statistically significant level in
the presence of nonlinearity. We note that there are two aspects
of the teleconnection of the seasonal mean ISMR with the remote
drivers. A contemporaneous connection takes place through an
atmospheric bridge and is almost “simultaneous”, with the largest
lead or lag of a few months. The slowly varying drivers like the
AMO could also influence the seasonal mean ISMR through an
“oceanic bridge” at lead or lag of a several years. As the sample
size for such a causality (seasonal mean values for available ~160
years) is rather small, the causal inference is likely to be unreliable
and hence we shall not attempt to identify causality of
teleconnection through the “oceanic bridge”. In this study, we
examine the contemporaneous teleconnection between ISMR and
potential drivers through atmospheric bridges via atmospheric
circulation. As steady response of atmosphere to forcing from
drivers takes place relatively quickly, driving influence from the
potential drivers may be expected with short lags of 1–3 months.
Therefore, for our causal inference, we use monthly mean
anomalies of the indices during 6 summer months (MJJASO) for
all years and using maximum lag of 5 months. By restricting
maximum lag to 5 months, we restrict potential lag relationships
to within the same summer season ensuring teleconnection
through an atmospheric bridge. All monthly anomaly indices are
detrended before examining the causality using PCMCI+ or
Granger causality66–72. It is to be noted that the term “causal”
discovery relies on various assumptions so that the identified
causal links are also valid only for selected set of variables as the
structure of the causal network may change by adding any
additional variables73,74. For a more reliable estimate of the
causality between the AMO and ISMR, we employ the causal
discovery algorithms in the presence of a number of other
potential drivers of ISMR namely, the PDO, the IOD, the At-Nino
and the NAO.
The results of PCMCI analysis at α= 0.05 (95% CI) (Fig. 3a)

indicate that the ENSO drives ISMR negatively while the AMO
drives it positively with similar strengths as we proposed. While
the teleconnection between ENSO and ISMR through the Walker
circulation is simultaneous, the one between the extra-tropical
AMO and ISMR is at a short lag. It is notable that the ENSO–ISMR
connection is both ways as expected while the one between the
AMO and ISMR is one-way from AMO to ISMR. Our analysis
indicates that the PDO has no direct link with the ISMR while the
NAO and ISMR association comes through the AMO. The At-Nino
also does not have a direct link with the ISMR and the
directionless two-way connection between At-Nino and AMO
indicates that At-Nino is an integral part of the AMO variability.
Therefore, the association between the At-Nino and ISMR reported
in some literature is likely to be through its connection with the
AMO. As the IOD and the ISMR are linked with a directionless
connection, the IOD is not a credible driver of the ISMR. While the
IOD has a strong positive directionless association with the ENSO,
it has a negative driving influence on the ENSO. The analysis
quantifies our claim that the NA SST (and the AMO) is an equally
important driver of ISMR variability together with the ENSO.
Next, we explore how the AMO achieves the directional causality

to the ISMR on intraseasonal time-scales. From our earlier analysis,
the hypothesis is that the NA-SST drives NAO that leads to NA-
barotropic vorticity (BV), which in turn drives central India
monsoon intraseasonal oscillations (CI-ISMR) via the upper level
vorticity over the region (IUV) on intraseasonal time-scale. To test

this hypothesis, causal discovery using PCMCI+ is applied to
normalized daily intraseasonal filtered (using a 7-day moving
average filter) indices of NA-SST, NAO, CI-ISMR, BV, ILV, and IUV for
June to September during 1980–2017 (Fig. 3b). The results are
significant at α= 0.01 (99%CI). It is notable that the NA-SST has a
positive driving influence on intraseasonal variations of ISMR
(pcorr= 0.316). The NA SST achieves this by driving BV (strong
negative correlation, pcorr= –0.489) through a positive driving of
NAO, which then drives BV negatively. The BV drives IUV positively,
which in turn drives intraseasonal variations of CI-ISMR negatively
(pcorr= –0.2). The positive driving of ISMR by NA SST is consistent
with its negative driving of BV➔ positive driving of IUV➔ negative
driving of ISMR. Thus, the hypothesis is strongly supported by the
nonlinear causal inference calculations.
Using the time series of the same set of potential drivers of

