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Reconciling historical changes in the hydrological cycle
over land
Sanaa Hobeichi 1,2✉, Gab Abramowitz 1,2, Anna M. Ukkola 1,2, Martin De Kauwe 1,2,3, Andy Pitman 1,2, Jason P. Evans 1,2

and Hylke Beck 4

The sixth Intergovernmental Panel on Climate Change (IPCC) assessment report confirms that global warming drives widespread
changes in the global terrestrial hydrological cycle, and that changes are regionally diverse. However, reported trends and changes
in the hydrological cycle suffer from significant inconsistencies. This is associated with the lack of a rigorous observationally-based
assessment of simultaneous trends in the different components of the hydrological cycle. Here, we reconcile these different
estimates of historical changes by simultaneously analysing trends in all the major components of the hydrological cycle, coupled
with vegetation greenness for the period 1980–2012. We use observationally constrained, conserving estimates of the closure of
the hydrological cycle, combined with a data assimilation approach and observationally-driven uncertainty estimates. We find
robust changes in the hydrological cycle across more than 50% of the land area, with evapotranspiration (ET) changing the most
and precipitation (P) the least. We find many instances of unambiguous trends in ET and runoff (Q) without robust trends in P, a
result broadly consistent with a “wet gets wetter, but dry does not get drier”. These findings provide important opportunities for
water resources management and climate risk assessment over a significant fraction of the land surface where hydrological trends
have previously been uncertain.
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INTRODUCTION
Understanding how the future hydrological cycle will change at
regional scales is crucial for impact assessment and adaptation
planning1. Previous research has produced apparently conflicting
insights on how land hydrological conditions have changed2–5,
ranging from increasing aridity over land6 and further drying in the
world’s driest regions7–9, to the acceleration of the hydrological
cycle10 and increased vegetation “greening” (implying relaxation in
water-limitations)11–15. Some studies have suggested that hydro-
logical cycle trends are consistent with ‘wet gets wetter and dry
gets drier’9,16, while others have found that both this and the
opposite pattern ‘dry gets wetter and wet gets drier’ is detectable
on land3,17. These conflicting findings may stem from different
interpretations of ‘drying’, ‘aridity’ and ‘intensification’, depending
on the metrics and spatial-scale aggregation methods used4,18.
Changes in the terrestrial hydrological cycle have typically been
explored by examining trends in just one3,5,9,10,19–21, or a
subset16,22–32 of its components, or in aridity metrics that do not
capture the full complexity of changes4. Furthermore, many studies
use a single-source dataset, so that results are very sensitive to
dataset choice2,4,24,33 and its inherent uncertainties4,21. Here, we
undertake a simultaneous analysis of trends in all components of
the hydrological cycle and vegetation greenness (based on
Normalised Difference Vegetation Index; NDVI), using global
observationally-derived gridded datasets of P, ET, Q and change
in total water storage (ΔTWS) that are constrained with in situ
measurements (Supplementary Table 1), over the period
1980–2012. Crucially, our approach imposes physical conservation
constraints in calculating trends. The analysis of trends utilises
multiple products and observational sources in the derivation of
each budget component, as well as uncertainty bounds informed
by observational constraints. Sampling within these uncertainty

estimates was used to determine the robustness of the trend (see
Methods). Changes in the hydrological cycle are described at the
grid scale (0.25°) and over precipitation regimes derived by
clustering the land based on precipitation mean and variability
(Supplementary Fig. 1 and Supplementary Table 2).

RESULTS
Global patterns of change in the hydrological cycle
We first examine the spatial distribution of robust trends in P, Q,
ET, and NDVI over 1980–2012 (Fig. 1 – dark blue and red). We find
that 51% of the land surface has experienced robust changes in at
least one component of the hydrological cycle. P has changed
robustly across ~13% of the land compared to ~34% and 20% for
ET and Q, respectively. Regionally, P and Q show a broad tendency
for increases in parts of the Sahel, southern Africa, Eurasia, the
Amazon, southeast Asia and northern Australia. Declines in both P
and Q are detected in southwestern North America, southern
South America and parts of Asia. However, robust trends in P (dark
colours in Fig. 1) are more limited in spatial extent and less
spatially coherent than in Q. ET shows robust increases in most of
Eurasia, southern Asia, and western North America. Declines in ET
are detected in central Africa, western North America, the Middle
East, and central South America. ET increases in northern mid- and
high- latitudes and central South America are consistent with
greening trends (i.e. an increase in maximum NDVI14, and a
lengthening of the growing season). We also detect greening
trends in some regions where no robust changes in the
hydrological cycle are observed, particularly in Australia (Fig. 1).
The observed robust trends in P, ET and Q, while being less

