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Fidelity of CMIP5 multi-model mean in assessing Indian
monsoon simulations
Saroj K. Mishra1, Sandeep Sahany1, Popat Salunke1, In-Sik Kang2,3 and Shipra Jain1

Considering the wide use of the multi-model mean (MMM) on the seasonal time scale, this work examines its fidelity in simulating
some important characteristics of the Indian summer monsoon using Coupled Model Intercomparison Project Phase 5 (CMIP5)
simulations. It is noted that the MMM captures the observed spatial pattern and annual cycle of surface air temperature to a great
extent, but there are large biases in magnitude, particularly over north India. For precipitation, only the broad-scale features are
captured and extreme large biases, of magnitude equal or higher than the seasonal mean precipitation, exist in the MMM. The
simulation of trends in seasonal mean temperatures and precipitation is even less satisfactory than the climatological means.
Several precipitation features, for example, low-to-moderate intensity precipitation events, orography-related rain bands, extreme
events, are noted to improve with increasing resolution of the models, whereas, no such improvement is noted for temperatures. It
is also noted that the improvement in CMIP5 MMM is marginal if compared with the best performing model from the group of
models considered for analysis. There are several models that show similar skill as MMM, and therefore could be alternatively used
for future projections. Moreover, using such individual models for Indian monsoon projections will also help us to understand the
underlying mechanisms and processes by conducting targeted numerical experiments, which would otherwise be highly limited by
approaches like MMM. Therefore, targeted efforts to improve some of these better models are required to gain more confidence in
future projections of Indian monsoon.
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INTRODUCTION
The Coupled Model Intercomparsion Project Phase 5 (CMIP5)
simulations have been widely used both in their native form as
well as with multiple refinements by statistical downscaling,
dynamical downscaling, bias correction, etc. for regional climate
change projections under global warming.1 Since there are
numerous biases in the CMIP5 simulations as reported by many
previous studies cited in the Intergovernmental Panel for Climate
Change (IPCC) Assessment Report 5 (AR5), additional care has
been taken while extracting climate information from the outputs
of individual models to reduce the impact of these biases on
climate change projections. The multi-model mean (MMM) is a
simple way to reduce biases in individual model outputs,2 and
thus it is widely used for climate change projections. The
usefulness of MMM may vary from one region to the other based
on the regional climate and on the diagnostic variables of
interest.3,4 Therefore, before assessing the climate changes over
the region (e.g., Indian summer monsoon (ISM)) that affects a
significant fraction of the world population, a targeted analysis is
needed to test the usefulness of MMM over the region.
Krishnamurti et al.5 used multi-model ensembles in the context

of weather forecasts and seasonal climate, where elaborate
methodologies, such as “super-ensemble” were used to construct
ensembles. Conclusions that an MMM performs better than the
individual models when compared to observations have been
drawn by numerous studies in the past that have looked at mean
climate,6 as well as climate variability.7 However, some studies,

such as Annamalai et al.8 have used an alternative approach
instead of simply using the MMM. In their study, using models
from CMIP3 to investigate the ENSO–monsoon relationship on
interannual and decadal timescales, they start with 18 models and
systematically exclude out models in batches that do not perform
well, finally ending up with the “best” model.
In a recent study, Sabeerali et al.9 found that the ensemble

means based on a small fraction of the CMIP5 models perform
quite well in simulating several important characteristics of
monsoon intra-seasonal oscillations associated with the ISM, but
even these models struggle to produce some other characteristics
of the ISM. A number of previous studies showed that the
projections of ISM have a large spread when individual models are
used, and that the ensemble mean summer monsoon rainfall
showed an increasing trend from the middle to the end of the
century.10–12 Noted is that the ensemble mean results depend on
the subset of models selected and on the methodology adopted
(for example, the weights assigned to each model while
computing the MMM). Also recently, Sabeerali et al.13 found that
the reliability of ensemble mean projections of the South Asian
Monsoon rainfall from the CMIP5 models is questionable due to
the relationship between model rainfall and precipitable water
being much stronger than observed, and emphasized the need of
improvements of individual models, particularly the convective
parameterization and cloud microphysics used in the CMIP5
models.
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In other words, the projection of future climate could be reliable
only when the models are able to produce the past climate
reasonably well. Therefore, before assessing the ensemble mean
projection, it is important to investigate its various advantages and
limitations of MMM climate states by comparing those with
observations. In this study, we examine how well does the MMM
perform in simulating temperature and rainfall over India during
the monsoon season, and we identify what are the features that
the MMM is able to reproduce and what are the major
shortcomings.

