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Likelihood of unprecedented drought and fire weather during
Australia’s 2019 megafires
Dougal T. Squire 1✉, Doug Richardson 1, James S. Risbey 1, Amanda S. Black 1, Vassili Kitsios 2, Richard J. Matear 1,
Didier Monselesan 1, Thomas S. Moore 1 and Carly R. Tozer 1

Between June 2019 and March 2020, thousands of wildfires spread devastation across Australia at the tragic cost of many lives, vast
areas of burnt forest, and estimated economic losses upward of AU$100 billion. Exceptionally hot and dry weather conditions, and
preceding years of severe drought across Australia, contributed to the severity of the wildfires. Here we present analysis of a very
large ensemble of initialized climate simulations to assess the likelihood of the concurrent drought and fire-weather conditions
experienced at that time. We focus on a large region in southeast Australia where these fires were most widespread and define two
indices to quantify the susceptibility to fire from drought and fire weather. Both indices were unprecedented in the observed
record in 2019. We find that the likelihood of experiencing such extreme susceptibility to fire in the current climate was 0.5%,
equivalent to a 200 year return period. The conditional probability is many times higher than this when we account for the states of
key climate modes that impact Australian weather and climate. Drought and fire-weather conditions more extreme than those
experienced in 2019 are also possible in the current climate.
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INTRODUCTION
The 2019–2020 wildfire season in Australia was among the most
catastrophic in recorded history, causing severe social, environ-
mental, ecological and economic impacts across the continent. An
area larger than the size of the United Kingdom was burned
(estimates range from 24 to 34 million hectares1), including at
least 21 percent of Australia’s temperate forests2,3 and over 3000
homes1. Thirty-three deaths occurred as a direct result of the
fires4. Hundreds more deaths, and thousands of hospital and
emergency-department admissions, have been attributed to the
extreme levels of air pollution resulting from the wildfire smoke5,6.
The estimated death toll for animals is in the billions1, with fears
that some species have been driven to extinction7,8. Recent
estimates of the total economic loss to Australia resulting from the
2019–2020 wildfires are in the order of AU$100 billion9,10.
Two key factors have been linked to the severity of the

2019–2020 wildfires. First, the exceptionally dry conditions in the
years and months leading up to the fire season produced very low
fuel-moisture content, especially in eastern Australia11–14. The
widespread drought conditions have been connected to the
states of the El Niño Southern Oscillation (ENSO) and Indian Ocean
Dipole (IOD) in the years and months preceding 202015–17.
Second, the extremely hot and dry weather conditions experi-
enced across Australia during the 2019–2020 summer were
particularly favorable to fire ignition and spread11,18–21. A number
of extreme weather records were broken over this period, which
included Australia’s highest national daily-averaged temperature
(41.9 oC)15 and record-high values of the Forest Fire Danger Index
(FFDI) in areas of all Australian States and Territories19. The
Southern Annular Mode (SAM), which was strongly in its negative
phase during the spring and summer of 2019, has been implicated
in the unusually hot and dry conditions across eastern Australia22.
Many studies have investigated how climate and weather

conditions favorable to wildfires in Australia have changed

historically and how they will continue to change into the future.
Paleoclimate records indicate an increase in the last century in the
occurrence of the fire-promoting phases of both ENSO23 and the
IOD15,24. These increases may continue in the coming dec-
ades25,26. Observed records since the mid-twentieth century show
a trend towards more dangerous fire-weather conditions for much
of Australia27–29 and a corresponding reduction in the time
between major wildfires30. Future projections of Australian fire
weather are strongly region- and model-dependent, but generally
indicate increased severity in southeast Australia31–34.
Estimates of the likelihoods of increased susceptibility to fire

from extreme climate and weather are essential for policy makers,
contingency planners, and insurers. However, such likelihoods are
difficult to quantify from observed records, which are limited to
approximately the past century and thus provide few samples of
extremely susceptible conditions in a given region28,35,36. There
was, for example, no direct observational precedent for the high
values of FFDI nor the low annual accumulated rainfall total
experienced in southeast Australia in 201915. Further, assessment
of likelihoods is compounded by nonstationarity in the observed
record, resulting, for example, from climate change. Even if past
likelihoods could be well determined from the observed record,
they may not be representative of current wildfire susceptibility.
Climate models can provide large samples of plausible

conditions over short time periods that can be used to reduce
uncertainties in quantifying risk. Previous studies have used
ensemble seasonal and weather prediction systems to estimate
return periods of surge levels in the Netherlands37,38 and of
significant wind and wave heights globally39–42. More recently, the
approach of quantifying risks of extremes using ensemble climate
simulations has been popularized under the acronym UNSEEN,
standing for UNprecedented Simulated Extremes using ENsem-
bles. The UNSEEN approach has been used to assess the risk of
droughts and heat waves43,44 and to quantify likelihoods of
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extreme meteorological events, such as instances of unprece-
dented rainfall45,46 and temperature47, and sudden stratospheric
warming in the Southern Hemisphere48.
In this paper, we use a decadal ensemble climate forecast

model to quantify the likelihood of concurrent extreme drought
and fire weather in a region of southeast Australia where the
2019–2020 wildfires burned significant area (Fig. 1). We focus on
two indices averaged over this region (below, overlines denote
regional averaging). Our drought index, DI, is defined as the total
accumulated rainfall from January to December and quantifies
how preconditioned for fires the landscape may be leading into
the wildfire season of a given year. We use the December-average
FFDI, FFDIDec, to quantify how severe fire-weather conditions are
near the peak of the fire season of a given year. These indices
were selected to capture the unprecedented nature of the
drought and fire weather in southeast Australia in 2019.
Simultaneous low values of DI and high values of FFDIDec indicate
elevated susceptibility to wildfires in southeast Australia. There-
fore, hereafter, we will refer to their vector as simply “fire
susceptibility”.
Our climate forecast dataset comprises 10-year long, daily