ISMR, we have constructed the causal inference using Granger
causality framework based on a set of slightly different assump-
tions on stationarity of the time series etc. In order to test the
robustness of the directions and strengths of causal graphs on
seasonal time-scale between ISMR and its potential drivers
(Fig. 3a), we employ Granger causality on exactly the same time
of ISMR, NA-SST, NAO, PDO, IOD, and At-Nino for the same period.
The results of linear and nonlinear Granger causality graphs are
shown in Fig. 4a, b, respectively, with all results significant at 95%
confidence level (α= 0.05). While the linear Granger identifies only
one causal link AMO to ISMR at 1-month lead, the nonlinear
Granger picks up a causal link from Nino to ISMR at 1-month lead
together with the link from AMO to ISMR at lead 1 and 2 months.
The signs of the causal graphs are the same as those obtained
from the PCMCI+ method. It may be noted that in contrast to the
PCMCI+ method, the Granger algorithm used in this study does
not indicate “contemporaneous” causality direction. We may
compare the nonlinear Granger causality with minimum lead
(1-month) with the “simultaneous” causality of PCMCI+. Thus,
both the methods agree that the AMO and the ENSO are the only
two drivers of ISMR on a seasonal time-scale and both are equally
important. However, the Granger fails to identify the reverse
causality from ISMR to Nino that appears physically meaningful
and identified by the PCMCI+.
We note that the Granger method fails to identify links between

the AMO and At-Nino and AMO and PDO that also likely to be
physically meaningful, as these systems are known to be
intimately linked75–77. It is also noted that the Granger does not
identify all other links that are not clearly directed. This seems to
be consistent with a criticism of Granger causality that it has a
“low detection power” in high dimensionality datasets and its
applicability is largely limited to bivariate analysis and cannot
account for indirect links or common drivers78.

AMO–ISMR relationship: additional source for ISMR
predictability
The causal inference calculations confirm that AMO is a driver of
ISMR independent of the ENSO and thus adds to the predictability
of ISMR. This is consistent with findings of Borah et al.56 who find
that all non-ENSO ISMR droughts are associated with significant
cold NA SST but with tropical SST close to climatological mean (as
in ENSO transition years). Simulation experiments of ISMR driven
by NA SST79 also indicate that NA SST has significant influence on
simulation of ISMR only when the ENSO is going through
transitions. While during a positive (negative) phase of AMO,
strong NA SST anomalies persist for ~20 years, during El Nino (La
Nina) years of these periods, ENSO–ISMR teleconnection dom-
inates, during non-ENSO years the AMO–ISMR teleconnection
dominates the ISMR variability. Indeed, composites of the
meridional wind (V) anomalies during JJAS of non-ENSO years
during positive and negative phases of ISMR multi-decadal
variability show (Supplementary Fig. 8) a circumglobal stationary
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wave number 4 Rossby wave-train similar to Fig. 1. Thus, during all
non-ENSO years, by modulating ISMR through the NAI pattern the
NA SST complements ENSO-based predictability thereby enhan-
cing potential predictability of ISMR significantly.

