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The role of the Pacific Decadal Oscillation and
ocean-atmosphere interactions in driving US temperature
predictability
Sem Vijverberg 1✉ and Dim Coumou 1,2

Heatwaves can have devastating impact on society and reliable early warnings at several weeks lead time are needed. Previous
studies showed that north-Pacific sea surface temperatures (SST) can provide long-lead predictability for eastern US temperature,
mediated by an atmospheric Rossby wave. The exact mechanisms, however, are not well understood. Here we analyze two different
Rossby waves associated with temperature variability in western and eastern US, respectively. Causal discovery analyses reveal that
both waves are characterized by positive ocean-atmosphere feedbacks at daily timescales. Only for the eastern US, a long-lead
causal link from SSTs to the Rossby wave exists, which generates summer temperature predictability. We show that this SST forcing
mechanism originates from the evolution of the winter-to-spring Pacific Decadal Oscillation (PDO). During pronounced winter-to-
spring PDO phases (either positive or negative) eastern US summer temperature forecast skill more than doubles, providing a
temporary window of enhanced long-lead predictability.
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INTRODUCTION
Quasi-stationary or recurrent Rossby waves in boreal summer play an
important role in the development of high impact heat waves1,2.
Such Rossby waves create persistent clear-sky high pressure systems,
which, in combination with soil desiccation and land-atmosphere
feedbacks, can lead to extreme heatwaves such as seen in Russia
20103,4 and the United States 20125. These Rossby waves (RW) can
arise due to internal atmospheric variability, with a preferred phase6

that largely depends on orography7, land-ocean boundaries8 and
atmospheric waveguidability8–10. Vorticity anomalies induced by e.g.,
tropical convection or mid-latitude sea surface temperature (SST)
anomalies can also force quasi-stationary Rossby waves7,11–13.
Understanding the role of mid-latitude ocean-atmosphere interac-

tions in generating and maintaining Rossby waves is needed to
improve subseasonal-to-seasonal (S2S) predictions14–16 and climate
change projections17–19. Currently, these interactions are not well
understood. We know that, especially on intra-seasonal timescales,
mid-latitude SST anomalies are predominantly forced by atmospheric
variability20,21, yet the ocean can also influence the atmosphere22,23.
The initial atmospheric response to diabatic heating at the ocean
surface is baroclinic, with a low-level trough and high-level ridge
slightly downstream of a mid-latitude warm SST anomaly7. Subse-
quently, the baroclinic response is modified to a local or slightly
downwind-shifted warm ridge (barotropic) response via a transient
eddy feedback13,24. In the upper atmosphere, the warm ridge is
associated with a negative vorticity anomaly. The atmosphere
responds to this negative vorticity anomaly by moving air equator-
ward, mainly at the downstream edge of the warm ridge. This
adjustment can lead to a downstream Rossby wave response
consisting of alternating highs and lows25.
The atmospheric response to SST anomalies is thus complicated

due to the transient eddy feedback, which strongly depends on
the strength of the background flow, and therefore also on season
and location of the anomaly22. A stronger atmospheric response is

expected when the SST anomaly is close to the storm tracks and
when the storm tracks are strong (e.g., in winter)26. This sensitivity
of the atmospheric response to the storm track’s characteristics is
also linked to the waveguidability of the jet stream26. Vorticity
disturbances in the storm track near the core of the jet will be
refracted to the core9,27, thereby generating a more zonally
elongated Rossby wave response. A higher waveguidability is
found for a strong and/or more narrow jet stream, leading to a
stronger atmospheric wave-response28. The jet and storm track
are tightly coupled29, and it is thus likely that both strongly affect
the atmospheric response to an SST induced vorticity anomaly.
The atmospheric response also depends on the persistence of an

imposed mid-latitude SST anomaly. While the timescale of the
baroclinic adjustment is only a few days, to reach the equilibrium
barotropic adjustment takes approx. 1 to 2 months13,30. The SST
persistence is governed by the oceanic Rossby wave response to
atmospheric forcing31, yet it is also affected by the thermal inertia of
the ocean mixed layer and the turbulent heat fluxes32. The mixed
layer is shallower during summer, and therefore SST anomalies are
less persistent (dissipating within a couple of months) compared to
winter (>1 year)33,34. Vice versa, the shallower mixed layer also means
that the persistence of summer SST is more sensitive to atmospheric
forcing34. All these factors illustrate the complexity of the coupled
ocean-atmosphere Rossby wave interactions, with (1) a seasonally
varying ocean-atmosphere coupling strength, (2) a seasonally varying
persistence of SST, (3) the slow atmospheric baroclinic-to-barotropic
adjustment to an SST anomaly, and (4) the dependence on the
location of the SST anomaly (and background atmospheric state).
Here, we focus on United States (US) temperature variability and its

