
ARTICLE OPEN

Using particle swarm optimization to improve
visibility-aerosol optical depth retrieval method
Jian Wu 1✉, Shuang Zhang1, Qidong Yang1, Deming Zhao2, Wenxuan Fan1, Jingchuan Zhao1 and Cheng Shen 3

In view of the lack of long-term AOD (Aerosol Optical Depth) data, PSO (Particle Swarm Optimization) algorithm is introduced and
joint used with NLSM (the nonlinear least square method) to improve visibility-AOD retrieval method, which is referred to as the
PSO-M-Elterman model and significantly increases data available rate by 8% and correlation by about 20% with the true value in
the experimental group. The mean absolute error, the proportion of the smaller absolute error and the root mean square error in
the PSO-M-Elterman model experimental group are 0.0314 and 91.23%, 0.0509 respectively, which significantly outperforms other
groups. The main increase of AOD was found in the eastern region (South China, East China, Central China) and Taklimakan with the
trend coefficients of 2.67, 2.46, 2.13, and 1.45 (×10−3 yr−1) in recent 55 years, which may not be interpreted by the influence of
relative humidity. Long-term change of AOD in east China is mainly caused by human activity, and the AOD is higher in cities with a
larger population and more human activity. The PSO-M-Elterman model can maximize the advantage of visibility sequence length
to obtain long-term AOD inversion results.
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INTRODUCTION
Aerosols originate from a wide variety of sources, and often have
highly complex compositions, which play an important role in
global and regional environments. Understanding the physical,
chemical, and optical characteristics and distribution of aerosols
aids to assess their role in radiation balance, air quality, and
predict climate change1,2. The composition, concentration,
absorption, and scattering characteristics of the aerosol are
directly or indirectly observed by remote sensing and ground-
based sensors3–7. The aerosol optical depth (AOD), one of the
most important optical parameters of aerosols, is a key physical
quantity characterizing atmospheric turbidity, and an important
factor used to determine the effect of aerosols on the climate. The
space coverage of satellite data is wide; however, the timelapse is
short, whereas ground-based data acquired by a sunphotometer
provide high accuracy, but few stations. Neither can provide AOD
data spanning a wide range, long time, and high consistency8.
Currently, studies on the long-term change of AOD are scarce

due to limited aerosol data. Several studies revealed an
interaction between aerosols and monsoon systems9–12. There-
fore, obtaining long-term aerosol data to analyze the interaction
between aerosols and climate change factors is an urgent issue
in the effort to understand the impact of human activities on the
climate. AOD can be calculated from the extinction coefficient,
wide-band solar radiation, visibility, and other meteorological
elements13–16. Visibility, as an indicator reflecting atmospheric
transparency, has the advantage of long-term observation and
numerous stations, and it is often used to retrieve AOD and
analyze its spatial and temporal characteristics. AOD retrieval
using visibility data shows that the Indian Peninsula, Central
Europe, West Africa, Southeast North America, and Southeast
China are the largest AOD regions in the world17. The spatial
distribution of inversion AOD by visibility in China is high in the
southeast and low in the northwest, while the seasonal

distribution is high in summer and low in winter, showing an
overall increasing trend in recent decades18–21.
AOD retrieval methods worldwide mostly use the original

visibility- AOD conversion model17,22,23. The inversion method is
based on the Elterman model and takes into account the influence
of water vapor. A set of empirical parameters are introduced into
each station and developed into the M-Elterman and the KM-
Elterman models20,21,24, whose retrieval parameters are deter-
mined by the nonlinear least square method (NLSM)20. These AOD
retrieval methods using NLSM suffer from inaccurate parameters,
which limit their wider application. Further, Lin25,26 proposed an
AOD retrieval method using chemical transmission model GEOS-
Chem fusion visibility data, and the results were in good
agreement with MODIS data.
To address the inaccurate parameters in the M-Elterman model,

this study introduces the particle swarm optimization (PSO)
algorithm into the AOD retrieval method, which originates from
a study on the foraging behavior of birds27. Owing to the
simplicity, stability, and efficiency of this algorithm, as well as its
ability to obtain global or approximately global optimal solutions
of the problem28, it has been widely applied across different fields,
and its use has become particularly widespread in the field of
artificial intelligence29–31. The essence of the PSO algorithm is that
one or more functions (usually nonlinear) can solve the problem of
the global optimal solution in a multi-dimensional space. The most
significant difference between this and the traditional algorithm,
which uses tools such as derivatives to find extrema, is that the
initial value, the update of particle velocity and position are
generated randomly. Under the constraint of an objective
function, as long as there is a sufficient number of iterations,
these particles will tend to converge, and thus obtain the optimal
solution of the problem.
The PSO algorithm is implemented by initializing the para-

meters to be optimized to the position of a group of random
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particles, and subsequently finding the optimal solution through
iteration. In each step of the iteration, the particle updates its
position by tracking two extrema, one being the optimal solution
found by the particle itself, which is called the individual extrema,
while the other is the optimal solution found by the entire
population, which is the global extrema. After finding these two
extrema, the particle repeatedly updates its velocity and position,
eventually reaching the global extreme for all particles. Compared
with the NLSM, the optimization of parameters is considered to be
a similar process, as random parameter combinations are selected
to minimize the deviation between the observed and simulated
values within a certain period of time, and the parameter
combination with the smallest deviation is considered as the
optimal parameter. Both algorithms require iterative calculation;
the difference lies in the randomized initial parameters of the PSO
algorithm. In the actual application, because the calculation time is
controlled (small storage requirements), the value range of the
parameter is given, and the parameter space to be optimized
becomes a closed area. Thus, the global optimal parameters in this
area can be obtained, which represent the approximate optimal
parameters in the entire open area.