forecasts, each with 96 ensemble members, initialized at the
beginning of every May and November over the period
2005–2020. By pooling forecast ensemble members and lead
times, these forecasts provide up to 1920 times more samples of
DI and FFDIDec in the current climate than are available from
observed records (“Methods”). After first checking that these many
samples provide accurate and independent representations of the
real world (“Model fidelity”), we use them to estimate the
likelihoods of exceeding extreme values of DI and FFDIDec,
including the unprecedented values experienced during the
2019–2020 wildfires (“Likelihoods of exceedance”). The very large
number of forecast samples yields many years with FFDIDec and DI
that are simultaneously more severe than the observed 2019
values. This enables us to test the correspondence between

unprecedented drought and fire weather in southeast Australia
and the states of ENSO, IOD and SAM (“Extreme susceptibility to
fire and climate drivers”).

RESULTS
Historical record of fire susceptibility
The historical record of FFDIDec and DI is shown in Fig. 2. These
data are calculated from high quality atmospheric reanalysis and
gridded rainfall data (“Methods”) and are referred to hereafter as
“observations”. The data points in Fig. 2 are shaded according to
the year for which they are calculated, with colored shading for
years in which severe wildfires occurred in summer in southeast
Australia.
Severe fires have generally been associated with extreme values

of FFDIDec and DI (Fig. 2). The values of both indices recorded in
2019 were the most extreme in the 63 years (1958–2020) of
observational data available for both indices (Fig. 2a). Indeed,
there was no precedent for the 2019 DI values in the full 121 years
(1900–2020) of data available for this index (see Supplementary
Fig. 1). A large proportion of Australia experienced unprecedented
values of December-averaged FFDI in 2019 (Fig. 2b). Similarly,
much of eastern and central Australia accumulated the lowest
rainfall annually in 2019 relative to all other years in the joint
historical record (Fig. 2c). Over much of our region of interest, the
minimum DI occurred in 1980 and 1982, which were also years in
which unplanned summer fires burned extensive areas of south-
east Australia. We can quantify the joint extremity of DI and
December-average FFDI in a given year as the normalized distance

from the mean index values over 1958–2020:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

FFDI
02
Dec þ DI

02
q

,

where primes indicate the difference from the mean index over
1958–2020, normalized by the standard deviation of the index
over the same period. Even at a local scale, this joint quantity was
unprecedented in 2019 over much of southeast Australia (Fig. 2d).
The small number of samples in the observed record makes

quantification of the probabilities of extreme FFDIDec and DI
events very difficult. It is not possible, for example, to directly
determine the likelihood of an event more severe than that
observed in 2019 simply because no such event has ever been
observed. Statistical techniques enable extrapolation of fitted
distributions, but require assumptions about the shape of the
distribution and still suffer from large uncertainties when the
sample size is small49–51. Issues with sampling become increas-
ingly restrictive as dimensionality—that is, the number of variables
—increases52. With its very large sample size, our forecast model
(hereafter “model”) provides many in-sample estimates of rare
extreme events, allowing for the probabilities of these events to
be determined directly from the empirical probability density
function53.

Model fidelity
In order to provide reliable estimates of likelihoods of fire
susceptibility, the model samples must be stable, independent
and realistic estimates of the real world46. Stability here refers to
an absence of systematic changes in the estimates of FFDIDec and
DI with model lead time. Model stability is necessary for pooling
samples at different lead times. Dependence between model
samples inflates the sample size without adding new information
and arises at short lead times because the ensemble forecasts are
initialized from similar initial conditions. We remove dependent
samples by considering only model lead times for which ensemble
members are uncorrelated (≥37 months: Fig. 3, see also
“Methods”).
To assess the model fidelity, we compare the modeled joint and

marginal distributions of FFDIDec and DI to the observed
distributions over a common time period (Fig. 4). Initial

Fig. 1 Extent of the 2019–2020 wildfires. Total burnt forest area
between and including October 2019 and February 2020. The black
boxes show the forecast model grid cells where the total burnt area
is greater than 10% of the cell area (greater than approximately
500,000 hectares). The region covered by these cells is the focus of
this paper.
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assessment of the marginal distributions revealed a systematic dry
bias in the modeled DI that was corrected for by applying a simple
additive adjustment to the mean DI at each lead time (“Methods”).
With this correction applied, we compare the distributions using
the 96-member forecasts—denoted f2005!96 mem—in Fig. 4a–c. These
model distributions show little dependence on lead time (colored
lines) and agree generally with the observed data. However,
because these forecasts are initialized over a relatively short
period of time (2005–2020), there are very limited observations to
which they can be compared. Only data within the 7-year period
2014–2020 (comprising 9408 model samples) are shown in

Fig. 4a–c so that the distributions at each lead time are
constructed from the same number of samples, thus enabling
comparison of the distributions across lead times (“Methods”).
We therefore also assess the distributions computed from

another set of forecast model data, denoted f1980!10 mem. These data
are produced using the same decadal forecast system and
initialization dataset as f2005!96 mem. However, they have only 10
ensemble members and they are initialized over the longer period
1980-2020. The latter enables comparison to a much larger set of
observed values of FFDIDec and DI. In Fig. 4d–f we compare the f
1980!
10 mem distributions over the period 1989–2020 (comprising
4480 samples) with observations over the same period (“Meth-
ods”). As for the f2005!96 mem data, the f1980!10 mem data distributions are
stable and show good agreement with observations over the
matched time period.
We use a two-dimensional, two-sample Kolmogorov–Smirnov