relationship with atmospheric Rossby waves, and how these Rossby
waves interact with north-Pacific SST anomalies. Previous work
showed that extra-tropical Pacific SSTs, associated with a Rossby
wave, provide long-lead predictability for eastern US hot tempera-
tures15. Follow-up work showed that using only SST precursors to
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predict high temperature events renders predictive skill up to 50 days
lead-time, while adding local soil moisture only slightly improves skill
at shorter lead-times (up to 30 days lead-time)16. Thus, we focus here
on interactions between SST and Rossby Waves (SST-RW), and how
those interactions affect the long-lead SST signal for eastern US
temperature. It was hypothesized that, in summer, amplifying two-
way feedbacks between the Rossby wave and the underlying SST
pattern can generate long-lead predictability15. The SST pattern
would initially arise as response to a strong atmospheric Rossby wave,
and subsequently amplify via positive ocean-atmosphere feedbacks.
An alternative hypothesis is that the long-lead SST signal predomi-
nantly originates from the Pacific Decadal Oscillation (PDO), since the
robust SST precursor pattern as found in16, projects strongly onto the
PDO pattern. This suggests that the low-frequency PDO dynamics
leads to a continuous and persistent boundary condition for the
atmosphere16. Both processes might also simultaneously contribute
to the long-lead signal between SST and eastern US temperature.
To test these hypotheses, we use a causal discovery technique

to quantify the SST-RW coupling strength of the Rossby wave
associated with eastern US temperature variability. As a compar-
ison, we perform the same analyses for the western US and show
that this region is modulated by a different Rossby wave pattern
with different dynamical characteristics. Importantly, we show that
only for the eastern RW, a long-lead SST signal exists, and thus
long-lead predictability is possible. If the long-lead signal for the
eastern RW originates from a positive SST-RW feedback, we expect
to find a stronger SST-RW coupling on (sub)-synoptic timescales
(1–10 days) compared to the western RW. On the other hand, if
the ocean is forcing the atmosphere by acting as a boundary
forcing, we expect to find a pronounced upward ocean-to-
atmosphere link for the eastern RW.
To measure the coupling strength, lagged univariate correlation

analyses are inadequate since the autocorrelation of both the
Rossby wave and especially the SST variability will spuriously
inflate the correlation coefficient35. Therefore, we will use a causal
discovery algorithm which has been specifically developed to deal
with strongly autocorrelated climate data36.

RESULTS
Quantifying ocean-atmosphere coupling of Rossby Waves
Figure 1a, b shows that western (Tw) and eastern (TE) US summer
temperatures strongly correlate with two distinct Rossby wave

patterns, here called the western (RWW) and eastern RW (RWE)
pattern. These are phase-shifted by about half a wavelength with
respect to each other. Tw and TE are the area-weighted 15-day
mean anomaly temperature timeseries of the western and
eastern US spatial cluster, respectively. The western and eastern
US temperature clusters are based on gridcells that tend to show
simultaneous occurrences of warm temperature periods15,16

(“Method”).
The western RW pattern is more zonally elongated and

resembles a dominant Northern Hemispheric mode of variability.
The eastern RW consists of an arcing pattern over the Pacific and
North America. This wave-pattern is reminiscent of the winter
Pacific North American (PNA) pattern in its negative phase37 and
the ENSO-forced atmospheric bridge response38. Interestingly, it
does not resemble the summer PNA pattern, and it does not
appear to be related to a circumglobal mode of variability. See
Supplementary Note 1 for a more detailed discussion and
evidence. Hence, while the RWW clearly relates to an atmospheric
mode of variability, the RWE does not appear to match any
summer mode of variability.
Figure 1e, f show there is a strong instantaneous and lagged

SST correlation with eastern US temperature (TE). For the west (Tw),
no long-lead signal SST signal is detected (Fig. 1d), only an
instantaneous one (Fig. 1c). To investigate the role of ocean-
atmosphere feedbacks, we quantify the coupling strength
between SST and the western and eastern Rossby waves,
respectively, using the Peter and Clark - Momentary Conditional
Information (PCMCI) algorithm. To visualize the causal dependen-
cies found by PCMCI, we plot Causal Effect Networks (CEN), which
are directed network graphs.
By calculating the spatial covariance of the RW patterns within the

green rectangles (shown in Fig. 1a, b), we quantify timeseries that
capture the RW variability for both the western and eastern RW,
referred to as RWW

t and RWE
t (“Method”). Figure 2a, g show the SST

correlation with the RWW
t and RWE

t timeseries, respectively. By
calculating the spatial covariance within the green rectangle of these
SST correlation patterns, we capture the SST variability (SSTWt and
SSTEt ) associated with the two Rossby waves (“Method”). We use the
PCMCI algorithm that consists of two-steps: (1) an adaptation of the
PC39 (Peter and Clark) algorithm and (2) the Momentary Conditional
Information metric40. If one is interested to test the causal relationship
between the timeseries xt-1 and yt, first, the PC-step estimates the
lagged parents of both timeseries (xt-1 and yt) by iteratively