DISCUSSION
Even while the relationship between the ISMR and the ENSO has
declined in strength in recent decades, the ENSO remained the
only dominant predictable driver for ISMR for over a century.
Further, the ENSO–ISMR relationship falls far short of explaining
the high “potential skill” of ISMR prediction80. For realizing the

“potential skill”, therefore, there is a need for looking beyond
tropical SST for ISMR predictability. The mounting evidence that
extra-tropical SST associated with the AMO modulates the ISMR
provides such a potential source. However, it has been unclear
whether the underlying SST drives the Rossby wave-train that links
the extra-tropics to tropics or the SST is a response of the
atmosphere. Here, using observational data we show that the SST
indeed drives a barotropic vorticity above that in turn is
responsible for setting up a Rossby wave-train connecting the
NA SST and the ISMR. Our analysis using two nonlinear causal
discovery algorithms confirm that the AMO is a driver of the ISMR
with a lead of 1 month while the ENSO is also a driver of ISMR with

Fig. 3 Causal links between the ISMR and AMO in the presence of other potential drivers using the PCMCI+ causal inference algorithm.
a Causal links between the ISMR and the AMO (NA SST), the ENSO (Nino), the NAO, the PDO, the At-Nino and the IOD on seasonal time-scales
based on monthly anomalies of the indices for MJJASO season during the period, 1871–2017 obtained using the multivariate causal
framework at 95% alpha level. Monthly anomalies of SST are computed from COBE SST2, Mean sea level pressure from NCEP 20Cv3 and ISMR
from Parthasarathy data. b The seasonal causal link between NA SST and ISMR is a result of causal links between the NA SST, the NAO, the BV,
the Indian upper level vorticity (IUV) and the Indian lower level vorticity (ILV) (see text for definitions) on intraseasonal time-scales with daily
intraseasonal filtered anomalies of indices using a 7-day moving average. The indices for the JJAS season from 1982 to 2010 are detrended.
The nonlinear causality from PCMCI+ are shown as arrows, with strength of contemporaneous association (link strength) represented by
arrow color (+ve red and –ve blue), while node color represents the node auto-correlation strength. The curved lines represent a time-lagged
causal relation, which is represented by the numbers (lag in months), while the straight lines show the contemporaneous relationship
between dependencies, with or without orientation. The color represented in the schematics of various processes (other than nodes and
connector arrows) in the map is just for illustration purposes only.
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a lead of 1 month and their influence on ISMR is of comparable
magnitude. The NA-SST and ISMR connection is always from NA-
SST to ISMR through the atmospheric bridge while that between
the ENSO and ISMR is both ways. Based on some of our earlier
work54,56 and lag correlations between NA SST and barotropic
vorticity (BV) presented here, we propose that the teleconnection
on seasonal time-scale results from a teleconnection between NA
SST, NAO, BV, upper level vorticity over India (IUV) and ISMR on
intraseasonal time-scales. Application of causal inference algo-
rithm (PCMCI+) to the intraseasonal filtered interacting time series
shows that the NA SST drives climatological ISO of ISMR via the
NAO driving a similar oscillation in the BV, which in turn driving a
similar oscillation in IUV and finally the IUV driving a similar
oscillation in ISMR.
Two different causal discovery methods with different assump-

tions confirming the fact that the AMO is an equally important
driver as the ENSO indicate that the conclusion is fairly robust.
Long-term SST data used in the study use analysis that fill-up gap
or interpolate data in the early data sparse periods. In order to test
robustness of our conclusions due to uncertainty in the SST data,
we carried out PCMCI+ and Granger causality calculations
including the monthly NA-SST and Nino3.4 indices calculated

from two other SST datasets keeping all other indices same as in
Figs. 3 and 4. These additional calculations (Supplementary Figs. 4,
5, and 6) using all the SST datasets and with both the methods
support the conclusion that the AMO and the Nino3.4 are the only
two major drivers of ISMR of almost equal strength. Therefore, this
causality conclusion appears stable and robust. However, some of
the other causal links obtained by the PCMCI+ method in Fig. 3a
and by Granger in Fig. 4 appear to be sensitive to the changes in
the SST datasets. Notable amongst them is the causality between
the IOD and ISMR. With COBE SST, the PCMCI+ method indicates
a confounded relationship (Fig. 3a) while both linear and
nonlinear Granger shows no link between the two (Fig. 4).
However, with Kaplan SST, PCMCI+ shows a positive link with IOD
driving ISMR that is also confirmed by Granger with ERSST and
Kaplan SST, consistent with indications from some previous
studies23. Therefore, while the IOD may have a driving influence
on the ISMR, the IOD–ISMR relationship is not as robust as that
between the ENSO and ISMR and AMO and ISMR. In conclusion,
our findings make a powerful case for a revision of the assumed
causality of ENSO as the primary driver of the ISMR and its inter-
annual variability. It is also notable that the PCMCI+ method
indicates that ISMR has a driving influence on the ENSO (Fig. 3a)