spatially widespread than previously reported changes in these
hydroclimatic variables, do agree with many earlier studies on
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the overall spatial pattern of positive and negative trends2,32,34,35.
We find notable disagreement, however, in Q trends with other
reports22 particularly in central and southern South America and
parts of Europe and India, likely stemming from different time
periods in other work than in this study. Q trends in India
closely resemble observed trends in regional studies36. Over most

of the land, the directional changes in Q closely resemble those
in P, despite our assessment being based on two independent
datasets.
Trends in the change in the total water storage (ΔTWS)

(Supplementary Fig. 2) are less spatially coherent than patterns
in the other components of the hydrological cycle. Interestingly,
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these ΔTWS trends are not comparable to trends in total water
storage (TWS)31, and instead indicate whether the rate of change
in stored water equivalent is increasing or decreasing. ΔTWS
shows robust increases in northern Australia, southern Sahel and
some adjacent areas, and robust decreases in western China, in
line with P trends. Robust declines are found in the western
Amazon, parts of northern Siberia, and north-western Quebec,
despite P increases. Elsewhere trends are highly localised and
spatially variable.

Patterns of changes across precipitation regimes
We next examine trends aggregated by precipitation regimes to
understand how trends vary from dry to wet environments. The
magnitude of changes in P and Q consistently strengthen as we
move from the very dry, very high variability to extremely wet, low
variability precipitation regimes (Fig. 1- numbers above/below bar
plots). The proportion of land exhibiting positive Q and P trends also
increases from drier to wetter precipitation regimes and vice versa
for negative trends. However, the proportion of land area showing
increasing P and Q is much greater than the proportion of land area
showing decreasing P and Q across most precipitation regimes,
suggesting more widespread wetting than drying in all regimes.

The trends are clearly spatially complex, and changes across multiple
water balance components appear to be better explained by ‘wet
gets wetter but dry does not get drier’ than ‘wet gets wetter and dry
gets drier’9,16.
The magnitude of ET change (Fig. 1—numbers above/below bar

plots) varies much less across precipitation regimes than P and Q,
but shows the same tendency toward increasing magnitude from
drier to wetter regimes. Unlike P and Q, decreasing ET is more
common in the wet regimes than in the dry regimes and
particularly in the wet, moderate variability regime. Similar to P
and Q, increasing ET trends are more widespread than decreasing
trends but robust increases cover a similar land area (~25%) across
all precipitation regimes, with the exception of the wettest and
driest class. The increasing trends in ET largely follow the pattern
of NDVI increases but note NDVI increases are robust over a larger
land area. Meanwhile, robust decreasing trends in ET are more
widespread than for NDVI, particularly in the wetter regimes.
When grid cells are averaged across precipitation regimes,

detected trends in P, ET, Q and NDVI are overwhelmingly positive
(Fig. 2 and Supplementary Fig. 3); no statistically significant declines
are detected in any regime or water balance component. These
results remain true when trends in the dry precipitation regimes
are computed separately at regions classified as non-drylands

Fig. 1 Spatial patterns of trends in P, Q, ET and NDVI. (Maps) Spatial patterns of trends in each of the annual totals in (a) P, (b) Q, and (c) ET,
and (d) annual averages of monthly NDVI derived for the period 1980–2012 using Mann–Kendall and Sen’s slope methods. Grid cells in orange
and light blue correspond to uncertain trends because the confidence interval of the slope encompasses a mix of negative and positive
values. Grid cells in beige correspond to inconclusive trends either (i) because trend slopes computed for different estimates of the same
component do not agree, (ii) due to artefacts in the data (NDVI), or (iii) because shorter period trends are inconsistent pre- and postdata
assimilation technique. (Bars) Percentage of land area in each precipitation regime displaying these changes. The text on the top and bottom
of each bar shows the areally-averaged slopes of positive and negative trends respectively. Precipitation regimes are labelled from driest to
wettest as very dry with very high variability (V.dry, V.H.variability), dry with high variability (Dry, H.variability), dry with medium variability (Dry,
M.variability), mild dry with medium variability (M.dry, M.variability), mild wet with medium variability (M.wet, M.variability), wet with medium
variability (Wet, M.variability), wet with low variability (Wet, L.variability), very wet with low variability (V.wet, L.variability), and extremely wet
with low variability (Ex.wet, L.variability). The spatial distribution of the precipitation regimes is illustrated in Supplementary Fig. 1.