RESULTS
Conversion of visibility grade data
Visibility was recorded on a scale of ten before 1980, and the
actual visibility distance (unit: km) was directly recorded after
1980. Therefore, it is necessary to convert the visibility grade
data before 1980 into the corresponding distance data. We
designed a conversion scheme based on the scheme of Qin19

(details are in the Methods section), which is commonly used in
visibility conversion, and compared our results. To estimate
alternative distances in different schemes, we converted the
visibility distance data from 1980 to 2013 into their correspond-
ing grade, and subsequently converted them into distances

according to the conversion schemes described above. Finally,
we compared them with the actual observed visibility distance,
whose difference is considered to be the error between the
converted visibility using the conversion scheme and the actual
visibility, and the relative error is the absolute error divided by
the actual visibility. The comparison of the mean error in the
monthly series (Fig. 1a) shows that the errors fluctuated
periodically over a period of 12 months. The absolute error of
scheme Qin fluctuates within the range of –0.4–1 km. In
contrast, the mean absolute error of the conversion proposed
scheme only fluctuates around zero with an amplitude below
0.1 km, and does not change significantly with time. Further-
more, the distribution of the relative error (Fig. 1b) shows that
the Qin scheme exhibits the highest relative error in terms of
visibility, generally above 10%, whereas in the conversion
scheme, except for a few areas in the southwest of Xinjiang, the
relative error is below 1%.
Hence, we demonstrate that the conversion scheme sig-

nificantly improves the credibility of visibility conversion owing
to the consideration of differences and seasonal characteristics
of each station. The improved converted visibility provides
more reliable data for the subsequent AOD inversion, and
further improves the accuracy of the inversion results. This
scheme can also be applied to other scientific research that
requires long-term visibility data in China, as it can effectively
improve the homogeneity of visibility.

Joint use of inversion parameters from different algorithms
To verify the reliability and accuracy of the inversion, we split the
period of satellite observation AOD into an experimental and an
extrapolation verification group, containing data collected over
94 months from January 2007 to October 2014 and over
72 months from January 2001 to December 2006, respectively.
For each station, the parameters were first fitted using the PSO
algorithm and then filtered through the combined criterion

Fig. 1 Comparison of four schemes for visibility grade conversion. a Monthly time series of national mean visibility error from 1980–2013.
b Spatial distribution of mean visibility relative error from 1980 to 2013.
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of KGE (Kling-Gupta efficiency)32 and R:

KGE ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R� 1ð Þ2þ α� 1ð Þ2þ β� 1ð Þ2

q
(1)

R ¼
Pn

i¼1 xi � xð Þ yi � yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 xi � xð Þ2 ´ Pn

i¼1 yi � yð Þ2
q (2)

α ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðxi�xÞ2
n

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðyi�yÞ2
n

r (3)

β ¼ x
y

(4)

where x and y denote the true and inverted AOD, respectively.
According to the definitions of KGE and R, their larger values

contribute to a better fitting effect. To evaluate retrieval results,
we divided the values of KGE and R of each site into four different
evaluation intervals- KGE & R > 0.7; KGE & R > 0.5; KGE & R > 0.3
and KGE & R > 0 (Corresponding to “excellent -A”, “good -B”,
“medium -C”, “poor -D”), then evaluate inversion values in each
interval respectively (When KGE or R < 0, the inversion results can
be considered to be completely unavailable).
Figure 2a shows the comparison of the time series of inversion

AOD and the true value of four evaluation intervals when MODIS
data are used as the AOD truth value. The values and fluctuation
characteristics of the inversion AOD are similar to the true value in
the first three KGE and R evaluation intervals, while the inversion
AOD is significantly higher than the true value in the fourth
evaluation interval with poor temporal variations. Therefore, the
reliability and accuracy of inversion results are acceptable when
KGE & R > 0.3 (i.e., the inversion results are evaluated as “medium-
C” or above). Thus, the stations of KGE & R > 0.3 were selected to
use the parameters fitted by the PSO algorithm, while other
stations used the parameters fitted by NLSM in the retrieval. This
joint use of retrieval parameters from PSO and NLSM in the

M-Elterman model is referred to as the PSO-M-Elterman model. In
this model, 467 stations employed the PSO algorithm to
determine retrieval parameters, and 194 stations employed the
NLSM when MODIS data were used as the true value. Further, the
PSO algorithm and NLSM were used in 308 and 353 stations
respectively, when MISR data were used as true value (as shown in
Fig. 2b, the selection method for specific stations is described in
the discussion section of this article).