(KS) test54,55 to test the null hypothesis that the modeled and
observed joint distributions (gray and white points in Fig. 4) are
the same (“Methods”). Proxy time series are generated by
randomly subsampling the model data for sets of equal length
to the observed record. These sets are compared with the full
model distribution to produce a null distribution for the KS-
statistic, K. The KS-statistic calculated between the observed and
modeled distributions, Kobs, is compared with the null distribution.
For both f1980!10 mem and f2005!96 mem, the observed KS-statistic falls below
the 95th percentile of the null distribution (p-value > 0.05) and
hence the model is considered to provide values of FFDIDec and DI
that are consistent with the observed record (Fig. 4g). The KS test
also confirms consistent modeled and observed distributions
when applied using model data at each lead time independently
(Fig. 4h), indicating that the independent model samples are both
realistic and stable.

Fig. 3 Ensemble independence. The mean Spearman correlation
between all combinations of ensemble members at each lead time.
Purple shading shows the 2.5–97.5% percentile range from the
estimated distribution for uncorrelated data.

Fig. 2 Historical record of FFDIDec and DI. a Values of FFDIDec and DI for the period 1958-2020. The dashed lines show contour levels of a two-
dimensional kernel-density estimate of the data points shown (levels at 1.5e–4, 3.5e–4 and 5.5e–4, enclosing approximately 87%, 62%, and
27% of the data points) and the value in the top left shows the Pearson correlation coefficient between the two indices. b Year of maximum
December-averaged FFDI. c Year of minimim DI. d Year of maximum normalized distance from the mean DI and December-averaged FFDI over
1958-2020. In all panels, data points are shaded according to their year, with colored shading showing years where unplanned summer fires
burned at least 250,000 hectares of the region covered by the four model cells shown in Fig. 1 (“Methods”).

D.T. Squire et al.

3

Published in partnership with CECCR at King Abdulaziz University npj Climate and Atmospheric Science (2021)    64 



Likelihoods of exceedance
In 2019 unprecedented values of FFDIDec and DI were observed
that were respectively 19% higher and 8% lower than previous
record values (since 1958). These record values coincided with one
of the worst wildfire seasons in recorded history1–3. Our model
simulations show that the likelihoods of experiencing FFDIDec or DI
values equal to or more extreme than those experienced in 2019
are 7.8% and 1.5%, respectively, in the current climate (2014-2023
comprising 13,440 samples, Fig. 5a, b). The likelihood of exceeding
both simultaneously is roughly 0.5%, indicating a return period for

the 2019 event of approximately 200 years (Fig. 5c). Note that for
DI to be “more extreme” or to “exceed” is to have a lower value,
since lower values of DI indicate drier conditions that are more
conducive to wildfires.
Values of FFDIDec and DI substantially more extreme than

observed records occur within the model sample (Fig. 5d). This is
especially true for FFDIDec, for which nearly 8% of all model
samples are more extreme than the observed 2019 value, with
some model realizations up to twice as high. Indeed, there are
realizations from the model where FFDIDec and DI are

Fig. 4 Model fidelity testing. The joint (a) and marginal (b, c) distributions of observed (white circles and bars) and modeled (gray circles and
lines) FFDIDec and DI from the bias-corrected f2005!96 mem model dataset over the period 2014-2020. Lines show probability densities from the
model for each lead time (colors) and for all lead times together (black dashed). For the joint distribution, probability densities are from a two-
dimensional kernel density estimate and are presented with contour levels at 0.5e–4, 2e–4, and 4e–4 (enclosing approximately 92%, 63%, and
27% of the model data across all lead times). d–f As in a–c, but using f1980!10 mem data over the period 1989-2020. g Null distributions of the
Kolmogorov–Smirnov statistic, K, resulting from bootstrapping the f1980!10 mem (purple shading) and f2005!96 mem (pink shading) datasets using all
independent lead times. h As in g, but for each lead time separately. In g and h, the distributions are presented as a difference between K and
the KS-statistic calculated between the observed and model data, Kobs, such that the vertical black line (at K− Kobs= 0) indicates the location
of Kobs in the distributions of K. Colored numbers show the right-tail p-value for the f2005!96 mem (pink) and f1980!10 mem (purple) distributions.
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simultaneously 60% higher and 20% lower, respectively, than in
2019, though such events are very unlikely (<0.05% chance, or
>2000 year return period). What such extreme events would mean
for the severity of wildfires in southeast Australia is an important
question that requires further investigation.

Extreme susceptibility to fire and climate drivers
Climate and weather extremes prior to and during the fire season
in southeast Australia are influenced by multiple drivers of climate
variability, including the El Niño Southern Oscillation (ENSO),
Indian Ocean Dipole (IOD), and Southern Annular Mode (SAM)15,27.
The positive phase of ENSO (El Niño) is associated with warm and
dry conditions across eastern Australia, generally leading up to
and during the fire season (spring and summer)56. Similarly,
positive IOD events reduce atmospheric moisture availability to
the continent and are generally concomitant with drier conditions
in southeast Australia56,57. Negative phases of the SAM in spring
and summer are characterized by an equatorward shift of both the
westerly storm track and the descending branch of the southern