Fig. 2 Global trends in P, ET, Q and NDVI. Time series of annual totals in (a) P, (b) ET and (c) Q in (mm), and (d) annual averages of monthly
NDVI (unitless × 10−4) computed for the dry and wet precipitation regimes during 1980–2012. Where trends are statistically significant,
trendlines are displayed, and slopes and confidence intervals computed using Mann–Kendall and Sen’s slope methods are shown. Trends are
deemed statistically significant if the confidence interval of the slope is strictly positive or strictly negative. The nine precipitation regimes are
labelled from driest (bottom) to wettest (top) as listed in caption for Fig. 1.

S. Hobeichi et al.

3

Published in partnership with CECCR at King Abdulaziz University npj Climate and Atmospheric Science (2022)    17 



(‘Humid’ or ‘Cold’) and drylands (‘Hyper-arid’, ‘Arid’, ‘Semi-arid’,
and ‘Dry Sub-humid’) based on common classification schemes
(Supplementary Fig. 4). In the dry precipitation regimes, increases
in the hydroclimatic variables mainly occur in non-drylands
(Supplementary Fig. 3). This indicates that despite spatial
variability within each precipitation regime, all the water balance
components are increasing overall and the areas that exhibit
positive trends dominate the trends. In each precipitation regime,
positive trends in all hydroclimatic variables are either more
widespread or of larger magnitudes than negative trends. These
spatially aggregated results (Supplementary Fig. 2) therefore show
that both ‘wet’ and ‘dry’ get wetter, although regional patterns
remain complex (Fig. 1). The simultaneous increases in P, Q and ET
identified across multiple precipitation regimes, and in particular
the two wettest classes, also suggest a possible intensification of
the water cycle as suggested in previous work10. ET, however, is
changing at a much slower rate than P and Q likely due to the
strong energy limitation of ET in these wet regions.

Regional changes in the hydrological cycle and their likely
drivers
Robust Q and ET trends are more widespread than those in P and
we find many instances of unambiguous trends in ET and Q
despite no robust trends in P (Fig. 1). Robust Q and ET trends occur
across 44% of the regions where P trends are not robust (Fig. 3
middle row: sum of percentages represented in the (1) blue and

(2) red ET bars, and (3) blue and red Q bars in the uncertain ET
category), suggesting the trends in ET and Q are not merely driven
by P changes as they can also occur due to changing atmospheric
demand, vegetation responses to rising [CO2] or human interven-
tion (i.e., land use and land cover change). Where positive P trends
are observed (9.1% of the land), ~40% of these regions exhibit
positive ET trends compared to ~6% of the land exhibiting
negative ET trends (Fig. 3). This indicates that when P increases,
~87% of the robust trends in ET are also positive. We also find that
where there is a negative P trend, ~73% of the robust trends in ET
are also negative. Changes in Q are more strongly associated with
P compared to ET. While only ~5% of the land area has robust
trends in both Q and P, the proportion that shows a change in Q
with the same directional change as P, is 95% when the change is
positive, compared to 85% when it is negative.
While changes in ET typically follow changes in P, regional ET

changes are largely associated with uncertain P trends (Fig. 4a, b)
and in many regions, robust ET increases are associated with NDVI
increases (e.g. Europe, India and China). These changes likely have
a range of region-specific drivers, including greening due to
increased plant water-use efficiency linked with rising [CO2]37,
warming-induced changes in the growing season14, agricultural
improvement in Europe15; and intensive farming and afforestation
in India and southeast China15. In several regions, however, robust
ET increases are associated with uncertain trends in both P and
NDVI, including parts of Asia and North America (Fig. 4a) although
significant P trends in eastern America have been identified when