Fig. 4 Causal links between the ISMR and AMO in the presence of other potential drivers using the Granger causal inference algorithm.
Similar to Fig. 3a but the causal inference links are obtained from monthly anomalies of the same indices using a linear Granger causality and
b a nonlinear Granger causality framework at 95% alpha level. Monthly anomalies of SST are computed from COBE SST2, Mean sea level
pressure computed from NCEP 20Cv3 and ISMR from Parthasarathy data, spanning from 1871 to 2017 for MJJASO season. As in PCMCI+, both
the linear and nonlinear causality are shown as arrows, with strength of association represented by arrow color (+ve red and –ve blue), while
node color represents the node auto correlations. The curved lines represent a time-lagged causal relation, and the numbers denote the lag
(in months).
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while the Granger does not indicate such a driving link from ISMR
to ENSO (Fig. 4b). This indicates that ISMR driving ENSO is not as
robust as ENSO driving ISMR.
The relationship between NA-SST and ISMR is intrinsically

nonlinear. Therefore, a linear correlation between JJAS NA SST and
ISMR tends to be small and often insignificant. Chattopadhyaya79

have shown that the NA-SST can influence Indian monsoon rainfall
only when deep tropical SST during JJAS is close to the
climatology or only during the years when ENSO is in transition
from one phase to the other. Also Borah et al.56 show that all non-
El Nino droughts of Indian monsoon are associated with strong
negative NA-SST in negative phases of the AMO when the deep
tropical SST anomalies are close to climatology. In order to bring
out the NA SST and ISMR relationship when the ENSO is near
neutral, a scatter plot between NA-SST and ISMR for the years
when Nino3.4 JJAS SST is within +0.25 s.d and –0.25 s.d. indicates
a statistically significant correlation of 0.47. (Supplementary Fig.
10). Thus, the NA SST could potentially explain up to 20% of ISMR
variability. The ENSO–ISMR relationship, on the other hand, has a
significant linear component (Supplementary Fig. 1c). Based on
the lag-0 correlation in Supplementary Fig. 1c, the ENSO also
could explain up to 20% of ISMR variability roughly consistent with
strengths of causal relationships (Figs. 3 and 4).
An extension of composite of JJAS SST anomalies during non-

EN drought years over the period between 1871 and 2015
indicates a global pattern of SST anomaly similar to that of Borah
et al.56 but with a weak +ve SST anomaly in equatorial eastern
Pacific. The global SST anomalies seem to complement the
dominant SST signal in the NA to weaken the ISMR, a weak El Nino
in eastern Pacific and –ve SST anomalies over IO that tries to
weaken ISMR through reduced moisture convergence (Supple-
mentary Fig. 11a). The global pattern associated with non-La Nina
floods (Supplementary Fig. 11b) is almost a mirror opposite of that
associated with non-EN droughts again a weak La Nina in eastern
Pacific and warm SST anomalies over the IO trying to compliment
NA+ve SST anomalies trying to strengthen ISMR. The non-EN
drought and non-La Nina flood years marked on the time series of
NA SST anomaly indicates that while most non-EN droughts occur
during a negative phase of multi-decadal variability of NA SST, the
non-La Nina floods tend to occur during positive phases of the NA
SST multi-decadal variability. We also carry out El Nino (EN) Indian
monsoon drought and La Nina Indian monsoon flood JJAS SST
composites during the 1871 and 2020 (Supplementary Fig. 12).
While the Pacific Ocean is dominated by the ENSO signal, it is
notable that negative (positive) SST anomalies over NA try to
complement weakening (strengthening) tendency by El Nino (La
Nina). However, we note that over the IO SST anomalies do not
cooperate and are just response to large-scale winds associated
with weak (strong) monsoon due to El Nino (La Nina).
The latest climate models from the Coupled Climate Model