hemisphere Hadley Cell, resulting in dry westerly winds and warm
conditions over eastern Australia58. These three climate drivers are
not independent and the compounding effects of their co-
occurrence can impact wildfire susceptibility15. Positive phases of
ENSO and IOD tend to co-occur59, for example, as do the fire-
promoting states of ENSO and SAM60,61.
Every sample from our model provides a simulated realization

of the earth system, including the ocean and atmosphere. We can
quantify for every modeled sample of FFDIDec and DI the
corresponding states of ENSO, IOD and SAM over the period
leading into the wildfire season using the Nino 3.4, DMI and SAMI

indices (defined in “Methods” and assessed in Supplementary Figs.
2 and 3). The model provides 66 simulated Earths over the period
2014–2023 with values of FFDIDec and DI worse than the most
extreme event in the observed record (2019). Of these samples,
approximately 80% are associated with simultaneous positive
ENSO, positive IOD and negative SAM states (Fig. 6a). Composites
of sea surface temperature and 500 hPa geopotential height
anomalies generated from years of unprecedented FFDIDec and DI

Fig. 5 Likelihoods of exceedance. a Likelihoods of exceeding values of FFDIDec . The observed 2019 value of FFDIDec and the associated
likelihood of exceeding this value are shown with dashed lines. b As in a, but for DI. c Likelihoods of simultaneously exceeding FFDIDec and DI.
The observed 2019 values of FFDIDec and DI are shown with dashed black lines and the likelihood of exceeding both these values together is
shown by the text in the upper right. Dashed white lines show contours of a two dimensional kernel density estimate using the forecast data
(levels at 2e–05, 1.8e–04, 3.4e–04, and 5e–04, enclosing approximately 97%, 68%, 39%, and 13% of the data, respectively). d As in c but
showing only values of FFDIDec and DI that are more extreme than the observed 2019 values. In all panels, likelihoods are calculated using
model data over the period 2014-2023. Note that here “exceeding” a value of DI is defined as having a smaller magnitude since lower values of
DI are indicative of increased susceptibility to fire.
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Fig. 6 Correspondence with climate drivers. a Values of average Nino 3.4 over September–December (SOND), average DMI over
September–November (SON) and average SAMI over SOND from the model data (gray dots, 2014–2023) and from observations (white dots,
2014–2020). Indices are normalized by their standard deviation, σ (calculated over 2014–2023 for the model data and over 1980-2020 for the
observed data). Colored dots show the subset of model data points for which both FFDIDec and DI are unprecedented—i.e., values more
extreme than the respective observed 2019 values—where the color indicates the normalized distance from the mean modeled FFDIDec and
DI over 2014–2023. The text in each quadrant gives the percentage of colored points that fall within each quadrant. Where no text is given,
the percentage is 0%. Dashed black lines show contours of two dimensional kernel-density estimates using the model forecast data with
levels at 2e–2, 5e–2, 1e–1 and 2e–1. b Composite of average sea surface temperature anomalies over September–November from forecast
years in the period 2014-2023 with unprecedented values of FFDIDec and DI. Dashed boxes show the regions used to calculate the Nino 3.4
and DMI indices. c As in b but showing the composite of average 500-hPa geopotential height anomalies over September–December. Dashed
lines at 40oS and 65oS show the locations of the longitudinal averages used in the calculation of SAMI.
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exhibit the typical patterns associated with these states (Fig. 6b, c).
While these results indicate a clear correspondence between
extreme susceptibility to fire and the driver states, there is little
evidence that the strength of the driver states is related to the
joint magnitude of unprecedented FFDIDec and DI (as quantified
by the normalized distance from the mean—see the shading of
points in Fig. 6a). That is, the severity of extreme wildfire
susceptibility is apparently associated mostly with the concur-
rency of fire-conducive Nino 3.4, DMI, and SAMI states and not
with their individual magnitudes, a characteristic of compound
events previously described in frameworks for understanding
extreme impacts62–64.
Conditioning on the states of ENSO, IOD, and SAM has a large

impact on the likelihood of simultaneously experiencing unpre-
cedented values of FFDIDec and DI (Fig. 7). The SAM appears to be
the strongest driver; when SAMI is strongly negative (<−1 stan-
dard deviation) over spring the likelihood of an unprecedented
event is over 5 times higher (nearly 3%) than if the state of the
SAM is not considered. Likelihoods are higher still when
conditioned on more than one of the drivers being strongly in
their fire-conducive phases (up to approximately 4% for strongly
positive Nino 3.4 and strongly negative SAMI). In 2019, both the
IOD and SAM were strongly in their fire-conducive phases (Fig. 6a).
According to the model, the likelihood under such conditions of
the unprecedented values of FFDIDec and DI in 2019 was
approximately 3%.

DISCUSSION
We have used a very large ensemble of climate model simulations
to quantify the likelihood of high susceptibility to wildfire from
concurrent extreme fire-weather and drought in southeast
Australia. Our analysis shows that the likelihood of experiencing
the unprecedented conditions that occurred leading into and
during the catastrophic 2019-2020 wildfire season was approxi-
mately 0.5% in the current climate. Substantially more extreme
conditions are also realized by the model, and the impact of such

conditions on the severity of wildfires in southeast Australia is a
potential area for future research. A very high proportion (~80%)
of the model realizations with more extreme fire susceptibility
than that observed during 2019 occur when ENSO, IOD and SAM
are all in their fire-promoting phases—positive, positive and
negative, respectively—during the austral spring and early
summer. Accounting for the observed phases and strengths of
these climate modes, the likelihood of the fire-weather and
drought conditions experienced in 2019 was approximately 3%.
ENSO and IOD are predictable on seasonal timescales,