Fig. 3 Spatial analysis of directional change in trends of P, ET, Q and NDVI. Percentage of land area displaying positive, negative, and
uncertain trends in P (columns), and in each case, proportion of land displaying positive, negative, and uncertain trends in ET, and
corresponding Q, and NDVI trends (rows). Uncertain trends include uncertain positive, uncertain negative and inconclusive trends.
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using a longer term dataset38. Past studies have suggested these
changes may be related to increased vapour pressure deficit39 and
increased radiation due to solar “brightening”40. The positive ET
trend in northern high latitudes could also be associated with
temperature-driven greening (i.e., a lengthening of the growing
season)41,42 but poor NDVI data quality prevents the detection of
robust trends in these regions. Robust decreases in ET are largely
associated with declining or uncertain P and NDVI (Fig. 4b).
Despite widespread ET trends, many challenges still exist in
untangling the confounding effects of these drivers and other
influences (e.g. temperature increases) on ET change, and such
analysis is confounded by a lack of reliable, observational data in
many regions.
P and Q trends are both positive in parts of the Sahel, western

Namibia, and northern Asia (Fig. 4c). In the Sahel, increasing
precipitation has been attributed to anthropogenic climate
change and is expected to continue in the future43. The observed
changes in eastern Namibia are robust despite precipitation being
highly variable in this region (very dry, very high variability
regime) and are consistent across both P and Q. These results are
inconsistent with some previous reports44 but agree with findings
from a regional study45. In northern Asia, Q increases are likely
caused by enhanced snow melting induced by climate change46.
Positive P and Q trends are also observed in northeast Australia,
and the Maritime Continent. Conversely, P and Q are both
negative in the western US (Fig. 4d). These negative P and Q
trends are coupled with decreasing ET which may relate to
instances of droughts47. We detect negative Q trends in northern
India despite no robust change in P, which is likely attributed to
the regulation of water extraction for agriculture48. We also note
that the grid-scale runoff trends are not robust over river basins in
the Mediterranean and Northern Europe despite previous studies
identifying significant basin-scale streamflow trends in these
regions30,46. Spatial aggregation represents one potential source
of this type of discrepancy in trend analyses.
Hydroclimatic trends may also highlight areas potentially more

prone to flooding (Fig. 4c). For instance, both P and Q have
increased in part of the Niger basin while ET has not changed,

suggesting a possible increase in flood pre-conditioning, with
other studies supporting the idea that this trend might continue49.
P and Q have also increased in parts of Papua New Guinea and
Indonesia, which are already prone to frequent and severe
flooding. Similar trends in the Amazon agree with findings
detecting recent intensification of flooding extremes in this
region driven by a strengthening Walker circulation50.
We find that in the wet regions (e.g. Southeast Asia), changes

in Q and P are closely related unlike changes in ET and P. In
comparison, in the dry regions (e.g. in northern Africa), changes in
ET and P are more alike than changes in Q and P. This finding
confirms that in dry regions P is increasingly partitioned into ET
rather than Q, and in wet regions P is increasingly partitioned into
Q rather than ET51 with implications for freshwater availability in
these water-limited regions.

DISCUSSION
Robust changes in the hydrological cycle are observed over more
than 50% of the global land area even when robust measures for
assessing the significance of trends are implemented. Our trend
analysis is enabled by an approach that uses observationally
constrained components of the hydrological cycle from multiple
sources (e.g. remote sensing, machine learning and land surface
modelling) and considers their uncertainties and consistencies in a
water balance conservation context. This conservative approach
strengthens our confidence in the trends we observe. We find that
~38% of the land shows clear trends in ET or Q despite no robust
changes in P. While ET is the most widely affected component of
the hydrological cycle (~34% of the land), it is changing at a much
slower rate than Q and P. Over large areas where trends in P are
deemed uncertain, the confidence interval of the trends’ slopes
includes a mix of positive and negative values. The inconclusive
directional change in regional P is mostly attributed to strong
connection of regional precipitation with the modes of climate
variability. For example, the phase changes of the Pacific Decadal
Oscillation (PDO) and El Niño-Southern Oscillation (ENSO) have
been associated with marked changes in precipitation pattern

