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Global phosphorus dynamics in terms of phosphine
Wanyi Fu1 and Xihui Zhang 1✉

Since the detection of phosphine in the wastewater treatment plants in 1988, more and more investigations revealed that
phosphine is closely related to ecological activities on a global scale. Here, we present perspectives on the whole dynamic cycles of
phosphorus, particularly in terms of phosphine and its interactions with natural ecosystems, as well as the impacts from human
activities. It may conclude that the phosphine-driving cycles of phosphorus depend on the coordination of human activities with
natural ecosystems. Most importantly, the extensive recovery of phosphorus in numerous urban wastewater treatment plants may
seriously obstruct its global cycles to catch up with the ecological needs in natural ecosystems. Phosphine gas plays an important
role in the biogeochemical phosphorus cycle. Phosphorus might be one of the important elements participating in the global
climate change together with carbon and nitrogen.
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INTRODUCTION
In the millions of years’ evolution of the global natural ecosystem,
the sustainability of this ecological system formed by many
element cycles is self-regulated and complex. Most studies
focused on the carbon, nitrogen, and sulfur cycles because
phosphorus was considered not to exist in gaseous forms.
Actually, as one of the critical elements, phosphorus, is cycling
in a specific form, i.e., gaseous phosphine (PH3), and getting
involved actively in ecological interactions. Now phosphorus
might be one of the important elements participating in the
global climate change together with carbon and nitrogen.

OCCURRENCE OF PHOSPHINE
For a long time, the distribution of phosphorus in the cycle of the
hydrosphere was thought to be ambiguous and mass-unbalanced,
until the detection of phosphine in wastewater treatment plants
by Dévai et al. in 19881. With the development of chromatography
techniques and sample pretreatment methods, phosphine has
been shown to exist universally in the environment. A large
number of investigations on the global scope of phosphine have
been conducted all over the world1–55. Phosphine exists
universally in the natural environment with two different forms:
free gaseous phosphine and matrix-bound phosphine (MBP). The
former has been detected in marsh gas36, sludge biogas1, upper
troposphere37, and the atmosphere around the world33. MBP has
been detected in various types of soils and sediments14,45,50,54,
sewage sludge5, and feces55. It is worth noting that MBP is defined
as the non-gaseous reduced phosphorus compounds that are
transformed into phosphine gas by acid or alkaline digestion45.
Thus, MBP does not necessarily refer to the pre-existence of
phosphine in the matrix. It generally comprises of phosphine
adsorbed by the media, phosphine gas in the interstice, and solid
phosphides.
The phosphine concentrations in the atmosphere and the

sediments demonstrate significant seasonal variations24,56,57. The
phosphine concentrations display higher values in the summertime
because the high temperature in summer might induce more
microbial activity4. Besides, the thunderstorm weather during
summer create lightning, which strikes the phosphate-containing

organic matter (e.g., soil, dust) to form a local phosphate reducing
condition58, favoring the production of phosphine. Since the
agricultural practice, specifically fertilization with phosphate-rich
fertilizer, is likely to greatly increase phosphine production59,
the impact of the seasonal agriculture activities on the phosphine
emission should be analyzed in the future. In addition to the seasonal
trend, phosphine concentrations in the atmosphere show an obvious
diurnal trend24. That is, atmospheric PH3 levels peak during the early
morning because phosphine accumulates in the night atmosphere
and degraded gradually until noon due to the effects of increasing
light intensity that promotes air oxidation60.
From the detection of free phosphine gas (Fig. 1) and MBP

concentrations (Fig. 2) in different environments, it can be
concluded that the phosphine levels are seriously impacted by
human activities. Generally, the concentrations of phosphine in
urbanized and populated areas, are higher than those in the
natural ecosystems in rural areas. Glindemann et al. found that the
phosphine concentration in the air above the urban areas (e.g.,
Berlin, Hamburg, Beijing) is 0.62–157 ng/m3 while 0.04–2.03 ng/m3