particularly during austral winter and spring when any event has
already started to establish itself and persistence plays a first order
role in predictability65,66. The neutral ENSO and positive IOD
conditions experienced during spring (SON) of 2019, for example,
were predicted by the Australian Bureau of Meteorology in June67

and their implications on the fire season were foreshadowed in
August68. SAM events are generally shorter lived and less
predictable, although there is evidence that the significant
stratospheric polar vortex weakening in spring 2019 and
subsequent development of negative SAM was forecast as early
as late July58. Thus the corresponding quantitative increases in
likelihoods of extreme fire susceptibility demonstrated in this
paper were potentially predictable months in advance of the peak
in the 2019–2020 fire season.
The work in this paper builds on a growing area of research

using climate simulations to assess and explore extreme events.
There is enormous value to policy planners and decision makers in
the ability to quantify the probability of impactful climate and
weather events, particularly those that are unprecedented in the
observed record. However, the use of climate models to quantify
real-world risk is not without its difficulties. Foremost, the accuracy
of estimates of probabilities is dependent entirely on the climate
model’s ability to realistically represent the full range of plausible
states that could be experienced in the real world. This is
inherently very difficult to test because limited observed records
provide very few samples of real world states and one is left trying
to verify model states that have never been observed. We
designed a statistical test to check for consistency between our
modeled and observed indices and applied this in a way to
maximize the number of observations in the test period. However,
our test still suffers from small numbers of observations,
particularly of extreme events. Thus, there is still some inherent
reliance on the model’s ability to simulate the indices used.
Ideally, a climate model should be able to represent the real

world without any correction, and indeed this can be the case for
specific models simulating specific variables in specific
regions45,69. But more generally, climate models have systematic
biases that must be accounted for prior to their use. In this study
we used relatively low resolution climate simulations because of
the uniquely large number of realizations they provide of the
current climate, enabling sufficient samples to empirically deduce
likelihoods of rare concurrent extremes. Our model required
minimal adjustment—only bias correction of the mean DI—to
produce joint distributions of FFDIDec and DI that are statistically
consistent with the real world over our region of focus. However,
this is not necessarily the case for other indices and/or regions.
Where more sophisticated calibrations are necessary, one must be
careful not to overly constrain the model to observations, since
this could negate the purpose of using the model in the first place
(to provide plausible, yet unobserved, realizations of the earth
system). Ongoing improvements to climate models and their
resolutions will likely reduce model biases, allowing analyses like
ours to be applied more broadly and with more confidence.
Our focus here has been on susceptibility to wildfire in the

current climate (2014—2023) because of our focus on the 2019-
2020 wildfire season. It is important to note, however, that
occurrences of extreme drought and fire weather are expected to
increase over the coming century due to anthropogenic

Fig. 7 Conditional likelihoods of exceedance. The likelihoods of
simultaneously exceeding 2019 FFDIDec and DI conditions given that
one or more of Nino 3.4, DMI and− SAMI are positive (purple
shading) or strongly positive (>1 standard deviation, pink shading)
over the period leading into the wildfire season (September,
October, November, and December for Nino 3.4 and SAMI;
September, October, and November for DMI). Likelihoods and
standard deviations are calculated using model data over the period
2014–2023 and error bars show 2.5–97.5% confidence bounds
(“Methods”). Numbers show the number of years in the 63-year
historical record (1958–2020) that satisfy each condition, where
underlines indicate that 2019 is one such year.
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influences. Projections indicate that winter and spring rainfall over
Australia’s eastern seaboard will decrease70 and that drought
duration and frequency across southern Australia are likely to
increase71. Increases in mean and extreme temperatures this
century are virtually certain70 and likely to contribute to increases
in the number and severity of dangerous fire weather events15,31–34

and drier, more volatile, fuel loads72. Indeed, some studies suggest
that temperature may play an increasing role over precipitation in
global fire occurrence over the next century18,73. Exactly how these
changes will impact wildfire risk is a potential area for future
research.

METHODS
Burnt area data
To produce Fig. 1, burnt forest areas are taken from FireCCI v5.1 provided
by the European Space Agency Climate Change Initiative74 (2001–2019)
and from C3S v1.0 provided by the Copernicus Climate Change Service
(2020). The data are gridded monthly burnt areas for different vegetation
classes with a resolution of 0.25o. Here we consider only burnt areas
associated with land cover categories 50–90, corresponding to
forested areas.
The burnt area data used in Fig. 2 are calculated from New South Wales

National Parks and Wildlife Service Fire History data75. These data are
provided as polygons of burnt areas of wildfires and prescribed burns,
sometimes including associated start and/or end dates, over the period 01/
01/1920–18/02/2021. The polygon data are converted to a gridded
product with 0.05o resolution in latitude and longitude. We consider only
wildfire data and exclude data that have start or end dates that do not fall
within 28 days of December or do not span a period encompassing
December. The regional burnt areas used in Fig. 2 are calculated by
summing the 0.05o resolution data over the region shown in Fig. 1.