Fig. 4 Spatial analysis of simultaneous change in trends of P, ET, Q and NDVI. Spatial distribution of positive (+), negative (−) and uncertain
(u) trends in P and NDVI coincident with positive ET trends (a) and negative ET trends (b). Spatial distribution of positive, negative and
uncertain trends in P and ET coincident with positive Q trends (c) and negative Q trends (d). Uncertain trends include uncertain positive,
uncertain negative and disagreeing trends.
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anomalies worldwide, particularly in Australia, eastern Siberia and
the Americas (Fig. 3 in Ref. 52). During the period of this analysis, a
warm PDO phase occurred throughout 1980–1998 followed by a
cool phase throughout 1999–2012. The transition between a warm
to a cool PDO phase has likely contributed to the widespread
inconclusive trends in P. On the other hand, there has been a slight
tendency toward more La Niña than El Niño during this period,
which might have contributed to the upward P trend in eastern
Siberia and Northern South America, and downward P trend in
Southwest North America and Central South America. Exploring
changes in the hydrological cycle over longer time periods would
likely help uncover new robust trends which have been incon-
clusive over 1980–2012. Global mean annual P, ET, and Q have
increased at rates 0.8mm × year−1, 0.3 mm × year−1, and 0.6mm ×
year−1 respectively. These changes are equivalent to increases by
3%, 1.5% and 6% per 1°K of global mean surface warming for P, ET,
and Q respectively.
Declining freshwater resources occur in regions that are already

prone to water stress (e.g., the Middle East and western USA), in
some intensive agricultural areas (e.g., key ‘breadbaskets’ in the
Americas, Asia and Australia) and some densely populated areas
including northern India and China. Negative trends in freshwater
resources are expected to continue in most of these regions53,
while water demand and/or population are expected to increase54

with implications for water scarcity in these regions55. These areas
should be priority study regions for understanding the impact of
changes in the hydrological cycle to global food security and to
inform water policy regulation and risk, and adaptation manage-
ment especially in low socioeconomic countries where vulner-
ability is high. We find that at least 6.3% of the world population is
exposed to declining freshwater resources as evidenced by Q
decreases (Supplementary Figure 5). In contrast, we detect a
tendency toward increased freshwater resources in several other
densely populated regions, including Indonesia, the Sahel and
parts of southern Africa as evidenced by positive P and/or Q
trends. Possible increase in flood pre-conditioning is identified in
the Niger basin, Papua New Guinea, Indonesia, and the Amazon.
Our results demonstrate that hydroclimatic changes over land

are multifaceted and not necessarily related to the background
level of dryness or wetness of the land. In contrast to some
earlier work9,16, our results support a general conclusion that
over land “wet gets wetter but dry does not get drier”.
Discrepancies between our work and previous studies may be
explained by different choices in spatial aggregation, time
period, variables used, employed datasets, and dryness defini-
tions, making comparisons only partial. Here, for example, we use
precipitation regimes, whereas other studies have used different
spatial aggregation approaches, based on dryness (e.g. aridity
indices) and/or spatial (e.g. river basin) characteristics51. Cluster-
ing land by precipitation regimes helps examine how the
relationships between trends in P, ET, and Q play out in different
environments, and there are numerous ways we could have
chosen to separate these. Clustering simply as a function of the
total annual precipitation and its seasonal variability allowed us
to provide an intuitive separation, while minimising the number
of clusters, so that we could explicitly explore the nature of
trends and changes within each cluster, thereby covering the
entire land surface. An alternative choice may have been to
separate the dry precipitation regions into energy and water-
limited clusters, which would result in a more natural latitudinal
separation. We did not find that such a separation changed our
conclusions (see Supplementary Fig. 3) and therefore opted not
to pursue such an approach.
Understanding whether these observed trends will continue in

the future remains a pressing challenge. The approach we use
here to constrain hydrological cycle estimates is easily updated as
new data sources become available. Next-generation of satellite
missions (e.g. BIOMASS) may offer new understanding on the

drivers and the scale of change (e.g. ECOSTRESS). Most
importantly, by examining all components of the hydrological
cycle, enforcing conservation, utilising observationally constrained
uncertainty estimates and examining the statistical robustness of
trends in this context, we now have an approach that can
reconcile the apparent discrepancies in reported historical
changes in the hydrological cycle, enabling new understanding
that will help constrain future uncertainty.

