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This paper provides a short summary of the outcomes of the workshop on Machine Learning (ML) for Earth System Observation and
Prediction (ESOP / ML4ESOP) organised by the European Space Agency (ESA) and the European Centre for Medium-Range Weather
Forecasts (ECMWF) between 15 and 18 November 2021. The 4-days workshop had more than 30 speakers and 30 poster-presenters,
attracting over 1100 registrations from 85 countries around the world. The workshop aimed to demonstrate where and how the
fusion between traditional ESOP applications and ML methods has shown limitations, outstanding opportunities, and challenges
based on the participant’s feedback. Future directions were also highlighted from all thematic areas that comprise the ML4ESOP
domain.
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INTRODUCTION
The purpose of this workshop, hosted by the European Space
Agency (ESA) in collaboration with the European Centre for
Medium-Range Weather Forecasts (ECMWF), was to bring
together a diverse community interested in the fusion between
traditional Earth System Observation and Prediction (ESOP)
applications and Machine Learning (ML) methods. This report
summarises the range and depth of the discussions captured
during the workshop and highlights the current limitations,
challenges, and opportunities in ML4ESOP.
This second workshop edition1 was divided into 4 days (15–18

November 2021). The first 3 days were mainly devoted to 33 oral
presentations from experts across four Thematic Areas (TA): (1)
Enhancing Satellite Observation with ML, (2) Hybrid Data
Assimilation—ML approaches, (3) Geophysical Forecasting with
ML and Hybrid Models, and (4) ML for Post-Processing and
Dissemination. The workshop also hosted a live e-poster session
with 30 poster presentations hosted in separate virtual meeting
rooms to foster networking and nurture new collaborations. On
the last day, it was the time to reverse the order and listen to the
participants, coming from both academic and industry back-
grounds with rich experiences and expertise on current ML
methods for ESOP applications. The working groups split into TAs
brought a diverse community to discuss the advantages and
limitations of ML in comparison with more traditional methods
and outline future directions.
The workshop opened with Pierre-Philippe Mathieu (Head of

ESA Φ-lab Explore Office) and Andy Brown (ECMWF Director of
Research) providing the vision of developments to enable both
ESA and ECMWF’s Member and Co-operating States to benefit
from ML advances in satellite observations, weather, and climate
modelling. Following the steps outlined in the introductory
remarks, Devis Tuia (Associate Prof at Swiss Federal Institute of
Technology Lausanne and visiting Prof at ESA Φ-lab) and Alan
Geer (Principal Scientist at ECMWF) kicked off the scientific talks

by giving complementary overviews on how ML capabilities are
currently being investigated and applied at ESA and ECMWF,
respectively, both as internal projects and in collaboration with
external ML experts.
The importance of advancing on explainable ML tools was

highlighted by Dr Tuia, which referred to ML methods where
humans can make interpretations beyond predictions (since ML
tools are often perceived as ‘black-boxes’) and understand the
inner-functioning of the model, the internal decisions from a given
parameter definition to the final model output. It was also stressed
that the distribution of Deep Learning (DL) methods in remote
sensing applications is very skewed towards a well-resolved
problem: feature detection (e.g. building mapping, road extrac-
tion, etc). According to Tuia and colleagues2, a new ML in Earth
Science agenda has arrived to revolutionise the value extracted
from Earth Observation (EO) satellite images/videos, for example:
event recognition (cultural events vs manifestations), human
feeling detection from their landscape perception, and building
permission control based on text mining from urban planning
regulations.
Dr Geer also presented how essential EO products are to data

assimilation systems, providing the initial conditions and
parameter estimates of the geophysical atmospheric state to
describe complex physical dynamics that are needed to make
geophysical forecasts. The incorporation of ML methods into
data assimilation can attempt to emulate the whole or part of the
dynamical system; therefore, bringing new capabilities to the
process.
The following sections will describe in more detail the