in rural air, indicating emission by concentrated human activ-
ities33. Anthropogenic PH3 production by industry can interfere
with the natural cycling of PH3. For example, the exhaust gas from
the PH3 fumigation of grain foods in the harbor resulted in high
atmospheric PH3 concentrations in Shanghai Harbor28. Besides,
high PH3 levels are found in paddy fields and eutrophic
lakes13,35,36. The increased PH3 liberating biological activity in
polluted ecosystems with agricultural nutrients, such as the
excessive P fertilizer, results in the high PH3 values59. Unexpect-
edly high phosphine concentrations were found in air samples
from the poles and the main sources were assumed to be the
penguin colonies, guano, and tundra ecosystem26,61.

FORMATION AND TRANSFORMATION OF PHOSPHINE IN
ECOSYSTEMS
Numerous biological and abiological mechanisms of phosphine
formation have been proposed in the literature2,20,23,58,62–65.
Significant evidence demonstrates that the production of phos-
phine is associated with the microbial reduction of P-containing
substances and most of the results have been summarized in a
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review by Roels and Verstraete62. Biological phosphine formation
from mixed bacterial cultures in the lab has been reported in
several works2,20,23,63,64. This is consistent with the detection of
high phosphine levels in natural environments with significant
anaerobic biosphere areas, such as eutrophic lakes, coastal areas,

and wetlands35,36,52,53. Non-biological pathways for phosphine
formation include corrosion of P-containing metals66, reduction of
phosphate by lightning strike67, and mechanochemical reduction
of phosphate in minerals65. For example, phosphine is produced
when atmospheric lightning strikes the aerosol or soils that contain
oxidized forms of phosphorus and chemical reductants58.
In previous studies, phosphorus usually is thought not to

undergo redox reactions and the removal of phosphorus in water
occurs only from adsorption, complexation, and precipitation68.
However, the reduction of phosphate to phosphine occurs
commonly in wetlands and paddy fields. It is well-established
that the formation of phosphine in nature follows thermody-
namics in terms of ORP (oxidation-reduction potential) levels59.
Anaerobic microorganisms use a sequence of terminal electron
acceptors instead of oxygen during their respiration under the
anaerobic condition69. With decreasing redox potential, they
reduce nitrates to nitrogen or N2O, sulfates to sulfides, and
carbonate to methane62,70. Similarly, the production of PH3 occurs
under the reducing conditions while requires more energy and
higher reducibility59. When redox potential falls below −300 mV,
the phosphate may act as an electron receptor and finally get
reduced to phosphine19.
Though the thermodynamics of the production of phosphine by

reduction of phosphate is exergonic71, Bains et al. reported that
the phosphine production from phosphite is thermodynamically
favored in specific ecosystems59. Pasek et al. presented a
comprehensive review on the redox chemistry in the phosphorus
biogeochemical cycle and proposed that the source of phosphine
in the atmosphere is the reduced P compounds, such as
phosphite and hypophosphite72,73. As shown in Fig. 2, high
concentration of phosphine is detected in Taihu Lake and paddy
fields, where relatively high levels of phosphite in basal sediments
are observed as well74,75. Consistently, Sun et al. reported that
more phosphine was produced from anaerobic activated sludge
with hypophosphite as the inorganic phosphorus source than that
with phosphate63.
About 10% of the phosphorous in the atmosphere exists as

phosphine59,73. Most phosphine is formed in soil, sediments,
sludge, or landfill, and prefers to adsorb in the media at a matrix-
bound status. Then most phosphine may transform back to
phosphates for use by natural plants or microbes76, and the rest
may emit from lower layers to surface layers and eventually into
the atmosphere.
The living plants in wetlands transfer atmospheric oxygen