Spatiotemporal contrast of different inversion results
Figure 3 shows the mean spatial distribution and temporal
fluctuation of AOD in the experimental and the extrapolation
groups with MODIS and MISR data denoting the true values,
respectively. The spatial distribution of MODIS/MISR AOD shows a
similar distribution pattern in both the experimental and the
extrapolation groups (Fig. 3a, c): southern Xinjiang, and east China
(North China Plain, the middle and lower reaches of the Yangtze
River, and Sichuan Basin) are the regions with high AOD values,
while parts of Southwest China and Northeast China are the
regions with low AOD values. However, MODIS AOD is generally
higher than MISR AOD, except for some areas in the southwest
(the intersecting area of Tibet, Sichuan, and Yunnan). The time
series (Fig. 3b, d) show evident fluctuation characteristics with a
period of one year. The AOD is higher in the summer and autumn
and lowers in the spring and winter. The monthly average AOD of
MODIS varies from 0.25 to 0.65 with a mean value of 0.4472, while
the monthly average AOD of MISR varies from 0.15–0.5 with a
mean value of 0.2928.
When MODIS data are employed as the true value (Fig. 3a), both

models perform better to estimate the spatial distribution pattern
of AOD. However, the AOD simulated by the M-Elterman model in
Southwest Xinjiang and Inner Mongolia is approximately 0.1
higher than the true value. Meanwhile, the AOD simulated by the
PSO-M-Elterman model in the boundary area of Qinghai and
Xinjiang and some areas of the North China Plain is higher than
0.8. The true value of the experimental group in the southwest
and northern regions (Inner Mongolia, Heilongjiang, etc.) is less
than 0.1, which is lower than that of the extrapolation group.

Fig. 2 Selection of parameter simulation algorithm. a Time series of inversion AOD and true value in different evaluation intervals when
using MODIS data. b Distribution of station selection for PSO and NLSM algorithm in PSO-M-Elterman model.
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For MISR data (Fig. 3c), the true value of the experimental group is
slightly higher than that of the extrapolation group in Southwest
Xinjiang (<0.05). The spatial distribution of AOD simulated by the
M-Elterman and the PSO-M-Elterman models is similar, except for
some areas in Northeast China, and the overall value is below 0.5.
The retrieved AOD of the two models in northern China (Inner
Mongolia, Heilongjiang) and southwestern China (the junction of
Yunnan, Sichuan, and Tibet) is slightly higher than the true value.
The PSO-M-Elterman model evidently captures more low-value
areas of AOD, whereas areas with a true values below 0.1 are not
well presented.
The performance of spatial pattern of AOD obtained by the

PSO-M-Elterman model is not significantly better than that of
the M-Elterman model. The spatial distribution of AOD simulated
by the two models is similar, irrespective of whether MODIS or
MISR data are used as AOD truth values, while there are slight
differences in several regions. The performance of the extra-
polation group was slightly exacerbated compared to that of the
experimental group. For the time series (Fig. 3b, d), true value
presents a one-year fluctuation period that first increases and
then decrease (MODIS AOD fluctuate between 0.2–0.7, MISR
AOD fluctuate between 0.15–0.5), which indicates that AOD is
higher in summer and lower in spring and winter. But the
fluctuation range of AOD inversed by the PSO-M-Elterman
model is about 0.2 larger than that of the M-Elterman model,
which are more consistent with the actual situation. The
performance of the experimental group is likewise slightly
better than that of the extrapolation group, although extreme
values are not well presented in the two groups.

The spatial distribution and probability density of the correla-
tion coefficients between the inversion and true value time series
at each station are shown in Fig. 4. When using MODIS data, the
positive correlation coefficients of the M-Elterman model are
mainly distributed in Southwest China and North China, and most
of the values are below 0.5. Almost half of the correlation
coefficients in the region assume negative values. The PSO-M-
Elterman model not only increases the coverage area of the
positive correlation coefficient, but also enhances the correlation
values. The probability peak of the correlation coefficient appears
between 0.4 and 0.5, and is associated with few negative
correlations. The pattern of the extrapolation group is similar,
but slightly worse than that of the experimental group. The
proportion of R > 0.3 stations in the PSO-M-Elterman experimental
and extrapolation groups are 67.17% and 56.58%, respectively,
which is considerably higher than that in the M-Elterman model.
For MISR data, the M-Elterman model likewise yields poor
correlation, and the PSO-M-Elterman model presents a slightly
weaker positive correlation pattern than MODIS data. Further-
more, the area of positive correlation in the experimental group
almost covers the entire region of China. The inversion results of
the extrapolation group are slightly worse than that of the
experimental group, and the proportion of the R > 0.3 stations in
the two groups reach 54.16% and 47.05%, respectively, which is
about 26% and 16% higher than that of the M-Elterman model,
respectively. The inversion results of the PSO-M-Elterman model
show significant improvement in terms of the fluctuation trend
and correlation of time series relative to the M-Elterman model.