METHODS
Employed datasets
Hybrid datasets synthesised from multiple global estimates and con-
strained with in-situ measurement are used to analyse changes in the
hydrological cycle over the global land for the period 1980–2012. These
are MSWEP (V2.4)34, DOLCE (V3)56, and LORA (V1)57 for precipitation (P),
runoff (Q), and evapotranspiration (ET) respectively. DOLCE is derived by
merging four global ET datasets including physical-, empirical- and
reanalysis-based estimates, and in-situ constraining ET data from more
than 250 flux sites. LORA is derived by merging 11 global runoff datasets
and in situ constraining streamflow records. Both DOLCE and LORA
provide temporally and spatially variant uncertainty estimates. In DOLCE,
uncertainty reflects the actual deviation from the measured ET at site
locations58, while in LORA, uncertainty reflects how well aggregated runoff
fields within a river basin reproduce streamflow in that basin59. MSWEP is
derived by merging nine gauge-, satellite-, and reanalysis-based gridded
datasets, and constraining in situ data from more than 7500 gauges34. The
change in the total water storage (ΔTWS) is then taken as the residual of
the surface water budget and computed by subtracting ET and Q from P,
and used to analyse changes in ΔTWS during 1980–2012.
NDVI data from GIMMS (V1.1)60 is used to analyse changes in vegetation

greening for the period 1982–2012. We resample the original bi‐monthly
NDVI data to monthly time steps by taking the maximum of the bi‐monthly
values for each calendar month to remove artefacts e.g., due to cloud
contamination. We then mask pixels with < 85% good quality monthly
values (i.e. quality flag = 0; Ref. 61).
Two additional datasets are incorporated to constrain the analysis of

trends. These are the rain gauge-based precipitation dataset, GPCC62, and
monthly ΔTWS derived from the monthly equivalent water thickness of
water storage anomalies provided in GRACE Mascons dataset63 (denoted
hereafter as ΔTWS-GRACE). The derivation of ΔTWS-GRACE follows the
methods described in Ref. 64. As explained in ‘Section Data assimilation’,
ΔTWS-GRACE is used as an input in a data assimilation technique to detect
inconclusive trends in each component of the hydrological cycle based on
the period 2003–2012.
An observation-based global land monthly surface air temperature,

developed at the Climate Prediction Center, National Centers for
Environmental Prediction, is used to calculate the rate of change in the
mean annual temperature for the period 1982–2012. The dataset uses
station observations collected from the Global Historical Climatology
Network version 2 and the Climate Anomaly Monitoring System (GHCN+
CAMS)65. The rate of change in temperature is then used to compute the
percentage of change in P, ET and Q equivalent to the temperature
increase of one degree Kelvin (1°K). For example, the percentage of change
in P equivalent to the temperature increase of 1°K can be calculated as
rate of change in P
climatology P ´ 100%

rate of change in temperature.
Global map of drylands and non-drylands based on the first edition of

the World Atlas of Desertification66 was used in the analysis of the trends
across wet and dry environments. Drylands include ‘Hyper-Arid’, ‘Arid’,
‘Semi-arid’ and ‘Dry Sub-humid’. Non-drylands include ‘Humid’ and ‘Cold’
classes. The classification of the land is based on the seasonal variability
of precipitation and an aridity index AI ¼ P

PET where P and PET are the
mean annual precipitation and mean annual potential evapotranspira-
tion respectively.
These datasets are listed in Supplementary Table 1.

Precipitation regimes
We cluster the global land into nine precipitation regimes using k-mean
unsupervised classification based on the algorithm developed by Lloyd
(1957)67. The optimal number of clusters, i.e. nine clusters, is chosen
with silhouette analysis68 by computing the average silhouette of
predictors over several values of clusters in the range [4–15] and
achieving the highest average. The average silhouette approach is
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commonly used to measure the quality of clustering and for finding the
optimal number of clusters69.
We build the k-mean classifier on two predictors. These are mean annual

precipitation totals and within-year relative standard deviation (%) both
computed and averaged over the period 1980–2018 for MSWEP-P.
The derived precipitation regimes map and a scatter plot displaying the
pixel values of the two predictors colour-coded by precipitation regime are
illustrated in Fig. 1. The global land is clustered into four dry and five wet
regimes, and are labelled based on the values of their centroids form the
driest to wettest as: very dry with very high variability (V.dry, V.H.
variability), dry with high variability (Dry, H.variability), dry with medium
variability (Dry, M.variability), mild dry with medium variability (M.dry, M.
variability), mild wet with medium variability (M.wet, M.variability), wet
with medium variability (Wet, M.variability), wet with low variability (Wet, L.
variability), very wet with low variability (V.wet, L.variability), and extremely
wet with low variability (Ex.wet, L.variability). The driest and the wettest
regimes occupy the largest (32.5%) and the smallest (0.1%) proportion of
the land area respectively. We note that using the mean annual
apportionment entropy as a predictor instead of the relative within-year
standard deviation did not produce noticeable differences in the final
precipitation regimes map. In a further step, we use land classification of
the World Atlas of Desertification to pull apart ‘Drylands’ and ‘Nondrylands’
regions within the dry precipitation regimes.