through aerenchyma to the rhizosphere, keeping a high ORP level
in their root areas77. The rhizospheric ORP ranges from 130 to
350mV in daily time, creating an aerobic microenvironment that is
more oxidizing than bulk water (−220 ± 22mV)78,79. Though the
oxygen transportation of plant to roots increases the rhizospheric
ORP80 and barely changes the total anaerobic environment in the
bulk water, this favors the uptake of P by the plant. Such aerobic
conditions may allow phosphine to transform back to phosphates
and promote the utilization of phosphorous by plants. On the
other hand, if the plants become dead, with no oxygen
transporting to the rhizosphere, there will be an anaerobic
condition with ORP <−300 mV. In this case, some available
phosphates will be reduced back to phosphine, which may emit
into the atmosphere.
It is estimated that there are about 40,000 ton/year of

phosphine released to the atmosphere81. At certain temperature
and under lightning conditions, most of the gaseous phosphine
will be oxidized to phosphorus oxides26,82, which might be
deposited in clouds or rainwater58,83, becoming a major source of
phosphorus for the ecosystems that are poor in phosphorus84.
From Fig. 3, it is found coincidentally that the concentrations of

PH3, which are in the sediments, bottom water, and surface water
from Taihu Lake of China and in the atmosphere above it, as well
as the phosphorus deposition rate, have almost the same monthly

Fig. 1 Survey of the presence of free phosphine in the
environment. (Urban air33: 1. Berlin, 2. Leipzig, 3. East Leipzig, 4.
Hamburg, 5. Buenos Aires; Rural air33: 6. Leipzig, 7. Hammamet, 8.
Israel, 9. Namibia; Pole air7,27,34: 10. Arctic Yellow River station, 11.
Arctic New Oldsson region, 12. Antarctica Milo Peninsula; Freshwater
area24,35,36: 13. Lake Taihu (Year 2005), 14. Lake Taihu (Year 2011), 15.
Beijing Reservoir; Sea area28,37,38: 16. Southwest Yellow Sea, 17.
Shanghai Harbor, 18. North-Atlantic Sea, 19. North Sea, 20. Southern
Ocean; Marsh Wetland13,15,36: 21. Yancheng Reserve, 22. Beijing
paddy fields, 23. Jiangsu Paddy fields, 24. Guangzhou paddy fields;
25. Sludge biogas in Hungary1; Landfill gas39: 26. Beijing, 27. Berlin,
28. Belgium).

Fig. 2 Survey of the presence of matrix-bound phosphine in the
environment. (Sludge5,40,41: 1. WWTP in Beijing, 2. WWTPs in
Louisiana, USA, 3. Sewage plant in Beijing; Soil14,24,34,42–46: 4. Ardley
Island, Antarctica, 5. Arctic Tundra, 6. Beijing paddy, 7. Southern
China paddy, 8. Jiangsu paddy, 9. Germany industrial area, 10.
Germany rural area, 11. Louisiana marsh, 12. Tropical forest, Mahe,
Seychelles; Freshwater sediment14,24,25,40,47–49: 13. Hamburg Harbor,
14. Elster River, 15. Elbe River, 16. Lake Illawarra, 17. Taihu Lake, 18.
Wulongtang Lake, 19. Shisanling Reservoir, 20. Ming tombs
reservoir; Marine Sediment4,11,47,50–53: 21. Changjiang River Estuary,
22. South Yellow Sea, China, 23. Southwest Yellow Sea, China, 24.
Yellow Sea, China, 25. Coastal agriculture area, Jiaozhou Bay, China,
26. Coastal areas, Jiaozhou Bay, 27. Offshore areas, Jiaozhou Bay, 28.
Hamburg, Germany, 29. North Sea, Germany; Ornithogenic sedi-
ment42,54: 30. Lake Solvatnet, Arctic, 31. Ardley Island, Antarctica, 32.
Lake Mochou, Antarctica, 33. Zolotov Island, Antarctica; Feces55: 34.
Cattle manure, 35. Swine manure, 36. Feces of man).
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variation patterns25,85. The positive correlation between the
phosphine and Chl-a has been reported in several studies35,50. It
is speculated that phosphine plays an important role in the algal
bloom or eutrophication in the lake. Phosphine is produced in
sediments, then releases into water and sequentially emits into
the atmosphere. Later, mainly in spring and autumn, phosphine
may return to the lake water as dry deposition of phosphorus.
Consequently, the release of phosphorus from sediments and the
dry deposition of phosphorus into the water body would result in
algal blooming as indicated by the Chl-α distribution pattern in
Fig. 335. In this regard, phosphorus becomes a renewable resource.
When phosphorus is not needed, it transforms to phosphine
under anaerobic conditions and emits into the atmosphere; in
reverse, phosphorus goes back to the ecosystem via dry
deposition or rainfall.