Fig. 1 Correlation maps for different variables against western (TW) and eastern (TE) US temperature variability. Correlation map between
geopotential height at 500 hPa (z500) and TW (panel a) and TE (panel b). Panel (c), (d), (e) and (f) are similar to the upper panels, but versus
SSTA, showing instantaneous and lag 2 correlation values. Based on 15-day mean data. For the significance (αFDR= 0.05), we correct for the
False Discovery Rate using the Benjamini/Hochberg correction. Gridcells are highlighted by black contour lines if they are significant at least
60 out of 70 data subsets (“Method”). The white contour line indicates the western US cluster (panel a) and eastern US cluster (panel b). The
green rectangles in (a) and (b) indicates the region that is used to calculate the spatial covariance, see “Method”.
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performing conditional independence tests. The MCI-step tests if xt-1
and yt are conditionally independent, given the influence of the
lagged parents of both xt-1 and yt. To measure conditional
independence, we use partial correlation analyses, e.g., parcorr(xt-1,
yt|Z), in which Z is a single or set of timeseries to condition on. For
more information, see “Method”. To measure the SST-RW feedback on
(sub)-synoptic timescales we perform the PCMCI analysis on 1, 5, 10
and 15 day means. To measure the effect of lower-frequency
variability, we aggregate to 30, 45, 60 day mean timescales. For
conciseness, we present the CEN’s for 1, 5, 10, 30 and 60 day means,
as for the other timescales (15 and 45 day mean) we only found
instantaneous links (not informing us about the directionality of the
forcing). Note that we focus on summer (June, July, August), yet when
using 60-day means, we extend into May, June, July, and August to
increase sample-size (2 datapoints per year instead of 1).

Since a CEN depicts causal links as a yes/no answer, we
implement a sensitivity analysis to ensure we present robust links
only. We do this by repeating the PCMCI analysis 70 times on
slightly different subsets of data (“Method”). For the CENs, a link is
only shown if it is significant (αFDR= 0.05) in 60 out of 70
perturbation experiments. The spread in the link strength that
results from the sensitivity experiments also represents the
uncertainty due to sampling. Given this spread, a double-sided t
test is used to measure if the western SST-RW link strengths (n=
70 perturbations) are significantly different (α= 0.05) from the
eastern SST-RW coupling (n= 70 perturbations), indicated with a *
in Table 1.
The CENs for the west and east both show a positive two-way

coupling between SST and the Rossby waves on daily time-
scales, but there are important differences (Fig. 2). The causal

Fig. 2 Quantifying SST-RW coupling at different timescales in summer. Panel (a, g): lag 0 correlation maps of SST versus the western
(eastern) RW timeseries. Panels (b–f) and (h–l): CENs between the respective SST pattern timeseries and the RW pattern timeseries for different
temporal aggregations [1, 5, 10, 30, and 60]. The Link strength (link color) shows the MCI value (mean over significant links), which is the
correlation strength, after removing the information of the parents of both variables. The Auto-strength (node color) shows the
autocorrelation after regressing out the influence of its parents. The link labels indicate at which lags [in days] there was a causal link. CEN link
is only plotted if they are significant at least 60 out of 70 perturbation experiments, similar for the indication of significance in panel a and g
by black contour lines.
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influence of the atmosphere on the ocean is more pronounced
for the western US Rossby wave as compared to the eastern one.
On the daily and 5-day timescale, the downward causal link for
the west (RWW→SSTW) is stronger by about a factor 2 compared
to the east (Table 1). Similarly, the instantaneous RW-SST link on
these timescales is also stronger for the western RW (again by
about a factor 2). On longer timescales than 5-day means, no
robust directed links for the western RW are found (only
instantaneous links).
On timescales longer than 5-day means, the influence of the

ocean to the atmosphere is consistently stronger for the eastern
Rossby wave compared to the western one. Using 60-day
aggregated data, the 60-day lagged causal link SSTE→RWE is
stronger by roughly a factor 10 (Table 1). This 60-day aggregated
SSTEt�1 ! RWE

t link is very robust and found to be causal by PCMCI
in all the 70 perturbation experiments.
Figure 2 also shows that the SSTEt timeseries has a higher

persistence compared to SSTWt , as indicated by the higher auto-
strength values (color of SST nodes). The auto-strength value is
similar to the conventional autocorrelation, but accounts for
factors that might artificially inflate it. For Fig. 2f, l, the auto-
strength is calculated by the partial correlation of SSTt versus
SSTt-1, conditioned on SSTt-2 (parcorr(SSTt-1, SSTt|SSTt-2)).
Note that for the eastern RW, for timescales longer than

daily, there are no causal links from the atmosphere to the
ocean. More precisely, the parcorr RWE

t�1 ! SSTEt jSSTEt�1

� �
link is

non-significant. From this, it can be deduced that the higher
persistence of SSTEt in the first place results from the past SST
state (SSTEt�1) with only a minor influence of antecedent
atmospheric forcing (RWE

t�1).
To get a better understanding on the interaction between RWE

and SST prior to the summer, we calculate the ocean-atmosphere
coupling between SST and the eastern RW for winter and spring
(see Supplementary Note 1). The ensure that we focus on the
same RW pattern, we project the summer eastern RW pattern (as
defined Fig. 1b) onto the winter and spring z500 field.
Supplementary Fig. 8 verifies how the Rossby wave timeseries
correlates with z500 variability. For JJA we retrieve a pattern very
similar to what is shown in Fig. 1b, confirming that our RWE

t index
is a good proxy for the eastern Rossby wave. In winter and spring,
the RWE

t index projects strongly on the same eastern Rossby wave
and additionally correlates with the tropical belt and is again
similar to the Pacific-North-American pattern and the ENSO-forced
teleconnection called the atmospheric bridge, which starts above
the ENSO region and arcs over the Pacific-North American
domain41. In Supplementary Fig. 9 the correlation maps in winter
(panel a) and spring (panel g) between SST and the RWE

t index
show a clear resemblance to main features of the PDO pattern in
its negative phase. The CENs in panels b–f show that during
winter, we find a strong downward forcing (atmosphere-to-
ocean). For spring, in addition to a strong downward forcing, we
also observe two-way coupling on the 5-day mean timescale
(panels h–l). In the next section, we use partial correlation to
further investigate the importance of different processes in winter

and spring for the upward (ocean-to-atmosphere) forcing that we
find in summer (Fig. 2l).