Calculation of forest fire and drought indices
The daily McArthur Forest Fire Danger Index76,77, FFDI, is defined here as:

FFDI ¼ D0:987 expð0:0338T � 0:0345H þ 0:0234W þ 0:243147Þ; (1)

where T (oC) is the maximum daily temperature; H (%) is the daily average
relative humidity at 1000 hPa; W (km/h) is the daily average 10m wind
speed; and D is the rolling 20-day total precipitation scaled to range
between 0 and 10, with larger D for lower precipitation totals.
Note that this formulation differs from standard formulations of the

FFDI76,77 in a number of ways, principally in its use of daily average
humidity and wind speed. These changes were necessitated by the data
that were available to us across the various datasets used in this paper.
FFDI estimates herein are likely to be attenuated relative to the standard
formulations as a result of these differences. We calculate the FFDI from
equation (1) from both the forecast model data (see “Use of forecast model
data”) and the Japanese 55-year reanalysis (JRA-55)78,79 which spans
1958–2020. For the latter, the 1.25o resolution fields of the individual
components in equation (1) are first interpolated linearly to the forecast
model grid (the only exception to this is in Fig. 2b, d, where the FFDI is
presented at the JRA-55 grid resolution). For both the forecast and JRA-55
data, the regional December-averaged FFDI, FFDIDec, is calculated for a
given year by averaging all daily December values of FFDI over the four
model grid cells in Fig. 1.
The Drought Index, DI, of a given year is defined as the accumulated

total precipitation (mm) between January and December (both inclusive)
of that year. Thus, lower values of DI indicate drier conditions. We calculate
DI using the daily forecast data and using data from the Australian Gridded
Climate Dataset (AGCD), which provides interpolated in situ observations
on a 0.05o × 0.05o grid over the period 1900-202080,81. AGCD v1 data are
used for the period 1900–2018 and AGCD v2 data are used for the period
2019–2020. In Fig. 2c, we show DI calculated from AGCD at the native grid
resolution. We also spatially average DI calculated from AGCD to the JRA-
55 grid resolution in order to generate the combined index presented in
Fig. 2d. Everywhere else, we focus in this paper on the regional Drought
Index, DI, which is defined for each dataset as the average DI over the
region in Fig. 1.
The JRA-55 and AGCD data provide joint historical records of FFDIDec

and DI spanning 1958–2020 and are referred to herein as “observations”.
By pooling forecast ensemble members and lead times, the forecast model

provides many estimates of plausible values of FFDIDec and DI for every
available forecast year.

Use of forecast model data
We use the Commonwealth Science and Industrial Research Organization
(CSIRO) Climate Analysis Forecast Ensemble (CAFE) near-term climate
prediction system to produce many simulations of contemporary climate.
The system uses the Geophysical Fluid Dynamics Laboratory Coupled
Model version 2.182, with an upgraded oceanic component (MOM5.1) and
an atmospheric model resolution of 2o in latitude and 2. 5o in longitude83.
Retrospective forecasts were run from initial conditions taken from the
CAFE60v1 reanalysis84,85, which provides an ensemble of estimates of the
states of the atmosphere, ocean, land and sea-ice over the period
1960–2020 using the same underlying model as the forecasts.
The retrospective climate forecasts provide a very large sample of

possible values of FFDIDec and DI under contemporaneous anthropogenic
and natural forcings that enable the likelihoods of exceeding rare events
(like those in 2019) to be estimated empirically. Our methodology is similar
to those introduced in previous papers using the UNSEEN approach46:

1. Remove model samples at short lead times where there is
dependence between forecast ensemble members due to their
similar initial conditions (see “Testing of ensemble member
independence”). Dependence between samples artificially inflates
the sample size without adding new information.

2. Test that the model provides stable (with lead time) and realistic
estimates of FFDIDec and DI. We apply a simple bias correction to the
modeled DI (see “Bias correction”) and check that the joint
distributions of modeled FFDIDec and DI are consistent with the
observed record (see “Testing of model fidelity”).

3. Calculate likelihoods of exceedance (see “Calculation of likelihoods
of exceedance”).

Two sets of forecasts are used in this paper, denoted f1980!10 mem and f2005!96 mem.
The f1980!10 mem dataset comprises 10-year long forecasts, each with 10
ensemble members, initialised at the beginning of every May and
November over the period 1980–2020. The f2005!96 mem dataset is identical to
f1980!10 mem, except that the initialization period is shorter—2005–2020—and
the number of ensemble members per forecast is much larger—96
members. In this paper, f1980!10 mem is used only to bias-correct f2005!96 mem and to
demonstrate the efficacy of the forecast model. The large-ensemble f2005!96 mem
data are used for all other analyses.
When using forecast data for the purpose of providing multiple

realizations of a given time period, it is important that equal numbers of
samples are included for each year in the period, since this avoids over/
under-sampling the conditions of a particular year. Figure 8 shows the
number of samples per calendar year for the f1980!10 mem (pink labels) and f
2005!
96 mem (purple labels) datasets after removing lead times with dependent
ensemble members. Fewer samples are available for calendar forecast
years toward the start and end of each forecast period because these years
have fewer lead times available. For both FFDIDec and DI, we define the
lead time of a given forecast as the number of elapsed months between
initialization and December of the forecast year (e.g., the 2020 forecast
initialised in Nov 2020 is at 1-month lead). Note that no DI forecast is
available at 1-month lead, since this index requires the accumulation of
rainfall from January to December. Thus, the shortest available lead time
for DI is 13 months.
The f1980!10 mem dataset provides 140 simulations (14 × 10: lead times ×

ensemble members) for every year over the period 1989–2023. Likewise,
the f2005!96 mem dataset provides 1344 simulations (14 × 96) for every year in
2014–2023. Thus, when testing the fidelity of the f1980!10 mem and f2005!96 mem
forecasts in Fig. 4g we use the periods 1989–2020 and 2014–2020,
respectively, since these periods provide maximum and equal numbers of
realizations per year and overlap with the observed record. To calculate the
likelihoods of the 2019 FFDIDec and DI conditions using the f2005!96 mem data, we
consider all lead times together and use the 10-year period centered on
2019 (2014–2023) as representative of current climate conditions.