Intercomparison Project-Phase-6 (CMIP6) still have large biases in
simulating the present Indian summer monsoon climate as well
as the AMO81. The observed periodicity of the multi-decadal
modes of both ISMR and NA SST is ~65 years and the variance
explained by the observed ISMR multi-decadal mode is ~7%.
We have examined how the coupled climate models simulate the
teleconnection between ISMR and NA SST. As long as the models
simulate reasonable amplitude of ISMR multi-decadal mode, the
period of NA SST multi-decadal mode and that of ISMR multi-
decadal mode in CMIP6 models are strongly correlated (as in
observations) (Supplementary Fig. 7b). Amongst these models,
the MPI_ESM1-2_HR simulates the multi-decadal variability of
ISMR, as well as that of the NA SST reasonably well as shown by
the 11-year moving average (Supplementary Fig. 7c, d and
Supplementary Table 1). Composites of simulated meridional
velocity (V) at 200 hPa for the non-ENSO years during positive and
negative phases of the simulated ISMR multi-decadal mode
(Supplementary Fig. 9a, b) indicate a Rossby wave-train similar to

the one associated with observed ISMR multi-decadal mode
(Supplementary Fig. 8). However, the meridional wind anomalies
during the positive phase (Supplementary Fig. 9a) are simulated
by the model shifted to the east by about 10–15 degrees
longitude over the Indian monsoon region. An examination of the
causality (similar to Fig. 3a) between simulated NA SST and ISMR
in the presence of ENSO and other potential drivers and the
associated Rossby wave-train by the model (Supplementary Fig.
9c) indicates that the AMO is an independent driver of ISMR in
the model simulations too. While the simulated ISMR has a
driving influence on the simulated ENSO, however, the model
does not simulate the reverse as seen in observation. An
examination of causality in other CMIP6 models indicates that
at least three other models simulate that the AMO is a driver of
the ISMR (not shown). The linear correlation between simulated
ISMR and Nino3.4 by the model is r= 0.43 compared to that in
observations (r= 0.53) indicating that the model has a bias in
simulating a weak ENSO–ISMR relationship compared to that in
observations. We also find that most other driving links are highly
model dependent. In order for the seasonal forecast models to
realize the potential skill indicated by associations with the ENSO
and the NA-SST, the models must simulate the variability of the
potential drivers and their teleconnection with ISMR with fidelity.
Efforts are needed to improve the biases of coupled models in
simulating ENSO and NA SST variability and teleconnection in
order to improve the current poor skill of prediction of ISMR by
most models.
Our findings settle a long-standing debate on whether the AMO

is a credible driver of the ISMR variability, provide a basis for
higher potential predictability of ISMR and highlight the need to
embrace the role of extra-tropical SST in the framework of
predictability and in seasonal prediction of ISMR. On a broader
question, they also settle that the extra-tropical SST could clearly
influence the tropical climate on seasonal and subseasonal time-
scales. In light of these findings, here we propose that it is time to
go beyond the legacy of TOGA and embrace the role of the extra-
tropical SST in the conceptual framework for seasonal predict-
ability of tropical climate.