Explaining the long-lead causal link
Here we show that the long-lead upward ocean-forcing that drives
the eastern US Rossby wave in summer (as identified above), is
closely related to low-frequency PDO variability. From here on, we
work with 2-month mean data (instead of 60-day means) to ease
interpretation. On the 2-month mean timescale, eastern RW
correlation pattern is clearly in phase with the PDO pattern, while
the western RW is not. This can be seen in Fig. 3 which shows the
PDO (1st EOF loading) pattern together with the instantaneous
and lag-1 (corresponding to a 2-months lag) correlations maps
between SSTs and the western and eastern RW, respectively.
In Fig. 4, we investigate how the intra-seasonal evolution of the

eastern Rossby wave, ENSO and PDO (at lag 2) affect the SSTA
signal at lag 1. We do so by creating lag-1 correlation maps that
are conditioned on different actors at lag 2. Figure 4a shows the
SST-RWE correlation pattern at lag 1 (2 months). The correlation
values and their significance are reduced when conditioning on
RWE at lag 2 (Fig. 4b), implying that the Rossby wave activity at lag
2 plays some role in forcing the SST signal at lag 1. We calculate
the low-frequency (winter-to-spring mean) ENSOt�2and PDOt�2
timeseries as described in “Method”. When conditioning on
ENSOt�2, the SST signal does not weaken indicating that the
mean ENSO state has little or no effect (Fig. 4c). Figure 4d shows
the SSTt-1 influence on RWE

t is most effectively weakened when
conditioning on the winter-to-spring PDO variability (PDOt�2).
Thus, most of the information originates from winter-to-spring
PDO variability. These results show that the lagged SST signal -
relevant for forcing the May–August eastern RW (RWE

t ) - is
influenced in the first place by the winter-to-spring PDO state. An
additional (but smaller) influence is provided by the prior
atmospheric wave forcing. That they both show an influence is
in line with strong co-variability between the PDO and RWE in
spring (Supplementary Fig. 10).

Temperature predictability
A robust lagged Pacific SST signal can only be found for
temperature in the eastern US cluster, but not for the west
(Fig. 5). This is in line with the lack of any long-lead causal links
to the western RW (Fig. 2) or any significant lagged SST
correlation for western US temperature variability (Fig. 1d). For
the eastern US, the lagged SST signal is clearly strongest for
July–August (Fig. 5). The correlating regions (Fig. 5, July–August
mean) are clustered into the mid- and eastern Pacific region
(Fig. 6), these two regions are used as a mask to calculate
1-dimensional spatial mean timeseries (“Method”). These time-
series will be used for predictions in “Results”. This method is
referred as the response-guided dimensionality reduction (DR),
i.e., the dimensionality reduction is based on precursor regions
that correlate with the target variable16,42.
We make out-of-sample Ridge Regression forecasts for

July–August mean TE using two different precursor sets, i.e.,

Table 1. Comparing SST-RW coupling strength in summer by the mean ratio of the Momentary Conditional Information (MCI) values (μMCIwest/
μMCIeast).

Direction of link
μMCIwest
μMCIeast

1-day mean
μMCIwest
μMCIeast

5-day mean
μMCIwest
μMCIeast

15-day mean
μMCIwest
μMCIeast

60-day mean

Instantaneous link 2.1* 1.7* 1.4* 1.4*

Rossby wave to SST forcing 1.6* 2.8* 2.0* 1.3*

SST to Rossby wave forcing 1.6* 0.8* 0.8* 0.1*

The * indicates a significant (α= 0.05) difference given the uncertainty due to sampling (see “Results”).
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(a) precursors found by the response-guided DR and (b) the PDO
climate index timeseries (Fig. 6). The test data is obtained by
splitting the data into training and test years using a 10-fold
stratified cross-validation (see “Method”). Both DR methods are

done on only training data and extrapolated to the test set to
make out-of-sample predictions. We use the correlation coefficient
and the Mean Absolute Error Skill Score (MAE-SS) for the
verification. The latter is defined as MAE� SS ¼ 1� MAEforecast

MAEclim
,

Fig. 4 (Partial) correlation map between SSTt-1 and RWE
t using 2-month mean data with RWE

t defined from May to August. Panel (a) shows
the correlation map between SSTt-1 and RWE

t , whereas panel (b), (c) and (d) show the partial correlation maps that are removing the effect of
(b) the RWE

t�2 timeseries, the 6-month rolling mean (c) ENSO and (d) PDO timeseries. The rolling mean is defined at (and prior to) lag 2.
Gridcells are highlighted by contour lines if they are significant (αFDR= 0.05) at least 5 out of 10 training subsets.