Testing of ensemble member independence
Each multi-member forecast is initialised from a set of initial conditions
that seek to estimate the state of the climate at the time of initialization
and the uncertainty about that state. As such, ensemble members of a
given forecast at short lead times are strongly dependent on each other.
Inclusion of dependent ensemble members in our analysis results in
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artificial inflation of the sample size, without adding new information39–
41,46. To determine the lead time at which the ensemble members can be
considered independent, we apply a simple statistical test that the
correlation between ensemble members at a given lead time is zero.
At each lead time, the f2005!96 mem model dataset provides 96 (members), 16-

year timeseries of FFDIDec and DI (spanning, e.g., 2005–2020 at 1 month
lead, or 2014–2029 at 115 months lead, see Fig. 8). We define our test
statistic, ρt, for each lead time and variable as the mean Spearman
correlation86 in time between all combinations of the 96 ensemble
members (of which there are 4560: member 1 with 2, member 1 with 3 etc).
Significance of ρt is estimated using a permutation test, whereby 10,000 sets
of 96 × 16 points are randomly drawn from the complete f2005!96 mem model

dataset to produce 10,000 estimates of the mean Spearman correlation for
each variable in the same manner as above. Because these estimates are
constructed from randomly drawn data, they represent the distribution of
mean correlation values for uncorrelated data (i.e., the null distribution).
Ensemble members of each variable are considered to be dependent (i.e.,
the null hypothesis of independence is rejected) at a given lead time if ρt
falls outside of confidence intervals calculated from the randomly sampled
distribution using a 5% significance level (Fig. 3). The test is very similar to
that described in previous studies46, however here we test only the mean
correlation over combinations of ensemble members rather than all box-
and-whisker statistics. Our approach reduces the number of simultaneous
tests and the associated issues with multiple testing87.
Note that nonzero correlation between ensemble members at a given

lead time can also come about because they share the same time-varying
forcing. However, correlation from shared forcing is not a valid reason to
reject ensemble members. Applying the same test as described above, but
removing the ensemble mean temporal trend from each ensemble
member prior to calculating ρt produces negligible changes to Fig. 3.

Bias correction
All climate models have systematic biases relative to the real world. There
is a very large range of existing methods, of varying levels of complexity,
for correcting for climate model biases88–90. Generally, these methods
involve building a transfer function between the distributions of observed
and modeled variables over a particular period of time. All such methods
include potentially ad hoc assumptions regarding, for example, the shape
and stationarity of the observed/modeled distributions. In the present
analysis, we seek to use our forecast model to learn about events that are
unprecedented in the historical record and therefore have no observations
to constrain their correction. Our approach to model correction is to find
the simplest justifiable method that produces model distributions that are
statistically consistent with the limited historical record. In doing so, we
minimize the extent to which the forecast model data are manipulated,
and thus rely as much as possible on the ability of the model to simulate
the range of contemporaneous climate conditions.
It is necessary to bias-correct the forecast DI to ensure that the simulated

joint distribution of FFDIDec and DI is consistent with the real world. For
each forecast lead time, we estimate the mean DI bias as the difference
between the mean f1980!10 mem and observed DI over the period 1990–2020.
These biases (which range between −141 mm and−68 mm, depending on
the lead time) are subtracted from both the f1980!10 mem and f2005!96 mem forecasts to
produce unbiased estimates of DI. No bias correction is necessary for
FFDIDec. Note that the f1980!10 mem model dataset is used here so that the biases
can be estimated using a relatively long time period (31 years). The f2005!96 mem
model dataset is initialised over a shorter period (2005–2020), so provides,
for example, only seven years of data at 115 months lead (2014–2020) that
could be compared with observations to estimate biases (see Fig. 8).

Testing of model fidelity
We test the ability of our forecast model to simulate the real world by
comparing the forecast and observed distributions of FFDIDec and DI over a
common period of time. Previous studies assessing likelihoods of extremes
using forecast ensembles have tested that the observed mean, standard
deviation, skewness and kurtosis of the variable in question falls within 95%
confidence intervals from bootstrapped distributions of each statistic
computed from the forecast model44–48,69. We apply a different test for two
reasons. First, our focus in this paper is on compound events and thus we
seek to assess the fidelity of our model in simulating the joint distributions of
FFDIDec and DI. Second, because the approach of previous studies
simultaneously tests multiple statistics, each with their own statistical
significance, it suffers from issues with multiple testing87. Indeed, Monte–Carlo
simulations applying the above test to samples and bootstrapped

distributions drawn from the same Gaussian population show that the
rejection rate is approximately 18% (not 5%), with little dependence on
sample size. For two variables, the rejection rate is higher still.
For these reasons, we instead apply a two-dimensional

Kolmogorov–Smirnov (KS) test54,55 to compare the joint distributions of
FFDIDec and DI. The f2005!96 mem model dataset provides 96 (member) forecasts
for the 7-year period 2014–2020 at all independent lead times (see Fig. 8).
We calculate the two-dimensional KS statistic between the observed and
forecast distributions, Kobs, using all data in this period. To derive a p-value
for this statistic, we bootstrap 10,000 7-year pseudo-timeseries of FFDIDec
and DI from all forecasts that fall within the same period. For each