METHODS
Observed data and definition of the climate indices
The fixed station-based monthly rainfall data from a long historical dataset
of Parthasarathy82 (1871–2016) is used as a measure of the ISMR. AMO is
defined as the box averaged SST anomalies over the North-Atlantic box
(0°–60°N, 75°W–5°W). NAO index is defined as the difference in the box
averaged values of standardized sea level pressure values at North-Atlantic
between the boxes, 37.5°N–42.5°N, 32.5°W–27.5°W and 62.5°N–67.5°N,
22.5°W–17.5°W. Nino3.4 index is defined as the box averaged value of SST
at central Pacific at 5°S–5°N, 170°W–120°W. The PDO Index is defined as
the leading principal component of the North Pacific monthly sea-surface
temperature variability above 20°N box. The Atlantic Nino (At-Nino) is
defined as the SST anomaly over the tropical Atlantic region 20°W–0°E,
3°S–3°N. IOD is defined as the difference in SST between the boxes
10°N–10°S, 50°E–70°E and 10°S–0°N, 90°E–110°E. The SST fields, obtained
from COBE SST2 data83 (1850–2016), are used as the primary SST field for
deriving monthly AMO and ENSO indices. The monthly atmospheric fields
like SLP, winds, precipitation and geopotential heights are obtained from
NCEP 20CR V384. The NCEP 20CR V3 is also used for deriving the NAO index
and vorticity fields.
While the SST anomalies in the extra-tropics at synoptic time-scale are

driven by the atmosphere, we provide evidence that at intraseasonal time-
scale the SST in extra-tropics can drive a barotropic vorticity over the
atmosphere aloft. In order to establish the robustness in estimating the
relationship between the intraseasonal SST and barotropic vorticity, weekly
averaged data from two daily reanalysis, namely (1) ECMWF daily SST fields
and vorticity fields obtained from ERA-585 and (2) NOAA OI SST weekly
SST86 along with NCEP 20CRv3 daily fields are used. All the datasets were
converted to weekly averaged fields and interpolated to 1o x 1o resolution.
To demonstrate the day-to-day variability of the barotropic vorticity over
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the NA and its association with core-monsoon region rainfall evolution,
daily 1o x 1o degree rainfall from India Meteorological Department9,
together with ERA-5 daily vorticity fields are used.

Mode decomposition method
For the extraction of the multi-decadal modes (MDMs) of various fields, an
improved variant of noise assisted Complete Ensemble Empirical Mode
Decomposition method (iCEEMDAN, hereinafter referred as CEEMD)87–89

has been employed and the regression period has been limited between
1850 and 2015 (see supplementary information for more details).

Designing the casual inference network framework
Our primary goal in this study is to examine the causal relationship
between the AMO and the ISMR. The ENSO also being another known
driver for the ISMR, the AMO–ISMR causality must be examined in a
multivariate framework in the presence of the ENSO. However, other
potentially interacting drivers of ISMR like the Pacific Decadal Oscillation
(PDO), the Atlantic Nino (At-Nino), the North-Atlantic Oscillation (NAO) and
the Indian Ocean Dipole Mode (IOD) could also influence the directionality
and or strength of the causality between AMO and ISMR. Therefore, in this
study, we attempt to quantify the causal relation between AMO and ISMR
in the presence of other potential drivers namely, the PDO, NAO, ENSO, At-
Nino and IOD. We look to estimate the causal network between these
variables using historical and simulated measurements.
The causal connection between the AMO and the ISMR is addressed in