Analysis of trends
Annual totals are computed from monthly estimates of the components
of the hydrological cycle over 1980–2012. For NDVI, annual averages are
computed from monthly estimates over 1982–2012. We use a nonpara-
metric trend test as proposed by Mann-Kendall70,71 and the Sen’s slope
method72, and we compute the confidence interval of the slope at 95%
significance level. A trend in any climate variable is considered statistically
significant if the confidence interval of the slope does not include a mix of
positive and negative values. This way, we ensure that statistically
significant trends are strictly positive or negative, which is not necessarily
guaranteed when considering the p-value. A trend is considered
uncertain positive or uncertain negative if its slope is positive or negative
respectively, and its confidence interval includes a mix of positive and
negative values.
We also identify inconclusive trends using data assimilation, and

uncertainties in the individual components of the hydrological cycle:

Data assimilation. We enforce the closure of the hydrological cycle at
every grid cell and month during 2003–2012 using a data assimilation
technique (DAT)64,73 that modifies each component of the hydrological
cycle within its pre-defined uncertainty to achieve the balance. In this
analysis, we use the reference ΔTWS is based on GRACE Mascons dataset.
Uncertainties in Q, ET and ΔTWS are provided in the data. We use the
relative uncertainty of GPCC as indicator of uncertainties in P. We then
analyse the trends in each component before and after applying the DAT.
If directions of trends in individual components are inconsistent pre- and
post-DAT, longer period trends (i.e. 1980–2012) are deemed inconclusive.
As a result of this robustness measure, trends in P, ET, and Q have been
considered inconclusive at 7%, 5% and 12% of the land respectively.

Uncertainties in the individual components of the hydrological cycle. We
incorporate uncertainties in ET and Q to further assess the reliability of
the detected trends following these steps for each flux (i.e. ET and Q): (i)
We derive 50 different random samples of flux’s monthly time series within
the interval flux ± uncertainty; (ii) we derive trends in annual total flux for
each sample dataset over 1980–2012; (iii) trends exhibiting consistent
direction across less than 90% of the samples are considered inconclusive.
Trends in P are compared to trends in the reference precipitation dataset
(GPCC), and those showing contradictory change direction across the two
precipitation datasets, are considered inconclusive. For NDVI, trends
exhibited at low-quality grid cells (i.e. flag = 0) are deemed inconclusive.
Finally, we define ‘robust trends’ positive or negative trends that are

statistically significant, and are neither uncertain, nor inconclusive. These
measures ensure that our findings are on the basis of a robust trends
analysis and that we are not drawing conclusions from spurious trends.

DATA AVAILABILITY
The DOLCE V3 and LORA V1 are available in the National Computational
Infrastructure (NCI) data catalogue with the identifiers https://doi.org/10.25914/

606e9120c5ebe, and https://doi.org/10.25914/5b612e993d8ea. The MSWEP V2.4 data
can be obtained from http://www.gloh2o.org/. The GHCN Gridded V2 temperature
data is provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, at https://psl.
noaa.gov/data/gridded/data.ghcncams.html. GRACE Mascons water storage anomaly
data can be obtained from https://podaac.jpl.nasa.gov/. The NASA-GIMMS v1.1
Normalised Difference Vegetation Index (NDVI) can be obtained from https://gimms.
gsfc.nasa.gov/ . The GPWv4 gridded population of the world can be downloaded
from https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11/
data-download. The World Atlas Desertification polygons are available from ArcGIS.
Details of these datasets are available within the supplementary information file.

CODE AVAILABILITY
The computer codes have been implemented in the open-source software RStudio
using R. Code is flexible and ubiquitous with many sound publicly available examples.
The main packages used to perform the analysis are: ‘Raster’ for analysing the
georeferenced data, ‘dplyr’ for data manipulations, ‘ggplot2’ and ‘rasterVis’ for data
visualisation, ‘EnvStats’ to carry out the Mann Kendall test of trends, and ‘stats’ for
clustering land into precipitation regimes using ‘kmeans’ function. The script that
enforces the closure of the water balance is available on GitHub at https://github.
com/sana-ccrc/Water_budget.git.
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