Fig. 3 Instantaneous and lag 1 correlation maps of SSTA versus the May–August Rossby wave timeseries. Panel (a) and (c) show the
western RW, panel (b) and (d) show the eastern RW. The Rossby wave patterns are still the as depicted in Fig. 1, yet the data is now aggregated
to 2-month means. For the significance (αFDR= 0.05), we correct for the False Discovery Rate using the Benjamini/Hochberg correction.
Gridcells are highlighted by the thin black contour lines if they are significant at least 5 out of 10 training subsets. The thick contour lines
indicate the negative PDO pattern (1st EOF loading pattern) ranging from −0.7 (black dashed) to 0 (green solid) to 0.7 (black solid).
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where MAEdim is the error when always predicting the climato-
logical mean of the TE anomalies (≈0).
The response-guided DR leads to better forecast skill compared

to using the PDO as a predictor (Table 2 and “Discussion” for more
details). We construct Ridge Regressions using lag 1, lag 1 and 2,
and lag 1, 2 and 3 (Table 2). We observe that using lag 1 and 2
(May–June and March–April) and the Response-guided DR
provides the best predictive skill for July–August temperatures
in eastern US (out-of-sample correlation value of 0.62). Hence,
although there is a clear link to PDO variability, using a more
tailored method to extract the signal renders a clear boost in skill
(see “Discussion”).

Window of opportunity by winter-to-spring PDO state
July–August mean eastern US temperature are substantially more
predictable when the forecasted summer is preceded by a strong
(instead of a weak) winter-to-spring PDO state (Fig. 7). We
demonstrate this by comparing the skill during the 50% of years
with strongest winter-to-spring PDO states (either positive or
negative) with the skill of the 50% with weak PDO states. The
winter-to-spring PDO state is defined by the DJFMAM mean PDO.
During strong positive or negative PDO states, there is a 54%
reduction in the MAE compared to years with weak PDO states
(Fig. 7, left column). When comparing the forecast skill to the
climatological benchmark (MAE-SS), we observe that most skill is
present in these strong PDO state years (Fig. 7, right column). This
result is robust when using different train-test splits. If we make a
stricter selection of anomalous winter-to-spring PDO states (top
30%), the skill further increases with MAE-SS values ranging
between 0.48 and 0.57 and correlation values ranging between

0.85 and 0.89 (Supplementary Table 1). During weak PDO state
years, the model hardly outperforms a climatological mean
temperature forecast.
Similarly, using partial correlation to remove the PDOt�2 from the

lag 1 SST timeseries and the PDOt�3 from the lag 2 SST timeseries
causes the forecast skill to vanish (mean MAE-SS¼ 0:030:20�0:23, with
the lower and upper subscript denoting the C.I. at α= 0.05). Once
more this indicates that the low-frequency antecedent PDO
evolution is the background mechanism that is vital for predict-
ability and that it can be used to identify a window of opportunity
at the time of the forecast.

DISCUSSION
We show that two different Rossby waves are important drivers of
temperature variability in western and eastern US, respectively
(Fig. 1a, b). While both Rossby waves correlate equally strong with
surface temperatures over the US on synoptic timescales (15-day
means), a long-lead signal between temperature and SST is only
present for the eastern US (Fig. 1c–f). As hypothesized in the
introduction, the CEN analyses confirms that the associated
summer eastern RW is forced by the low-frequency north-Pacific
SST variability (Fig. 2).
We show that low-frequency PDO variability is a crucial aspect

for this long-lead signal, and thus for predictability (“Results”). In
our view, the mid- and eastern Pacific timeseries are the direct
causal precursors, while the antecedent low-frequency PDO
dynamics are vital to develop the persistent and high amplitude
signal that is needed to force a persistent RW response in summer.
This is in line with modeling experiments which show that a
persistent [order of 2 months] SST forcing is needed for a

Fig. 5 Correlation maps of SST at lag 1 versus western (TW) and eastern (TE) US temperature as function of target months, using 2-month
mean data. Contour lines indicate significantly (αFDR= 0.05) correlating gridcells in 9/10 training subsets.

Fig. 6 Two dimensionality reduction approaches to extract precursor timeseries from the north Pacific SST. a Response guided
dimensionality reduction (RGDR) and (b) (climate index) PDO timeseries. For the RGDR method, the same lag 1 (May–June SST) correlation
analysis is done as shown for the TE July–August temperature in Fig. 5. For the EOF analysis, all months (Jan–Dec) are used.
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barotropic (RW-like) response to develop and that a stronger
boundary forcing (higher amplitude SSTA) results in a stronger
atmospheric response13. To first order, the PDO pattern arises
from extra-tropical atmospheric forcing and the corresponding
oceanic Rossby wave response43,44. This downward forcing is
strongest in winter31, as is also observed in our winter CEN
(Supplementary Note 2). Multiple processes are important for
strengthening the PDO variability, such as (1) the re-emergence
mechanism32, (2) the ENSO teleconnection named “the atmo-
spheric bridge”41,45,46 and (3) active ocean-atmosphere cou-
pling43,46 and the associated local positive feedbacks47.
However, the relative importance of these processes is uncertain.
Our CEN analysis quantifying the SST-RW coupling for winter and
spring indeed support that processes (2) and (3) strengthen the
PDO pattern (Supplementary Note 2). The CENs show that forcing
in winter and spring is predominantly downward (from atmo-
sphere to ocean). In spring, we also observe a more pronounced
two-way feedback. Finally, the forcing is predominantly upward in
summer. This is consistent with observational findings (their
Fig. 3)21 and previous work23,48.
Since persistence is a requirement to get a clear barotropic RW