Fig. 8 Number of samples per calendar year. a The initialization
and forecast periods for the f2005!96 mem forecasts and b the resulting
number of samples per year after removing lead times with
dependent ensemble members (see “Testing of ensemble member
independence”). In a, each purple line represents a single ensemble
member and the forecast in the top right shows all 96 ensemble
members in gray. The dashed lines show, for specific years, why
different forecast years have different numbers of samples. In b,
purple (pink) labels apply to the f2005!96 mem (f1980!10 mem) dataset and the
numbers in or above each bar show the lead times that are available
for each year (defined as the number of elapsed months between
initialization and December of the forecast year). Where a range is
specified, lead times are available in increments of 6 months.
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bootstrapped sample, we calculate the two-dimensional KS statistic, K,
relative to the full set of forecasts within the period, thus providing the null
distribution for our KS test. If Kobs falls below the 95th percentile of the null
distribution—i.e., the right-tail p-value is greater than 0.05—we cannot
reject the null hypothesis that the joint distributions are the same. In this
case, we consider that our forecast model provides a good representation
of plausible values of FFDIDec and DI.
The results of the two-dimensional KS test are shown for the bias-

corrected f2005!96 mem model data in Fig. 4 (pink shading). We run the test for all
lead times together (Fig. 4g) and for each lead month separately (Fig. 4h).
In the latter case, the period of time over which the test is applied is
adjusted to maximize the number of observed points in the comparison.
For example, f2005!96 mem forecasts at 37-months lead span 2008–2020 (see Fig. 8)
and thus the test at 37 months lead is applied over this period. We also
apply the same KS test to the bias-corrected f1980!10 mem data, which span a
longer period of time and hence allow for comparison to a larger sample of
observations (Fig. 4g and h, purple shading). For the f1980!10 mem data, all KS
tests are applied over the period 1989–2020.

Calculation of likelihoods of exceedance
Likelihoods of exceeding a given event are calculated from the empirical
probability distribution as the proportion of total f2005!96 mem forecast samples
that are more extreme than the event in question. For example, Fig. 5a, b,
respectively, show probabilities P(FFDIDec > FFDIDec,i) and P(DI < DIi) for
every sample i of the 13,440 samples in the f2005!96 mem dataset over 2014-2023,
and Fig. 5c similarly show P(FFDIDec > FFDIDec,i ∧ DI < DIi). In the calculation
of likelihoods of exceedance, we limit ourselves to the 10 year period,
2014-2023, since all independent lead times are available from the model
for these years (Fig. 8).
Likelihood confidence bounds in Figs. 5 and 7 are constructed by

repeatedly bootstrapping the set of FFDIDec and DI values used to calculate
the likelihood in question and recomputing the likelihood for each
boostrapped sample to produce 10,000 resampled estimates of the
likelihoods of exceedance. These resampled likelihoods are used to
calculate the 2.5–97.5% percentile ranges shown in the figures. In Fig. 5c, d,
the likelihoods of exceedance are interpolated onto a regular grid using
the ‘griddata’ routine in the Python Scipy library.

Calculation of climate driver indices
We employ three simple indices for climate modes that impact Australia.
To assess the strength and phase of the El Niño Southern Oscillation
(ENSO), we use the Nino 3.4 index91, which is the average sea-surface
temperature (SST) anomaly over the region 5oN–5oS, 120o–170oW. The
Indian Ocean Dipole is quantified using the Dipole Mode Index, DMI92,
which is the difference between the average SST anomalies over western
(10oN–10oS, 50o–70oE) and south-eastern (0o–10oS, 90o–110oE) tropical
Indian Ocean regions. We represent the strength of the Southern Annual
Mode (SAM, also called the Antarctic Oscillation) using a Southern Annular
Mode Index, SAMI, defined as the difference between the normalized
monthly zonal mean sea level pressure at 40oS and 65oS93.
The climate mode indices are computed from the forecast model data

and from reanalysis data: Hadley Centre Global Sea Ice and Sea Surface
Temperature (HadISST1)94 for Nino 3.4 and DMI; and JRA-55 for SAMI.
Anomalies are computed relative to the climatological average over the
period 1990–2020. In cases where forecast model data are used, a separate
climatological average is constructed using the f1980!10 mem dataset and
removed for each forecast lead time. This removes from the forecasts
the mean model biases over the reference period at each lead time. We
focus on the average Nino 3.4 and SAMI over September, October,
November and December (SOND), and on the average DMI over
September, October and November (SON), corresponding to when each
index has its strongest influence on precipitation and FFDI in southeast
Australia15. The fidelity of the model climate driver indices relative to
observations and their relationships to FFDIDec and DI are assessed in
Supplementary Figs. 2 and 3.

DATA AVAILABILITY
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Copernicus Climate Data Store at https://doi.org/10.24381/cds.f333cf85. New South
Wales National Parks and Wildlife Service Fire History data are available for download
at https://data.nsw.gov.au/data/dataset/fire-history-wildfires-and-prescribed-burns-
1e8b6. JRA-55 data are available from the University Corporation for Atmospheric

Research Research Data Archive at https://doi.org/10.5065/D6HH6H41. HadISST1 data
are available from the Met Office Hadley Centre at https://hadleyserver.metoffice.gov.
uk/hadisst/data/download.html. AGCD v1 data are accessible from Australia’s
National Computational Infrastructure Data Catalogue at https://doi.org/10.25914/
6009600b58196. AGCD v2 data are not publicly available, with access details
provided by the Bureau of Meteorology at http://www.bom.gov.au/climate/
austmaps/metadata-monthly-rainfall.shtml. The Natural Earth data used to generate
the shading in the inset of Fig. 1 are in the public domain and are available at https://
www.naturalearthdata.com/. The forecast datasets are not yet available publicly but
are available from the corresponding author upon request, bearing in mind that
these datasets comprise hundreds of terabytes of data. Postprocessed versions of all
the variables and indices presented in this paper are available from the
corresponding author upon request.
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