RESULTS
The climatological mean (1975–2005) surface air temperature for
June– September (JJAS) from Indian Meteorological Department
(IMD) observations and MMM are shown in Fig. 1a, b, respectively.
The IMD climatology for the historical period shows that the
highest temperature occurs over the northwestern region of the
country, and locates over the axis of the monsoon trough inclined
with a northwest–southeast orientation (Fig. 1a). It can be seen
from Fig. 1b that the MMM captures the observed pattern to a
great extent, however, there are biases in magnitude. As can be
seen from Fig. 1c, the temperatures are severely underestimated
over the northern and northeastern parts of India with biases of
around 10–15 °C, which was also previously noted by Basha et al.14

On the other hand, the temperatures over the axis of monsoon
trough are overestimated by 2–5 °C, with higher biases towards
the northwestern flank of the trough. Over southern and
southeastern India, the biases are relatively low with the
magnitude of around 1–5 °C. As mentioned above, in order to
compare the models with observations, all the models were
regridded to the observational grid. To verify if the severe
underestimation over the northern parts of India could be an
artifact of interpolation, in Fig. 1d, e, we show the example of one
of the models (MIROC-ESM), with temperatures at its native coarse
resolution of 2.8° × 2.8° and its re-gridded version at 0.25° × 0.25°.
As noted from Fig. 1d, e, this underestimation is not an artifact of
regridding, but is a real bias that can be seen in the native
resolution as well.
One of the obvious reasons one may think to explain the cold

bias in the MMM is the inaccurate representation of orography
over the Himalayan and Tibet region in the models due to their
coarser resolution. In order to check this, we have analyzed a
modeling system (MIROC) for which data is available from the
CMIP5 archive at multiple resolutions (see Fig. 1f–h), however,
there are differences in their physics packages as well, so the
difference in simulations can only be partially attributed to the
difference in spatial resolution. Analyzing the corresponding
figure panels, it can be seen that counter-intuitively enough, the
biases over northern India systematically increases with the
increase in spatial resolution. Hence, one may conclude that the
coarser resolution of some of the CMIP5 models included in the
MMM may not be playing a significant role in causing the cold
bias seen in surface air temperature over the northern parts of
India.
Since the MMM used in this case is an unweighted (each model

gets the same weight) mean of all models, one may wonder if
assigning the same weights to the better and the worse models
could lead to large biases. In order to verify this we compute the
root mean square error (RMSE) and the pattern correlation
coefficient (PCC) of the individual models (see Table 1), and then
choose the best and the worst performing models based on a
simple ratio of PCC by RMSE (the best model would have the
highest value and the worst model would have the lowest value).
It is noted that the CCSM4 is the best model, while the GISS-E2H
turns out to be the worst model (see Fig. 1i, j). Although the cold
bias over northern India is somewhat larger in the worst model, it
is not too different than the best model. Thus, one may conclude

that the cold bias in surface air temperature seen over northern
India in the MMM is a systematic bias in all models, and increasing
the model resolution does not help to alleviate this problem. The
large difference between MMM and observations over the
Himalayan region could either be due to the inaccuracies in the
observational dataset over this region or there is something
missing in the models physics/dynamics that is causing this large
bias, which is common across all models and resolutions, and it
needs targeted numerical experiments to identify the reasons
behind this.
It is to be noted that the value of the ratio of PCC by RMSE is

~0.15 for the MMM (Table 1, with north box). For 16 out of 28
models, this ratio is less than MMM, whereas there are 12 models
for which this ratio is equal to or even higher than MMM. We have
also examined the biases in these 12 individual models and it is
found that some of them, for example, CCSM4, have biases similar
to MMM (figure not shown). This, therefore, suggests that though
MMM is better than several individual models, however, there are
still few individual models, which perform as good as MMM. It is
previously shown that the biases over the northern India are
common across individual models and therefore we also compare
the performance of the MMM after removing the north box. It is
noted that though the values of this ratio for MMM and most
individual models increase after removing the north box, however,
for this selected domain too, the performance of best individual
model is equivalent to the MMM. Therefore, the general notion
that the MMM performs better than individual models is not valid
for climatological seasonal mean temperature over the Indian land
region.
In Fig. 2, we analyze some other important aspects of surface air

temperature characteristics. Figure 2a shows the annual cycle of
the area-weighted spatial mean of pentad surface air temperature
over the Indian land. The annual cycle is shown for IMD
observations and the MMM. Since there exist extremely large
cold biases in the MMM over northern India, the annual cycles
from both observations and MMM are plotted for the whole Indian
land in one case (blue lines), and by excluding the northern box
(Indian land between 33 and 38.5°N) in the other (red lines). From
Fig. 2a, one may conclude that (i) the MMM captures the annual
cycle of temperature over Indian land, (ii) there is an overall
negative bias in surface air temperature in the MMM throughout
the year, (iii) the negative bias is small during JJAS, but large in
other months, and (iv) excluding the northern box reduces the
total bias in all months, but the MMM temperatures are still lower
than that observed throughout the year. Our results, thus, show
that the cold bias in the annual mean throughout the year is not
entirely because of the lower than observed temperatures
simulated over north India.
Since the daily distribution of surface air temperature is