Fig. 3 Evaluation of the mean value of inversion AOD. The spatial distribution of observed AOD, M-Elterman AOD, PSO-M-Elterman AOD (a)
and the monthly time series from January 2001 to October 2014 (b) when using MODIS data. The spatial distribution of observed AOD,
M-Elterman AOD, PSO-M-Elterman AOD (c) and the monthly time series from January 2001 to October 2014 (d) when using MISR data.
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Quantitative evaluation of different inversion results
Several indices (Table 1) were used to evaluate the performances
of different retrieval models using different satellite data. The PSO-
M-Elterman model evidently outperforms the M-Elterman model,
irrespective of whether MODIS or MISR data are used as the true
value. For the data unavailability rate, the M-Elterman model
achieves more than 20% using MODIS data, and approximately
15% using MISR data. The PSO-M-Elterman model significantly
increases data availability by 8% and 6%, respectively. The mean
absolute error and the proportion of the smaller absolute error in
the PSO-M-Elterman model experimental group are 0.0314 and
91.23%, respectively, and the root means square error was only
0.0509, which significantly outperforms other groups. While in the
M-Elterman model, the absolute error of each group is generally
greater than 0.04 and the proportion of the smaller absolute error
is less than 85%. At the same time, the correlation coefficient of
each group is lower than 0.4, and there are only less than 40% of
sites with a correlation coefficient above 0.3. Unlike other
parameters, for which the experimental group is superior to the
extrapolation group, the correlation coefficients of the two models
showed better results in the latter. The correlation coefficient of
the PSO-M-Elterman model is the highest with MISR data, while
the proportion of the stronger correlation coefficient is slightly
larger with MODIS data.
Considering all evaluation indices, the PSO-M-Elterman model

evidently improves the inversion results relative to the M-Elterman
model with regard to all aspects, and the inversion results using
MISR data outperform those using MODIS data. Further, the
performance of the extrapolation group is slightly lower than that
of the experimental group. The above evaluation of inversion
results from different perspectives shows that the M-Elterman

algorithm simulates the average AOD state more effectively.
Previous studies20,21 focused more on the spatial distribution and
correlation of the whole region average in the discussion of
inversion results. However, in a smaller area or even a single
station, it is difficult to depict the temporal fluctuation character-
istics of AOD. Nevertheless, the PSO-M-Elterman algorithm
significantly improved the inversion results, especially the regions
with a small absolute error and high correlation, which indicates
that it is more applicable to the visibility-AOD inversion formula
than the NLSM.

Long-term changes of retrieval AOD in China
MISR AOD data were used to represent the true value, and the
parameters simulated by the PSO-M-Elterman model from 2007 to
2014 were applied to the AOD retrieval before 2000. Thus, the
long-term AOD series from 1960 could be established by inversion
AOD. The spatial pattern and temporal series of inversion AOD
from 1960 to 2014, and the spatial and temporal fields of the first
two modes of EOF (Empirical Orthogonal Function) analysis are
shown in Fig. 5. The general characteristics of the AOD pattern are
similar to that after 2000: the high-value areas are distributed in
southern Xinjiang, the Sichuan Basin, and southeastern China,
while the low-value areas include northern Xinjiang, Southwest
China, and Northeast China. Compared with the spatial distribu-
tion after 2000 (Fig. 3c), the high-value region (AOD > 0.5)
narrowed in Southeast China, while the low-value region (AOD
< 0.2) broadened slightly in northern Xinjiang (Fig. 5a).
The AOD of the whole region average gradually increased in

time, which was associated with the annual fluctuation exhibiting
a growth rate of 0.0011 yr−1. The fluctuation range of annual AOD

Fig. 4 Evaluation of the correlation of inversion AOD. The spatial distribution (a) and probability density plot (b) of correlation coefficients
between inversion AOD in M-Elterman/PSO-M-Elterman models and observed AOD when using MODIS data. The spatial distribution (c) and
probability density plot (d) of correlation coefficients between inversion AOD in M-Elterman/PSO-M-Elterman models and observed AOD
when using MISR data.
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variation gradually increased with time (Fig. 5b). The variance
contribution rates of the first two modes of EOF decomposition in
AOD anomalies are 47.33% and 12.21%, respectively, (both passed
the North test). The eigenvector of the first spatial mode alternates
between positive and negative, which represents two trending
characteristics of the AOD. In addition to the intersecting region of
Sichuan, Qinghai, Tibet, southern Xinjiang, and part of Inner
Mongolia, other regions are basically positive anomalies, especially
in North China, the middle and lower reaches of the Yangtze River,
northwestern Xinjiang, Guangxi, and Guangdong. Combined with
the time coefficient of the first mode, the AOD in these areas
shows an increasing trend after 1960, and the fluctuations tend to
flatten after about 2005, which indicates that the anthropogenic
aerosol content increased rapidly with the rapid development of
the economy and population in eastern China33. Southern
Xinjiang, Qinghai, and other regions with significant negative
abnormal AOD showed a weak declining trend in the past 50
years. The second spatial distribution mode also shows the
alternation between positive and negative anomalies with small
values, with no significant anomaly center. Only the southwest
region of the Xinjiang positive anomaly is slightly stronger, with
the time coefficient first increasing and subsequently decreasing,
indicating that the AOD in Southwest Xinjiang was higher from
1984 to 2000, and lower in other years.
We employed power spectrum analysis, wavelet analysis, and

EEMD (Ensemble Empirical Mode Decomposition) analysis to
explore the periodic characteristics of AOD in China in recent
decades; however, none passed the confidence test. This indicates
that the increasing trend of aerosol in China may be predomi-
nantly attributed to the local emission of polluting gases and
particulate matter, rather than the long-distance transport of
atmospheric circulation.