IMPACT OF ENGINEERING ACTIVITIES ON CLIMATE CHANGE IN
TERMS OF PHOSPHINE
Another issue that is overlooked by scientists is the influence of
regional engineering activities on the phosphorus cycle in terms
of phosphine. It was reported that Gobi Desert in the north-
western of China is gradually turning green, mainly attributed to
the foundation of Three Gorges Reservoir project. This project
transports massive amounts of water vapor to the northwestern
areas86, probably carrying phosphine, phosphorus oxides as well
as plant seeds in the troposphere. Several studies demonstrate
that the foundation of Three Gorges Reservoir affect the
precipitation, drought, heat wave, local temperature, humidity,

and even induce the extreme weather in reservoir regions86–88.
Therefore, large-scale hydraulic engineering projects may drama-
tically influence the regional even global climate change. Another
grand hydraulic project under planning in China is the Hongqi
River water transfer proposal. As shown in Fig. 4, the 6188-km-
long Hongqi River will be starting from southeastern Tibet
Plateau89, which is going to supply 60 billion m3 water per year
to the northwestern inland of China. It could be expected that this
grand project will cause an inevitable and marked impact on the
phosphorous cycle and the ecosystems.
Phosphine is a reactive atmospheric trace gas, which competes

with methane and other greenhouse gases for hydroxyl radicals
that are produced by the light degradation of ozone22. Therefore,
the presence of phosphine in the atmosphere induces the
consumption of ozone, extends the residence time of greenhouse
gases, and indirectly enhances the greenhouse effect90. Moreover,
phosphine is easily converted into phosphoric acid or phosphate
ions in the presence of oxygen and solar radiation60. The
phosphoric acid could provide condensation nuclei for cloud
formation in the upper troposphere and subsequently influence
the global climate37,58. The phosphate ions will deposit to the land
and lakes, playing an important role in the biomass growth in
phosphorus-limited areas.

PERSPECTIVES ON FUTURE RESEARCHES
Currently, phosphorus is still considered as a rare resource to be
recovered from engineering facilities, such as municipal waste-
water treatment plants91. However, the concentration of total
phosphorus in raw wastewater is around 10mg/L, and recovering
such highly dissipated phosphorus to pure phosphate requires
concentrating for over 105 times. This is an irreversible process
that costs more than gains according to the thermodynamic law.
Thus recovering phosphorus directly from wastewater is not
feasible92. Undoubtedly, the regional recycle of phosphorus as
happened in municipal wastewater treatment plants may benefit
local farmlands or gardens. However, the accumulation of
phosphorus in local areas might result in a runoff of phosphorus
during the rainfall season and endanger the local water body due
to eutrophication93.
In global ecosystems, the wastewater treatment plant plays a

role as a decomposer. If the researchers turn it to be a producer
for phosphorus recovery or energy production, the loss will
outweigh the gain. Instead, modifying the conventional waste-
water treatment processes into a mode that transforms more
phosphates into phosphine would benefit the ecological cycle of
phosphorus. In this way, all the wastewater treatment plants
would become an essential part of the global phosphorus cycle.
The removal of phosphorus from wastewater by phosphine