discussions on each TA covering three key-topics: (1) Current ML
applications, (2) Limitations, opportunities, and challenges (3)
Future directions. The workshop content (recordings, slides, and e-
posters) is available on ECMWF webpage: https://events.ecmwf.
int/event/291/timetable/.
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TA1: ENHANCING SATELLITE OBSERVATION WITH ML
Current ML applications
The working group team, chaired by Begüm Demir (Prof. at
Technische Universität Berlin) and Bertrand Le Saux (Senior
Scientist at ESA) outlined the use of ML/DL methods (e.g.
ensemble methods, random forests, convolutional neural net-
works, etc) for Earth surface monitoring, such as forest and
biomass estimations3. Radar backscatter (e.g. ESA’s Sentinel 1 C-
band) and optical images (e.g. ESA’s Sentinel 2 Multispectral
Instrument) were described as the relevant EO products to
estimate the forest ecosystem inventory. Volcanic plume monitor-
ing was also mentioned, it can be either observed by geosta-
tionary and low-earth orbit satellites (e.g. MSG-SEVIRI and Sentinel
5P) or simulated/tracked (i.e. its ash and gases dispersion) by
chemical transport models (e.g. Copernicus Atmosphere Monitor-
ing Service—CAMS). The exploration of ML can be linked to
several volcanic-related topics, for example, retrieving ash
components and Sulphur Dioxide layer height using Full-Physics
Inverse neural networks4. Additionally, it also discussed the power
of ML-regression approaches to estimate ice sheet mass balance
by using EO data. Therefore, open access to EO data (e.g.
Copernicus Services5) brings a lot of benefits, advancing ML
techniques to EO application.

Limitations, opportunities, and challenges
When discussing limitations, the participants mentioned ground-
truth reliability issues during the ML training and validation
processes, which might require the use of weakly-supervised
learning6 or semi-supervised strategies7. Dealing with big
datasets8, quite often required to satisfy the learning process of
some ML algorithms, has been pinpointed together with storage
and processing power as constraints.
Transfer learning (TL), a relevant approach across ML/DL

applications, has been classified by the participants as a limitation
and an opportunity. TL means applying a trained-ML model to
different geographical regions or temporal periods to the same or
a similar problem. Some experts believe that this extrapolation to
unknown regions or timestep could generate highly unreliable
estimates. At the same time, this knowledge transfer is claimed to
save time and resources by not having to train many ML models
from the beginning to perform similar tasks elsewhere. Addition-
ally, it can also fill geographical data gaps caused by a lack of
training data.
Many challenges were discussed during the working group

session. Starting with uncertainty in ML outputs which comes from
many sources (noisy data, deficient sample size for training, and
model imperfection) that need to be properly quantified. The
known ‘black-box’ challenge in ML was also highlighted by some
participants. The lack of human interpretability has triggered
researchers to develop tools to comprehend better and trust
decisions made by a ML algorithm to specific parameter values,
model design, and estimates. These tools are known as explain-
able Artificial Intelligence (AI)9.
Finally, the combination of ML with physics-based models of

the sensors10 and the observed systems was considered a priority:
ML methods are very task-oriented and may have difficulties
making predictions about physical processes (e.g. volcanic
activity) since they lack prior knowledge about the system they
want to describe. The latter will be covered in more detail in
the TA3.

Future directions
In the TA1 context, one research direction recognised as a
sustainable solution is TL approaches. TL still carries some
limitations and challenges, but its generalisation capacity is a real
game-changer for locations with not enough data for training,

providing a feasible solution to several applications (e.g. food
security, climate change mitigation).

TA2: HYBRID DATA ASSIMILATION—ML APPROACHES
Current ML applications
The working group team, chaired by Rossella Arcucci (Assistant
Prof at Imperial College London) and Alan Geer (Principal Scientist
at ECMWF) outlined the benefit of using ML, especially neural
networks, with data assimilation in terms of both accuracy and
efficiency. Neural networks show great capability in approximating
nonlinear systems and extracting meaningful features from high-
dimensional data. These properties could be very useful in data
assimilation applications. Autoencoders are of interest for
dimensionality reduction, and an emerging application is to
convert non-Gaussian problems into Gaussian problems consis-
tent with using traditional data assimilation methods. For building
surrogate models, the neural networks can learn the dynamics
behind the data, and they also can be used in the prediction-
correction data assimilation cycle11, or for example either to
replace a physically based model entirely or to apply error
corrections12–14, in four-dimensional data assimilation models. The
hybridisation of data assimilation and neural networks is expected
to produce both faster and more accurate assimilation-prediction
systems. Helping to merge data assimilation and ML is the fact
that both fields are inverse methods that can be united under a
Bayesian framework15.