Distribution characteristics of inversion AOD in different
regions
According to the average distribution of inversion AOD and EOF
decomposition, China is divided into 9 regions (each region has
similar distribution and trend characteristics) to further discuss
the regional long-term variation characteristics of AOD. In
addition, many researches pointed that as the relative humidity
increases, the hygroscopic growth of aerosols will continue and
become faster34–37. Considering that water vapor is a major
factor affecting physicochemical and optical properties of
aerosols38–40, the variation characteristics of relative humidity
are also discussed. (Please refer to Supplementary Fig. 1 for
details of regional division).
In Fig. 6a, the regional average AOD in the Sichuan Basin

reaches the highest (0.4436) in China, followed by central China
(0.404). AOD fluctuates around 0.3 in South China, East China,
and Taklimakan region. The lowest average AOD in northeast
China and Northwest China are 0.234 and 0.235, respectively.
Weak upward trends present in all regions, in which South
China, East China, Central China, and the Taklimakan region
passed the significance t-test at 95% confidence level with the
linear trend coefficients of 2.67, 2.46, 2.13, and 1.45 (×10−3 yr−1)
respectively. These features generally confirm the conclusions of
previous research20.
As shown in Fig. 6b, the relative humidity of all regions do not

show distinct rising or descending characteristics with a small
fluctuation range. Mean relative humidity are higher than 70% in
East China, Central China, South China, and Sichuan Basin, where
the AOD are also relatively high. But the Taklimakan has the
lowest relative humidity 47.19% and the relatively high AOD
0.3381. This may be due to the fact that aerosol composition
varies greatly in different regions. The hygroscopic properties of
atmospheric aerosol particles influence ambient particle size,
density, and mass which in turn control the lifetime and removalTa
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mechanisms of the particles, and then affect the value of AOD. The
higher AOD in Taklimakan is mainly caused by dust aerosols,
which are hydrophobic. While the eastern region has more sulfate
or nitrate aerosols caused by human emissions, which are
hydrophilic and more affected by relative humidity.
The long-term variation characteristics of relative humidity and

AOD in different types of large cities in east China are in
Supplementary Fig. 3 for further analysis (Almost all large cities are
located in the east of China, where anthropogenic emissions are
higher and have more hydrophilic aerosols). The classification of
city types is based on Supplementary Fig. 2a. The relative humidity
in the four types of large cities all showed a weak decreasing
trend. Although the downward trend is not obvious, there are
strong negative correlation between relative humidity and AOD
with a value of −0.6168, −0.6521, −0.6872 in ILarge City, IILarge
City, and Extra Large City. This means that a decrease in relative
humidity may be more conducive to aerosol accumulation. The
negative correlation between AOD and relative humidity is not
obvious in Super Large City (only 7 cities), which may be due to
the scattered distribution of cities and different regional environ-
mental impacts.
AOD in Sichuan Basin maintains high value all the year round

(>0.4) with nearly no monthly fluctuation (Fig. 6c, d) with a
maximum (83.02%) in October. There is a distinct rising phase
followed by a decreasing phase for both AOD and relative
humidity in North China, East China, South China, southwest
China. In the Taklimakan, however, AOD is lower in winter (<0.3)
and higher in spring and summer (around 0.4), which synchro-
nizes the onset of sandstorms in spring and gradual abating in
autumn, with relative humidity low in months with high AOD.
Different from other regions, AOD in Northeast China reaches its
peak in April (0.304) and October (0.296) respectively, and shows a
fluctuation characteristic of ascending - descending - ascending -
descending throughout the year, but relative humidity shows
different variations with high in summer low in other seasons. The
monthly characteristic of AOD and relative humidity are almost
consistent in East China, North China, and Southwest China but
varies in other regions, and the reasons need to be further studied.

Combined with the analysis of AOD in cities with different
populations in the Supplementary Discussion, long-term change
of AOD in China is mainly caused by human activity, and the AOD
is higher in cities with a larger population and more human
activity. Based on the analysis above, we think that the long-term
increasing trend of AOD is not mainly caused by long-term
changes of relative humidity, but does not deny the influence of
relative humidity on aerosols, which may occur more in local
Spatio-temporal scales and varies in different regions.