two steps. In order to bring out simultaneous connections on a seasonal
time-scale, we examine the causality between ISMR and the other
potential drivers using monthly mean anomalies during Boreal summer.
For this purpose, time series of ISMR and the drivers namely, the AMO,
the ENSO (Nino3.4 SST), the NAO, the PDO, the IOD and At-Nino are
constructed using monthly anomalies for 6 months (May–October) for
the period between 1871 and 2015. The causal discovery algorithms are
applied to the six interacting nodes. However, the connection on monthly
and seasonal time-scale is actually a result of a teleconnection on sub-
seasonal time-scales54,56. We find that the barotropic vorticity (BV) over
the NA is phase-locked with the annual cycle with a similar phase locking
of upper level vorticity (IUV), lower level vorticity (ILV), and ISMR over core-
monsoon region on intraseasonal time-scale (see Fig. 3b). The finding
suggests a plausible causal hypothesis where the BV drives IUV, which in
turn drives ILV that results in the ISMR intraseasonal phase locking. To
verify the above hypothesis, we utilize the causal discovery framework on
boreal summer (JJAS) daily data, smoothed with a 7-point moving average
to remove the high-frequency day-to-day weather fluctuations and to
bring out the background intraseasonal variability clearly. In this frame-
work, we develop a causal network that consists of six nodes namely, (a)
SST over NA (NA-SST), (b) the NAO (c) the barotropic vorticity over NA (BV),
which is computed as the 700–200 hPa layer average vorticity over the
domain 60°W–0°E, 30°N, 65°N, (d) rainfall over the core-monsoon region in
Central India (72°E–86°E, 14°N, 28°N) (CI-ISMR), and (e) upper level
(200 hPa) mean vorticity over the Indian monsoon region bounded by the
domain 60°E–90°E, 10°N–35°N (IUV) and (f) lower level (850 hPa) mean
vorticity over the Indian monsoon region bounded by the domain
60°E–90°E, 10°N–35°N (ILV).

PCMCI+ causal discovery
We estimate the presence/absence and directionality of edges between
each pair of these six nodes to indicate their causal relationships, on the
basis of their temporal evolution and mutual interactions. Such estimation
is done using the PCMCI+67 algorithm under the conditional
independence-based causal discovery framework, and validated using
the Granger causality framework. The total data length spans 36 years
where the SST is obtained from NOAA/NESDIS/NCEI Daily Optimum
Interpolation Sea-Surface Temperature (SST), version 2.0, dataset (OISST
v2.090, 0.25 degree) and 2.5-degree vorticity fields from NCEP/DOE AMIP-II
Reanalysis (Reanalysis-2) In order to isolate the teleconnection pathways
and direction of causality between several interacting drivers and ISMR, we
employ the PCMCI+ algorithm67, which is an extended version of another
algorithm called PCMCI66,78. A data-driven causal inference method, the
PCMCI+ flexibly combines linear or nonlinear conditional independence
tests with a directed graphical causal model (DGCM) to estimate causal
networks from large-scale time series datasets. The causal discovery
method based on the Peter and Clark (PC) algorithm74 combined with the
Momentary Conditional Independence approach (MCI66), demonstrated to

extract causal networks, which includes multiple time series of causation
and is found suitable with datasets having correlated variables66,73. PCMCI
involve a two-step process starting with a Condition selection or PC, a
modification of the Peter and Clark algorithm, which attempts to narrow
down the number of connections between variables, followed by a
Momentary conditional independence (MCI), which consists of testing links
for causal relationships that could be represented through a fully
connected causal network graph. PCMCI+ has a higher detection power
and especially more contemporaneous orientation when compared to
other methods with better control on false-positive links67, which can
properly depict the temporal dependency structure of underlying complex
dynamical systems. PCMCI+ can identify the full, lagged and contempora-
neous causal graph under the standard assumptions of causal sufficiency,
and the Markov condition67. The central PCMCI+ method is to increase
effect size in individual conditional independence (CI) tests to achieve
higher detection power and at the same time maintain a control on false
positives65,78 thereby improving the reliability of the CI tests. For a detailed
description about the PCMCI algorithm one can refer to Runge78 and some
of its recent applications can be found in refs. 68,69 and refs. 70,71.