response, the spatial patterns of any low-frequency mode of SST
variability will provide a physical constraint on the location and
phase-position of quasi-stationary Rossby waves and therefore on
the downstream surface impact of the Rossby waves. Results for
the western RW supports the latter hypothesis, as its wave pattern
is not in phase with the PDO pattern (Fig. 3). We argue that this is
the reason why the western RW is not forced by the north-Pacific
SSTs at longer timescales (Fig. 2), and therefore no long-lead SST
signal is found for western US temperature (Fig. 1d). In contrast,
the eastern RW is in phase with the PDO pattern (Fig. 3) resulting
in a long-lead SST signal that forces the atmosphere (Fig. 2). The
persistent SST forcing originates from the co-evolution of winter-

to-spring PDO dynamics and the associated ocean-atmosphere
interactions. Hence, these are the key process behind predict-
ability for the eastern US summer temperature.
We show that using the mid- and eastern Pacific SST timeseries

yields higher forecast skill compared to using the PDO index as a
predictor (“Results”), in line with previous work16. The PDO
timeseries captures variability in a much larger domain over the
Pacific and therefore includes disturbances that are irrelevant to
the Rossby wave forcing mechanisms described in the introduc-
tion. In contrast, the mid- and eastern Pacific regions are the core
PDO regions which – based on theoretical and modeling
experiments – are expected to force an eastern RW-like
response13,21. Moreover, while the PDO (simply explaining most
variance of SSTA in the North Pacific) suggests that the mid- and
eastern Pacific regions are part of the same variability, the
correlation between the mid- and eastern Pacific timeseries is only
−0.56. Using a separate mid- and eastern Pacific SST timeseries
(extracted by the Response-Guided Dimensionality Reduction,
RGDR), enables the Ridge regression to (1) learn a more detailed
model and (2) use timeseries that are more directly related to the
forcing of the RW. Nevertheless, the importance of the back-
ground PDO state is further illustrated by the considerable
increase in forecast skill for the July–August mean temperature
for years with a persistent high amplitude winter-to-spring PDO
state (“Results”).
Seasonal dependence of the lagged SST signal for eastern US

temperature is evident from Fig. 5. The exact reason for this
specific window of predictability is not fully understood yet. It
might be explained by (1) the atmosphere being less chaotic in
summer which results in a higher signal-to-noise-ratio or, (2) the
seasonal cycle of solar radiation resulting in a stronger impact of
high-pressure systems on surface temperature during summer
months or (3), potentially amplifying effects of soil-moisture
deficits become important near the end of summer49. We also
note that it is likely that the persistent summer eastern RW –
forced by spring SSTs – leads to both higher temperatures and
reduced rainfall, thereby simultaneously affecting summer soil-
moisture content. Similarly, the winter-to-spring atmospheric
variability that is associated with a strong winter-to-spring PDO
state might already affect rainfall over eastern US in those months.
We unraveled the role of ocean-atmosphere feedbacks that are

driving long-lead predictability of eastern US summer temperature
based on careful analyses with causal discovery algorithms. As
shown in “Results”, understanding the sources of predictability
paves the way for identifying windows of enhanced S2S
predictability and our approach might be successful in finding
other potential windows of predictability.

Table 2. Verification of July–August (JA) mean eastern US
temperature predictions using Ridge Regression.

Dimensionality reduction method (lags used) Corr. coeff. MAE-SS

Response-guided (lag 1) 0.52 0.11

Response-guided (lag 1 and 2) 0.62 0.19

Response-guided (Lag 1, 2 and 3) 0.56 0.16

PDO (lag 1) 0.32 0.04

PDO (lag 1 and 2) 0.28 0.01

PDO (lag 1, 2 and 3) 0.21 0.01

Fig. 7 Boxplots of the bootstrapped (n= 2000) mean absolute error (MAE) and the MAE-skill score (MAE-SS) calculated for two different
sub-sets. The strong PDO sub-set contains 21 (50%) years with the most anomalous DJFMAM mean PDO states. The weak PDO sub-set
contains the other 21 years. The whiskers indicate the 95% confidence intervals, data outside the confidence interval are shown as outliers,
red line shows the median, black line shows the quartiles, and the green triangle shows the mean.
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METHOD
Data
Our analysis relies on 42 years of data (1979–2020) from the ERA-5
reanalysis50. Daily maximum 2-meter temperature (on a 0.25° x 0.25° grid)
is calculated by computing the daily maximum of the “maximum 2m
temperature since previous post-processing”, with a step-size of 1 h. We
use daily mean sea surface temperature (SST), geopotential height at
500 hPa (z500) and meridional wind at 300 hPa (v300), all on a 1 x 1 degree
grid. Z500 Denotes the thickness of the atmospheric layer at 500 hPa,
therefore, it clearly discriminates between high- and low-pressure systems,
and it is directly affected by vortex stretching/compression that can arise
due to diabatic anomalies51. Meridional wind (v) at 300 hPa is less affected
by lower tropospheric disturbances, therefore, v300 is often used to
investigate large-scale Rossby wave patterns8,52.
For the daily data, we determine the seasonal cycle by (1) applying a

25-day rolling mean, (2) calculating the multi-year mean of each day-of-
year of the smoothened timeseries and (3) then construct the final
seasonal cycle by fitting the first 6 annual harmonics to the calculated
seasonal cycle based on the smoothened data. The 1-dimensional target
timeseries for the analyses in “Results” are aggregated from pre-processed
daily data to 2-month means. We also use raw monthly mean SST data as
input when analyzing data on the 2-monthly timescale for computational
efficiency. For the raw monthly mean SST data, we construct the seasonal
cycle by calculating the multi-year mean of each month. We subtract the
seasonal cycle from the daily/monthly data and remove the climate
change signal by subtracting the long-term linear trend of each gridcell.