DISCUSSION
NLSM employs the minimum sum of error squares as the criterion
to estimate the parameters of a static model. Because of the
nonlinearity of the M-Elterman model, the parameter estimation
cannot be obtained by calculating the extreme value of multi-
variate function according to the linear least square method. The
M-Elterman model adopts an iterative algorithm, that is, starting
from an initial value of parameters (i.e., the original parameters of
the Qiu model), and subsequently generating a series of iterative
parameter points. If this parameter sequence converges to a
parameter point that minimizes the objective function, it will be
regarded as the final solution. However, as the initial parameters
are fixed, the simulated parameters are usually only optimized
locally, but not applicable globally, which takes the partial
inversion AOD beyond the reasonable value range. During the
experiment, we found that parameters simulated in different
stations are highly sensitive to variations in the PW (pressure of
water vapor) value. This is because in the product term of the
M-Elterman model, PW exists in two terms of the natural power
(Eq. (15)), and the second term of the product term in the power is
likewise an exponential relation. This means that the values of
parameters b and d (especially d) determine the sensitivity of the
inversion result to the PW value.
We randomly selected four different stations and used MISR

data as the true value, while keeping the altitude and actual
visibility unchanged to test the sensitivity of retrieval AOD to PW
value between 0 and 20 hPa (Fig. 7a). The inversion AOD in
stations “50968” and “50114” is within 0.4 and increases with the

Fig. 5 Spatiotemporal characteristics of inversion AOD. a Spatial distribution of AOD during1960–2000. b Annual time series of AOD during
1960–2014 (The upper and lower bounds of the shadow are the highest and lowest AOD values of the year, respectively). c EOF analysis of
spatial field and (d) time coefficient series of AOD during 1960–2014.
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rise of PW, which is in line with the actual situation. However, the
inversion AOD in stations “51330” and “54838” appears as an
extremely large value within a normal PW range. When the PW is
larger than a certain critical value, the AOD conforms to the actual
situation (AOD < 1). This is because the parameters simulated by
NLSM for these two stations are not applicable to the global
situation, and similar situations exist in other stations and the
MODIS data.
The spatial distribution of the unavailability rate of inversion

AOD data using the NLSM to solve the parameters (Fig. 7b) shows
there is a severe lack of AOD data in Inner Mongolia, Northeast
China, and North China, and the unavailability rate in some areas
reaches more than 50%. When using MODIS data, the unavailable
range is larger, which extends south to Hubei, Hunan, and
Guangxi. According to the monthly distribution (Fig. 7c), the
parameters fitted by NLSM are not applicable in spring and winter,
possibly because the PW in these two seasons is relatively low.
Further, both the experimental and the extrapolation groups show
that the unavailability rate when using MODIS data is larger than
when using MISR data.
The application of the PSO algorithm in the M-Elterman mode

has the advantage of global convergence; however, the initial
value of each iteration is random, which leads to different
experimental results. This indicates that the optimal parameter
solution of different experimental simulations for the same station
is not the only solution. In theory, if each station repeats the

iterative experiment of the PSO algorithm, the optimal solution
can be selected from different experimental results, increasing the
number and credibility of the available station.
Taking the simulation results using MODIS data as an example,

we plot the spatial distribution of evaluation parameters KGE and
R for the four PSO repeated experiments (Fig. 8). The results of
the four experiments show that the better and more stably
performing stations are mainly distributed in the North China
Plain, Southwest China (including Tibet, western Sichuan,
Yunnan, Guangxi, and Guangdong), and southern Xinjiang.
However, there are still differences between several stations,
and the inversion results of these stations in different batches of
experiments are not in the same evaluation range. With MISR
data, the repeated PSO experiment results show similar
distribution characteristics (abridged).
According to the relatively stable, but slightly different

distribution characteristics of the inversion results, we take KGE
and R as the thresholds and select available stations from different
experimental batches based on the results of the first experiment
(i.e., the stations that meet the criteria are further selected from
the stations not selected in the last experiment). The selection of
stations in each experiment is shown in Table 2. With the increase
in the number of experiments, the available stations in each
evaluation range increased but the number of increased stations is
less and less. Taking KGE & R > 0.3 as an example, in the first
experiment, 413 stations could be selected when using MODIS

Fig. 6 Annual and monthly variations of AOD and relative humidity in different regions. a Annual series of AOD from 1960 to 2014 (The
regions in the red boxes represent trend significance t-test at 95% confidence level). b Annual series of relative humidity from 1960 to 2014.
c Monthly distribution of AOD. d Monthly distribution of relative humidity.
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data, while in the fourth experiment, 467 sites could be selected,
which amounts to an increase of 54 in total. A total of 308 stations
are selected after four experiments using MISR data, an increase of
56 in total. Table 2 shows that for a specific station, although the
parameters fitted by different PSO algorithms are different each
time, the difference between the simulated results and the real
value is still relatively stable. Nevertheless, repeated experiments
can still help increase the number of credible stations with more
reliable simulation results. The final stations selected for the PSO
algorithm in Fig. 2 are based on the scheme above discussed in
this section.
This study improves the processing method of inconsistent

recording in 661 meteorological stations in China, which improves
the uniformity and reliability of visibility data collected prior to
1980 and subsequently employs them for AOD retrieval. The PSO
algorithm is introduced into the AOD retrieval and applied in
combination with the NLSM as the PSO-M-Elterman model. MODIS
and MISR satellite data are employed as true values to retrieve
AOD using visibility data. Both the scheme of visibility grade
conversion and the PSO-M-Elterman model refine the evaluation
results to the scale of a single station, and achieve good
experimental results. Furthermore, the long-term change of AOD

in China is found to mainly occur in areas with a large population,
which proves that the increase in AOD is caused by human activity
rather than natural causes. The PSO-M-Elterman model can be
generally applied to global AOD retrieval using monthly or daily
visibility data to reconstruct long-term AOD data.