production is accomplished by the phosphate reducing micro-
organisms in the inoculum (e.g., animal manure, paddy soil) under
anaerobic conditions. In general, PH3 emission from conventional
biological wastewater treatment is less effective (ng-mg/m3)20.
Scholars tried to improve PH3 yield in different wastewater
treatment process via artificially strengthened anaerobic digestion
systems, such as the anaerobic sequencing batch reactor (ASBR)94,
sequencing biofilm batch reactor (SBBR)95, and microbial electro-
lysis cell (MEC)96. Yang et al. achieved 83% total phosphorus (TP)
removal via oxygen-limited membrane bioreactor (OLMBR) and
about 19.4% phosphorus was removed by the production of PH3

gas97. In order to find a breakthrough of increasing the phosphine
yield, researchers have conducted comparative experiments on
the best inoculum sources (e.g., animal manure, paddy soil)95,98,
electron donors (i.e., carbon sources)2, sources of phosphorus (e.g.,
phosphate, hypophosphite, lecithin, phosphonoacetic acid)99,100,
investigation of the influencing factors20,101, as well as isolating
the microbial functional bacteria64,102,103. The recovery of phos-
phorus by gaseous phosphine is proposing a different direction

Fig. 3 Variations of PH3 distribution, total phosphorus (TP) and
Chl-ɑ concentration in Taihu Lake25,35,85. (a) TP dry deposition rate
in the lake; (b) PH3 in atmosphere above the lake; (c) Chl-ɑ
concentration in the lake; (d) PH3 in surface lake water; (e) PH3 in
bottom lake water; and (f) PH3 in sidements.
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for the removal of phosphorus from wastewater. The potential
benefits and differences for doing so are illustrated as follows.
First, phosphorus removal in wastewater treatment plants is

generally rather problematic and the significant drawback is the
absence of phosphorus redox processes. Phosphorus was wrongly
assumed not to undergo redox reactions in transformation and
migration processes. As discussed above, when redox potential
falls below −300mV, reduction of phosphate to phosphine can
take place. If we take advantage of the conversion of more
phosphorus to phosphine, it is believed to be a qualitative change
of P removal in the wastewater treatment plants (WWTPs) and
reduce the amount of phosphorus-rich sludge, saving the cost for
the post-treatment of sludge. Second, instead of recovering P as
the anthropogenic fertilizers, the redistribution of phosphorus via
PH3 transport from rich phosphorus sources could fertilize areas
that are poor in phosphorus26. Though the atmospheric phos-
phine is a small contribution to the phosphorus cycle, PH3 might
not be insignificant for areas where P limits the biomass stock or
phosphine is the main or only source of phosphorus. Through this
work, we aim to raise the research attention on the impact of
enormous recovery of P from wastewater on P cycle in natural
ecosystems and the production of phosphine when designing the
removal processes of phosphorus in the wastewater.
Moreover, according to the global budget of atmospheric

phosphorus balance, the total global emissions of atmospheric
phosphorus was estimated to be 3.5 Tg/yr, of which 2.7 Tg/yr fell
down to the land and 0.8 Tg/yr into the ocean104. However, the
successive cycling activities through phosphine or other pathways
remain unexplored. The tentative estimation of the global
phosphine budget is provided in Supplementary Table 1. Since
the emission of phosphine demonstrates significant spatial
variations and the survey about phosphine levels has not been
carried out globally yet, it is impossible to estimate the global
budget so far. For example, the surface area of global oceans is
about 3.6 × 108 km2 but the existing survey of phosphine levels in

the marine environments is focused on the coastal and offshore
areas28,47,53, which are seriously affected by the human activities.
The emission flux data in these areas can barely represent the
immense ocean areas. It is anticipated that this work will stimulate
more research on the role of phosphine in the global
phosphorus cycle.
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