Clustering North American temperature events
We use Hierarchical agglomerative clustering to identify coherently
behaving regions15 (Fig. 8). We apply the clustering on US gridcells and
a part of Canada and Greenland (up to 70 °N). Regions that tend to
experience temperature above the 66th percentile simultaneously are
clustered together. Because the dynamics behind temperature variability
might be different at high elevation, we excluded all gridcells with an
altitude above 1500m (e.g., the Rocky Mountains). We performed the
clustering for a range of temporal aggregations [5, 10, 15, 30 days] and
number of clusters [4, 5, 6, 7, 8, 9, 10] to test for robustness. From the
results presented in the Supplementary Method 1, we choose the two
robust clusters, to simplify notations we refer to this as the western and
eastern US cluster. By testing the spatial decorrelation radius within each
cluster (Supplementary Fig. 2), we verified that the size of the clusters is
appropriate. Of these two clusters an area-weighted spatial mean
temperature is calculated, rendering two 1-dimensional timeseries. The
timeseries convey the western and eastern US daily maximum temperature
variability, these are referred to by TW and TE, respectively.

Link between temperature, circulation, and sea surface
temperature
To quantify the temperature versus z500 relationship, we aggregated to 15-day
means and calculate one-point correlation maps (αFDR= 0.05) at lag 0 for both
the west (TW) and eastern US (TE) temperature timeseries. We account for the
False Discovery Rate using the Benjamini/Hochberg correction53,54. For Fig. 1
and Fig. 2a, g, we test for robustness of the correlation maps by re-calculating
them on 70 subsets (36 years) sampled from the 42 years of data. See
“Method” for more information. In the one-point correlation maps, gridcells are
only presented as significant if they are found significant in 60/70 subsets of
data. The RW pattern (RWpattern) is defined by the significantly correlating
gridcells within the green rectangle as shown in the z500 correlation maps
(Fig. 1a, b). We reduce it to a 1-dimensional timeseries by calculating the area-
weighted spatial covariance, i.e.,

RW tð Þ ¼ 1
N

PN
i
wi RWpattern t; ið Þ � RWpattern tð Þ

h i
� z t; ið Þ � z tð Þ
h in o

; (1)

using only the Nsignificantly correlating grid cells. Where wi denotes the area
weight at grid cell i, RWpattern denotes a vector with the correlation values of
the significantly correlating grid cells, the overbar denotes the spatial mean
and z(t) denotes the geopotential height field at time t. Temperature
correlates strongest with local geopotential height. The higher correlation
values result in a much stronger weight for the local high-pressure system
compared to adjacent lows and highs of the RW pattern. To obtain a RW
timeseries where the high and lows have equal weights, we set all significant
positively (negatively) correlating gridcells to 1 (−1). This is done only for the
RW timeseries. We tested other options, but this method led to a timeseries
that was best capable to reproduce the RW pattern that the timeseries is
supposed to capture (Supplementary Method 2). We use this procedure to
calculate both the west (RWW

t ) and eastern US RWE
t

� �
RW timeseries, which

we will use for the PCMCI and (partial) correlation analysis.

Causal effect network using PCMCI
To obtain the link between the RW timeseries and north-Pacific SST, we
first calculate one-point correlation maps with SSTA versus both the west
and eastern RW timeseries (Eq. 1). These correlation maps show the RW
imprint on the SSTA. Substituting RWpattern for SSTpattern and z for SST in
Eq. (1), we obtain a 1-dimensional timeseries for the SST pattern. At this
point, we have the SST pattern timeseries and the RW pattern timeseries,
i.e., (SSTWt and RWW

t ) and (SSTEt and RWE
t ).

To quantify the SST-RW coupling strength, we use the PCMCI algorithm55 in
combination with conditional independence (CI) tests based on partial
correlation56. For each significantly correlating link, a partial correlation analysis
is performed which is conditioning on all relevant information that might
statistically inflate the correlation link strength.

Fig. 8 Gridcells which show more frequent simultaneous warm temperature periods occurrences are combined using Hierarchical
agglomerative clustering. Warm temperature periods are defined as 15-day mean temperature exceeding the 66th percentile. The white
gridcells indicate (the Rocky) mountains (altitude > 1500 metre). These were left out of the analysis because temperature variability at high
altitudes might have a different relationship with Rossby wave variability compared to low altitude gridcells. The purple contour lines indicate
the western and eastern US spatial clusters.
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The relevant information is found by step (1) of the PCMCI algorithm,
which attempts to find the parents Pð Þ of both to-be-tested variables
through an iterative process of CI tests. In this case, we only have two
variables (xit and xjt). For example, the first parent subset P0ðxitÞ consists of
all possible lagged correlations (the lag is indicated by τ) with p value <
0.05. The maximum lag for lagged correlations is restricted by the
parameter τmax. Next, each timeseries in subset P0ðxitÞ is only kept if it
passes all partial correlations tests (e.g., parcorrðxjt�τ ; x