METHODS
Grade-distance conversion method of visibility
Visibility was recorded on a scale of ten grads before 1980: below 0.05;
0.05–0.2; 0.2–0.5; 0.5–1; 1–2; 2–4; 4–10; 10–20; 20–50 and above 50 (unit:
km), and the actual visibility distance (unit: km) was directly recorded after
1980. Theoretically, each visibility level can correspond to any value within
the corresponding distance interval, such as the median value of the
interval. Since the interval of visibility distance corresponding to each
visibility grade is not equally spaced, the use of median value instead of
each visibility grade may result in unhomogeneity of data. Qin et al.
developed a grade-distance conversion method:
Firstly, the actual observed visibility distance of all stations after 1980 is

converted into the corresponding grade according to the 10 intervals
above mentioned. (The time range is from 1980 to 2005 in Qin et al.’s
research).

Fig. 7 Limitations of NLSM. a Variation of AOD with PW in different stations when using MISR data. b Spatial distribution and (c) Monthly
distribution of the unavailable rate of inversion AOD.
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Then, calculate the average value of distance at each visibility grades
according to the corresponding relationship in the first step.
Finally, the average distance of each grade is substituted as an

estimated value for that grade before 1980.
It is worth noting that all stations share the same conversion scheme in

Qin’s method. However, China has a diverse geographical environment
and observation conditions are complex at different stations. In addition,
visibility also shows seasonal differences. The same transformation scheme
obviously does not represent the individual differences of each station.
Therefore, we improved it on the basis of Qin’s method by respectively
calculating the average value of visibility distance for 12 months at each
station after 1980 (The actual time range involved in calculating the
average distance of each visibility grade are only from 1980 to1985 to
eliminate the long-time trending signal of visibility). That is, each station
has its own independent grade-distance conversion scheme for each
month, and there are 661(stations) × 12(months) conversion schemes that
are used for visibility grade data before 1980 in total.

M-Elterman model
M-Elterman model is developed on the basis of the original conversion
method of visibility and extinction coefficient
According to the definition of Koschmieder’s law41: the relation between

visibility and the extinction coefficient σ0.55 of 0.55 μm wavelength is:

V ¼ 3:912
σ0:55

(5)

Assuming aerosols obey a Junge distribution:

n rð Þ ¼ cr� v�þ1ð Þ (6)

where c is a constant and r is the particle radius, and v*= 3 does not
change with height.
Under the standard surface air temperature (15 °C) and pressure

(1013 hPa) conditions, the air molecular extinction coefficient is a constant
0.0116, then the aerosol extinction coefficient σλ and the atmospheric
molecules σm at the height of z at the wavelength of λ can be expressed as:

σλ ¼ NA zð Þ
NA 0ð Þ

3:912
V

� 0:0116
� �

0:55
λ

� �
(7)

σm ¼ 0:0116� 0:00099z (8)

Where NA(0) and NA(z) are the concentrations of aerosol particles at the
surface and the altitude of z respectively, and the distribution of NA(z) with
altitude proposed by McClatchey42 can be expressed as:

NA zð Þ ¼
55 exp � z�5:5ð Þ

H1

h i
ðz⩽ 5:5 kmÞ

55ð5:5 km⩽ z⩽ 18 kmÞ
55 exp � z�18ð Þ

H2

h i
ðz > 18 kmÞ

8>>><
>>>:

(9)

Then the relationship between the visibility Vz actually observed at the
altitude of z and the visibility V revised to sea level can be represented as:

Vz ¼ 3:912

0:0116� 0:00099z þ 3:912
V � 0:0116

� �
e�

z
ð0:886þ0:222VÞ

(10)

Thus, the AOD τλ can be obtained by integrating the extinction
coefficient in the vertical direction:

τλ ¼ 3:912
V

� 0:0116

� �
0:55
λ

� �2�v�

H1 e�
z
H1 � e�

5:5
H1

� �
þ 12:5e�

z
H1 þ H2e

� z
H1

h i
(11)

where H1 ¼ 0:886þ 0:0222V kmð Þ.
Formula (11) is the classical Elterman model of visibility inversion AOD.