Limitations, opportunities, and challenges
Within data assimilation, the observation operator links the
geophysical variables of interest (e.g. sea-ice fraction, or winds)
to the observed quantities (e.g. satellite-observed radiance). Often
there is no adequate physically based operator so ML could help
create empirical observation operators. A challenge is that full
training datasets do not exist, since observations are often
sensitive to variables that no model can completely simulate.
Likely a generative approach is needed in which the unknown
physical variables are represented in a latent space.
When creating empirical forecast models, the need to use

physical constraints is clear, and the techniques are increasingly
available, for example, additional physical layers or terms in the
loss function. Other issues concern extrapolation in a multiple
regime chaotic system—can a ML model trained in one regime
extrapolate to another? But we could also start using ML models
to understand and predict the regime-dependent predictability of
the system.

Future directions
In the near future, the use of ML for model error estimation and
bias correction will be important. An imperfect physical model can
be retained, but augmented by a neural network that learns to
apply a state-dependent error correction at every timestep of the
model16.
Another interesting application is causality, even though ML is a

nonlinear extension to linear methods like correlation, with the
same issue that it can learn associations or patterns rather than
causality. However, some ML techniques attempt to learn causal
relationships such as between climate variables.
Neural networks can require large amounts of data before they

begin to produce reliable results, and the larger the architecture,
the more data are needed. In addition, if the data available are too
noisy, too scarce or there is a lack of salient features to represent
the problem, the network will not perform well. Physics-informed
neural networks (PINN) are neural networks that solve supervised
learning problems with the constraints of given laws of physics
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described by general nonlinear partial differential equations17,
also helping to reduce the amount of training data required.
Standard data assimilation and neural network can have

problems with unstructured or even adaptive meshes. But graph
neural networks are expected to start including unstructured and
adaptive meshes with varying numbers of nodes.

TA3: GEOPHYSICAL FORECASTING WITH ML AND HYBRID
MODELS
Current ML applications
The working group team, chaired by Claudia Vitolo (Senior
Scientist at ESA) and Peter Dueben (Coordinator of ML and AI
activities at ECMWF), outlined that there are various types of ML
and hybrid model applications that range from applications to
speed up complex and time-consuming processing (e.g. model
emulators18) to applications that are focused on diagnostics (e.g.
unsupervised learning and causal discovery19) and model
improvements (e.g. learning from observations and high-
resolution data20), or for uncertainty quantification and error
analysis). ML also allows learning the entire model from data. This
application is the most controversial as ML scientists are confident
that they will soon be able to beat operational weather models21,
while most domain scientists are convinced that pure ML models
will not beat conventional models any time soon.

Limitations, opportunities, and challenges
Advantages of DL are the high computational efficiency (due to
dense linear algebra and reduced numerical precision), the simple
arithmetic that makes tools very flexible (for example regarding
automatic differentiation), and the flexibility to combine informa-
tion from various data sources, including Internet of Things (IoT)
data. It can also be an advantage that DL tools can be used as
black-box when the underlying physical processes are not
understood. Advantages of statistical approaches beyond DL are
the sound mathematical formulation and (for some of the
approaches) the ability to extract physical understanding. A
number of successful examples of the above applications were
presented during the dedicated oral session.
The main limitation is the limited access to datasets. When

available, licence restrictions may limit their use. From a modelling
perspective, some Earth System processes are rare (e.g. extreme
events such as tropical cyclones) and difficult to characterise
statistically. In classification algorithms, for instance, such imbal-
ance can be misleading and cause over-confidence. There is a
need for more AI-ready datasets (so-called benchmark datasets),
improvements to make data handling easier, and access to more
pre-trained-ML models that only need to be customised for a
specific application.
Challenges are the lack of trust in ML tools due to the inability

to extrapolate into unseen weather regimes and limited general-
isation. It requires more work to facilitate the use of ML tools in
operational weather and climate predictions. Furthermore, data
ethics are relevant for IoT data22.