Granger causality
As the efficiency in identifying the true causality and its direction by the
causal inference algorithms depends on the underlying assumptions, we
shall test the robustness of our conclusions from the PCMCI+67 algorithm
using another causal inference framework (Granger causality) that uses a
slightly different set of assumptions. While lagged linear regression
analysis can often provide valuable information about causal relationships,
lagged regression is susceptible to over-reporting significant relationships
when one or more of the variables has substantial memory (auto-
correlation). Granger causality analysis pioneered by Granger72, on the
other hand, estimates time-lagged causal associations using an auto-
regressive model framework implemented using standard regression
techniques but taking into account the memory of the data and therefore
not susceptible to this issue. Some argue78 that if implemented using
standard regression techniques to high dimensional datasets, the Granger
causality leads to low detection rates due to limited sample size of typical
climate time series (e.g., for a monthly time resolution with 30 years of
satellite data). In the present application, a reasonably large sample size of
monthly anomalies for 6 months for 144 years makes the sample size
reasonable and is expected to overcome this issue. Granger causality has
been successfully used in some suitably selected climate networks91–94.
With two time series X and Y when we try to predict Y(t) using the past

values of Y and X, Xmay be called a granger-cause of Y if the past values of
the X and Y (e.g., a linear combination of X(t – 1), X(t – 2),…, X(1), Y(t – 1),
Y(t – 2) ,… Y(1)) can be used to predict Y(t) better than only the past values
of Y. This definition can be easily extended to more than two time series.
Consider two prediction models for Y(t):

Y tð Þb¼ F Y t � 1ð Þ; Y t � 2ð Þ; ¼ ; Y 1ð Þð Þ (1)

and

Y tð Þf¼ F Y t � 1ð Þ; Y t � 2ð Þ; ¼ ; Y 1ð Þ; X t � 1ð Þ; ¼ X 1ð Þð Þ (2)

The first model is called the base model while the second the full model.
If the performance of the full model in predicting Y(t) is significantly better
than the base model, then we can say that X Granger-causes Y. The
predictive models can use any function F. If the predictive function (F) is a
linear function (e.g., linear regression) then the Granger causality can be
called as linear Granger causality, and if F is nonlinear (e.g., decision tree,
neural network etc.) then it is called as nonlinear granger causality. For
linear Granger Causality, ridge regression is used as the predictive model
to avoid over fitting and for nonlinear Granger causality Random Forest is
used as the predictive model92. For Nonlinear Granger Causality, we use
Random Forest95 with 100 trees. In order to test the robustness of the
causality directions found by the PCMCI+ method, we also present results
using Granger causality on the same set of time series. More details of
Granger causality including optimization of the models as used in this
study may be found in the Supporting Online Material.

DATA AVAILABILITY
The observed data for both the ISMR time series can be downloaded from https://
www.tropmet.res.in/DataArchival-51-Page. Monthly as well as daily NCEP twentieth
century reanalysis (20CR-V3) data is obtained from https://psl.noaa.gov/data/gridded/
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data.20thC_ReanV3.html. The code for CEMD used in this study is taken from https://
github.com/dmafanasyev/ADAnalysis/blob/master/EMD/iceemdan.m. IMD 1˚ × 1˚
rainfall is available through http://imdpune.gov.in/Clim_Pred_LRF_New/Grided_
Data_Download.html. COBE monthly SST data is available from https://psl.noaa.gov/
data/gridded/data.cobe2.html and weekly mean SST data from https://psl.noaa.gov/
data/gridded/data.noaa.oisst.v2.html. The daily mean SST and wind fields from
ECMWF ERA5 is sub-setted and downloaded through the web interface. https://
cds.climate.copernicus.eu. All the CMIP6 model datasets are downloaded from the
web interfaces available through https://esgf-node.llnl.gov/search/cmip6. PCMCI+
code is obtained from tigramite package available from https://jakobrunge.github.io/
tigramite software.

CODE AVAILABILITY
The codes for generating the figures are made by scripting Climate data operator
(CDO), grads, NCL and MATLAB software, and schematic diagrams are drawn using
Inkscape. The basic codes and data for preparing the figures used in this study can be
obtained from https://zenodo.org/record/6523464#.YnTVNDlBzMU.
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