But it is sensitive to the geographical distribution of China, especially in
coastal areas. Qiu24 developed a parameterized model suitable for Chinese
characteristics by comparing it with the optical depth detected through
direct solar radiation data:

τλ ¼ 3:912
V

� 0:0116

� �
0:55
λ

� �2�v�

H1 e�
z
H1 � e�

5:5
H1

� �
þ 12:5e�

z
H1 þ H2e

� z
H1

h i
� f

(12)

f ¼
e �0:32þ0:02Vzð Þ for Northeast China

e
0:42þ0:0046Pwþ0:015Vzð Þ�exp �0:0047

V2z
Pw

� �
for other region

8<
: (13)

In this model, the value of AOD depends on visibility Vz, water vapor
pressure Pw, altitude z, wavelength, and Junge spectral parameter v*.
The revised coefficient f depends on the distribution of aerosol particle
number density with height. f < 1 means that the attenuation of aerosol

Fig. 8 Repeat experiment of PSO algorithm. Distribution of KGE and R in four repeated experiments of PSO algorithm.

Table 2. The comparison of the station numbers that can be selected
for each time in PSO repeated experiment at different KGE and R value
intervals.

Number of stations KGE &
R > 0.7

KGE &
R > 0.5

KGE &
R > 0.3

KGE &
R > 0

MODIS 1st experiment 77 221 413 587

2nd experiment 18 25 35 30

3rd experiment 5 7 14 8

4th experiment 1 2 5 8

Total 101 255 467 633

MISR 1st experiment 4 55 252 520

2nd experiment 0 20 35 32

3rd experiment 0 8 17 18

4th experiment 0 0 4 4

Total 4 83 308 574
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particle number density with height is faster than that of Elterman model,
corresponding to Northeast China; and f > 1 means that the attenuation of
aerosol particle number density with height is slower than that of Elterman
model, corresponding to the other region of China.
The M-Elterman model is based on Qiu’s model24 proposed by Wu

et al.20. It adjusts the empirical constant as a variable parameter for each
station:

AODi ¼ F V; a; b; c;d; e; f;gð Þ (14)

F in the formula is:

F ¼ 3:912
V � 0:0116

� �
0:55
γ

� �2�v�

e � V þ fð Þ exp � z
e�Vþf

� �
� exp � 5:5

e�Vþf

� ��h

þ12:5 exp � 5:5
e�Vþf

� �
þ g � exp � 5:5

e�Vþf

� ��i
� exp aþ b � pw þ c � Vzð Þ exp d�V2

Pw

� �� �

(15)

AODi represents the inversion AOD at the ith station; a, b, c, d, e, f, and g
are the parameters corresponding to each station.
The NLSM is employed to calculate each parameter and define DIF:

DIF ¼
XYearend

Yearstart

AOD� AODið Þ2¼
XYearend

Yearstart

AOD� F V; a;b; c; d; e; f; gð Þð Þ2 (16)

An independent set of parameters a, b, c, d, e, f, and g for each station
can be obtained through iterative nonlinear equations. Then, the
corresponding parameters can be applied to the year with the missing
satellite data, and the AOD can be retrieved using visibility.

Particle swarm optimization algorithm
When using the PSO algorithm to optimize parameters, the objective
function needs to be defined. Nash-Sutcliffe Efficiency (NSE) is usually used
as the objective function:

NSE ¼ 1�
P

k ðSk � OkÞ2P
k ðOk � OÞ2 (17)

where Sk and Ok represent the simulated value and observed value
respectively, and O represents the observed average value. NSE is used to
measure the degree of fit between observed and simulated values. The
range of variation is from −∞ to 1, and the closer to 1, the better the
simulation performance.
The PSO algorithm also depends on the parameters of the algorithm

itself: the number of particle swarms, the position range and the velocity
range of each particle. For the parameters to be optimized, its range can
be changed to [−1, 1] through the following mapping:

x ¼ 2y � ðRmax þ RminÞ
ðRmax � RminÞ (18)

where, y is the ture value of the parameter, and Rmax and Rmin are the
actual maximum and minimum values of the parameter.
The mathematical representation of the PSO algorithm is as follows:
Suppose that to optimize an n-dimensional problem, m particles are

selected, where the position and velocity vector of the ith particle can be
expressed as:

xi ¼ ðxi1; xi2; ¼ ; xinÞ (19)

vi ¼ ðvi1; vi2; ¼ ; vinÞ (20)

The updated position and velocity of the ith particle are respectively
expressed as:

vNþ1
in ¼ wvNin þ c1r1ðpNin � xNinÞ þ c2r2ðGN

n � xNinÞ (21)

xNþ1
in ¼ xNin � vNin (22)

where N represents the number of iterations, w represents the weight of
inertia, c1 and c2 represents the acceleration constant, and is the weight
coefficient for particles to track their own historical optimal value, which is
used to measure the recognition of particles themselves. r1 and r2 are
random numbers between [0, 1], and pi and Gn respectively represent
the local and global optimal position searched by the ith particle. They can

be respectively expressed as:

pi ¼ ðpi1; pi2; ¼ ; pinÞ (23)

Gn ¼ ðpg1; pg2; ¼ ; pgnÞ (24)

g ¼ min
1⩽i⩽n

½FðpiÞ� (25)

where g is the lowest value of the target function, and F is the target
function.
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