Future directions
The field will grow further and benefit from the availability of
customised ML hardware, improvements in explainable AI and
physics-informed ML, established benchmark datasets for weather
and climate applications, more open datasets, more transfer and
re-inforcement learning, and advancements in software—for
example for the coupling of conventional and ML tools and the
use of ML at scale. ML will therefore improve all relevant
components across the workflow of weather and climate
modelling. There will also be more scientists who can do both,
ML and Earth system science, who will help to link the two

communities. Further opportunities could be made available
under the European Digital Strategy, as in the case of the
Destination Earth initiative (coordinated by the European Commis-
sion and jointly implemented by ESA, ECMWF and EUMETSAT) and
the application of transfer learning.

TA4: ML FOR POST-PROCESSING AND DISSEMINATION
Current ML applications
The working group team, chaired by Rochelle Schneider
(Researcher at ESA) and Massimo Bonavita (Senior Scientist at
ECMWF) discussed with participants from a widely diverse
professional background, ML and ESOP experience, and point-
of-view for the use of ML in the TA4 area. Participants from
different fields such as operational weather services, energy (e.g.
wind and solar forecasting) and hydrology (e.g. flood forecast-
ing23) sectors shared a common interest in using ML for post-
processing to optimise their forecast modelling system and
provide predictions from the short-range (hours-to-days) to the
extended range (months) up to a seasonal outlook. Other
participants made an interesting observation about the use of
ML methods to downscale products from global/local climate and
atmosphere models to improve the meteorological information
provided to on/offshore wind farms. This super-resolution ML
application was acknowledged also to benefit research studies on
environmental health24,25 and sustainable cities which need
weather and air quality data at high spatio-temporal resolution
at surface level26,27.

Limitations, opportunities, and challenges
Not surprisingly, and similarly to the findings of other working
groups, heterogeneous ground-truth distribution and computa-
tional costs for model training were identified as potential
challenges. A rich discussion started when one of the participants
brought the “benchmark” concept into the conversation. The
interesting situation here is that this topic was reported with three
different meanings. Currently, there is not a consensus view in the
literature on the proper way to score different ML models
designed to do the same (or similar) tasks2. This situation suggests
the need to develop a standard benchmark that would help future
researchers to progress their model designs based on the
performance found in previous studies. Finally, the implementa-
tion of a one-fits-all benchmark method is also challenging to
validate different ML model designs. The discussion also raised the
issue of the lack of published information available to interpret the
model architecture, and the sample size used to generate the
reported performance of the trained-ML models.
The chairs asked the participants working in the private sector

why ML methods are not yet commonly implemented into their
services. The answer was that many ML frameworks published in
the literature are difficult to replicate due to the lack of basic
information (e.g. dataset and code publicly available). Additionally,
this reluctance on the operational/user services to explore ML
approaches was explained by the strong interpretability and
trustworthiness of (benchmark) statistical methods, and the
concern about possible service disruptions due to unforeseen
ML model issues.

Future directions
ML methods are known to be affected by generalisation issues, i.e.
having problems in dealing with outliers from the training
distribution. Still, in a changing climate, one of the most important
issues is predicting extreme events, in which case the predicted
state will be located in the tails (or even outside) of the training
distribution. For these reasons, the working group emphasised the
need to adjust the ML models to widen the magnitude of their
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prediction range to capture severe events due to their cata-
strophic impact on society and the economy. Finally, some
participants were sceptical about the use of the digital twin-
engine to deliver high spatio-temporal resolution data since post-
processing and downscaling approaches (linked to ML methods)
could perform these tasks more efficiently.

Final remarks
The ML4ESOP attracted over 1100 registrations from 85 countries
around the world, with a large number of participants from
Germany, Italy, and the United Kingdom. The opening and closing
sessions were broadcast live by ESA Web TV to an audience not
registered at the workshop. They captured more than 1200 views
during the opening session, followed by many requests on social
media and emails to the organisers to join the event.
These numbers indicate the success of the workshop and

confirm that there is interest to run another edition in 2022. This
report provided evidence of the valuable exchange of ideas across
ML and ESOP communities. More significantly, it has reinforced
the call to produce replicable, explainable, and sustainable ML
methods. ML4ESOP plays a fundamental role also in terms of end-
users, those who will use the modelling outputs to drive
economic, political, and health decisions.
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