i
tjzÞ), where z is a

single variable of the subset P0 that is not xjt�τ . All variables that are
conditionally dependent are stored in the second subset P1ðxitÞ. Next, all
possible CI tests are performed again with the cardinality of z increased
from 1 to 2. Using our settings, the cardinality may increase up to the total
size (minus one) of the first parent subset P0ðxitÞ. Once the final sets of

parents are estimated, i.e., P̂ xit
� �

and P̂ xjt
� �

, step (2) of PCMCI calculates

the Momentary Conditional Information (MCI), which is using partial
correlation and is defined as,

parcorr xjt�τ ; x
i
t j P̂ xjt

� �
n xji�τ

n o
; P̂ xit

� �n o� �
; (2)

where P̂ xit
� �n xii�τ

� �
are the estimated parents of xit , excluding the to-be-

tested variable xii�τ . All links are tested in both directions, as well as
instantaneous, i.e., from τmin= 0 up to τmax. If the MCI is significant (αFDR=
0.05) when conditioning on all the parents and assuming the underlying
assumptions are satisfied35, the link is deemed causal. When we state there
is a causal link, it should be interpreted as causal within the context of the
experiment, i.e., not the result of a spurious link due to the past SST
evolution or RW occurrences, with the past (i.e., maximum lag considered)
being limited by τmax.
Sensitivity analyses are performed by re-iterating the analysis workflow,

i.e., from calculating the RW pattern and timeseries (“Method”) up to the
CEN, each time using a unique set of 36 out of the 42 years of data. Since
we apply PCMCI repeatedly on different subsets of data and PCMCI tests
many different dependency tests within the algorithm, we correct for the
False Discovery Rate (FDR) using the Benjamin/Hochberg correction. With
these sensitivity analyses, we are propagating uncertainties due to leaving
out data through the entire workflow. Similar types of robustness/stability
tests are becoming more common in the machine learning commu-
nity57,58. The results of the sensitivity analyses are also used to quantitively
compare the western vs the eastern CENs in Table 1.

Partial correlation maps
We use the partial correlation conditional independence tests to construct
latitude, longitude maps where we test the influence of a potential
confounder of interest. We use these maps to regress out the influence of
the RW at lag 2, the low-frequency ENSO and the low-frequency PDO
timeseries when testing the link between SSTt-1 and RWE

t . The low-
frequency variability is obtained by apply a 6-month rolling mean
(indicated by ENSOtand PDOt). When selecting the dates at lag 2 we
approx. select the winter-to-spring mean timeseries. We ensure that the
rolling mean is based on data prior and including lag 2 to avoid
information leakage. The ENSO is calculated using the area-weighted
nino3.4 bounding box [5°N–5°S, 170–120°W]. The PDO pattern is found by
calculating the first area-weighted Empirical Orthogonal Function of Pacific
SSTA [115–250°E,20–70°N]. For the (partial) correlation maps in Fig. 4, we
use the same cross-validation as introduced in “Method” to obtain different
subsets of data. Hence, the partial correlation maps are calculated 10 times
on subsets of 36 years.

Forecasting
To investigate the seasonal dependence, we use a response-guided
approach16,42,59,60. This approach encompasses methods that reduce
dimensionality of the precursor field based on a relationship to a target,
instead of using some statistic of the precursor field (e.g., maximizing the
explained variance). First, we calculate one-point correlation maps based
on training data (at lag 1). Second, adjacent regions of the same correlation
sign are grouped together into precursor regions. This is done using the
Density-based spatial clustering of applications with noise (DBSCAN)61.
Third, for each precursor region, an area-weighted and correlation-value
weighted spatial mean is calculated.
The resulting 1-dimensional timeseries are standardized and then fitted

on the training data using a Ridge regression. The regularization parameter
α is tuned using the default Generalized Cross-Validation62. The alphas

range between 0.1 and 1.5, with 25 steps spaced evenly on a log scale with
base= 10. The standardizing and fitting are done on the same training
data as is used to calculate the correlation maps.
We use the Pearson-r correlation coefficient and mean absolute error

skill score (MAE-SS) for verifying the deterministic forecasts. The MAE gives
equal weights to each observation/forecast pair, making the analysis we
present in Fig. 7 a fairer comparison between the two data subsets. It is
defined as, MAE ¼ 1

n

Pn
i¼n ypred;t � ytrue;t

�� ��; where n are the number of
observation/forecast pairs, ypred,i is the predicted value at timestep t and
ytrue is the observation at timestep t.
We implement a stratified 10-fold cross-validation (training sets

consist of 36 or 35 yrs, test sets 4 or 5 yrs). The stratification is achieved
by creating the training sets, such that these contain similar statistics in
terms of the magnitude of July-August temperature values. This
ensures that the training/test sets are good approximations of the
climatological US temperature dynamics. Since we cannot reliably
estimate the skill score based on a single test set of 4 years. We
implement a double cross-validation for tuning the regularization
parameter within each training sample, as done in16. This means that
we fit (and tune) a statistical model on each training set and use that to
forecast the test set. The verification metrics are computed on the 10
concatenated test sets.
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