important for various societal applications of climate information,
we next analyze this aspect and show it in Fig. 2b. As noted above,
there are large biases over north India, so in order to be fair to the
models, we exclude this box of large negative biases while
computing the frequency distribution. Since taking a MMM before
computing the distribution will lead to the elimination of extremes
due to the out-of-phase occurrence of daily extremes in individual
models, we first compute the distribution for each of the models
and then take the mean of all distributions. It is to be noted that
the computation of the probability distribution function (PDF) for
individual models does not involve any spatial or temporal
averaging. Figure 2b thus shows that, even without the northern
box, the occurrence probability of temperatures in range 0 to
+15 °C is overestimated in the MMM. In the range of 15–35 °C,
there is a good agreement between the MMM and observations in
the distribution of daily surface air temperatures over the Indian
land. However, in the temperature range above 35 °C, the MMM
overestimates the occurrence probability as compared to the
observations. To check the improvement in the occurrence of
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Fig. 1 JJAS climatological mean (1975–2005) temperatures from a IMD, b MMM, c MMM–IMD, d MIROC-ESM model at 2.8° resolution, e
MIROC-ESM model regridded to 0.25° resolution, fMIROC-ESM at 2.8°, g MIROC5 at 1.4°, h MIROC4h at 0.56°, i CCSM4 (best model), and j GISS-
E2H (worst model)
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temperature extremes with increasing model resolution, we also
show the PDF for MIROC-ESM (one of the coarsest resolution
model) and MIROC4h (one of the finest resolution model) at their
native resolutions in Fig. 2b. The PDFs for both the models (blue
and green lines) are quite similar with large over-estimation on
both sides of PDF. No improvement is noted from MIROC-ESM to
MIROC4h thereby suggesting that the simulation of temperature
extremes in these models may not improve just by increasing the
spatial resolution.
Since trends provide some of the most valuable information in

the context of climate change, we analyze how well the models
perform in simulating the observed trends. The JJAS trends from
observations and the MMM are shown in Fig. 2c, d, respectively.
To calculate the MMM trend at each grid point, first the MMM time
series is calculated and then the trends are estimated using
Theil–Sen method (which is more robust than linear trends) and
the significance is determined using Mann–Kendall test. Only the
grid points where the trend is significant at the 90% level have
been stippled. As can be seen from observations, there is a net
warming trend of 0.05–0.30 °C per decade over almost whole
Indian region, except east coast of India where there is a cooling
of around 0.05–0.15 °C per decade. Note that the temperature
trends are not significant over the entire Indian region in
observations. However, the MMM show significant warming over
the entire Indian land and captures broad features of the trend

distribution with warming over the northwest and peninsular
India. Thus, one may conclude that the MMM captures the
magnitude of the trend in surface air temperature for some
locations but the trend is not significant in observations.
Figure 3a, b shows the climatological mean (1975–2005)

precipitation for JJAS from observations and MMM, respectively.
The IMD climatology for the historical period shows that the
highest rainfall occurs over the Western Ghats and northeast India
(Fig. 3a). From Fig. 3b, it can be seen that the MMM captures the
observed pattern to some extent (such as the maxima over the
Western Ghats and northeast India), however, it fails to capture
the local and regional scale features and there are large biases in
the magnitude. Figure 3c shows severe dry bias over most parts of
Indian land, especially over the Western Ghats, whereas there is a
wet bias over the leeward side of Western Ghats. A similar exercise
as that done for temperature was repeated to investigate if some
of the large biases, such as those over peninsular India, are due to
the interpolation while re-gridding. It is confirmed from Fig. 3d, e
that the biases are not an artifact of regridding as similar biases
can be seen in the native resolution as well.
To investigate the resolution dependence of the model bias, a

similar exercise as that done for temperature was repeated (Fig.
3f–h). It is worth noting that increasing the spatial resolution of a
model leads to a more accurate representation of the bottom
boundary (such as the orography, coastlines, land-use, land-cover,

Table 1. RMSE, PCC, and ratio of PCC by RMSE for JJAS surface air temperature and precipitation

Model name Surface air temperature (°C) (with
North Box)

Surface air temperature (°C)
(without North Box)

Precipitation (mmday−1) (with
North Box)

RMSE PCC Ratio RMSE PCC Ratio RMSE PCC Ratio

MMM 5.32 0.80 0.15 3.51 0.67 0.19 3.82 0.66 0.17

ACCESS1.0 4.94 0.75 0.15 3.25 0.58 0.18 4.50 0.56 0.12

BCC-CEM1.1 4.66 0.68 0.15 4.08 0.50 0.12 5.96 0.25 0.04

CanCM4 4.76 0.72 0.15 3.68 0.54 0.15 4.29 0.60 0.14

CanESM2 4.80 0.73 0.15 3.76 0.55 0.15 4.47 0.57 0.13

CCSM4 5.24 0.83 0.16 3.27 0.74 0.23 3.88 0.60 0.16

CESM1-CAM5 5.45 0.84 0.15 3.64 0.75 0.20 4.23 0.57 0.13

CNRM-CM5 7.09 0.78 0.11 3.98 0.66 0.16 4.16 0.62 0.15

CSIRO-MK3.6.0 6.17 0.76 0.12 5.20 0.61 0.12 6.09 0.50 0.08

EC-EARTH 7.24 0.78 0.11 5.82 0.65 0.11 3.50 0.68 0.20

FGOALS-g2 5.40 0.67 0.12 4.71 0.49 0.10 6.82 0.17 0.02

GFDL-CM3 6.89 0.76 0.11 4.23 0.61 0.14 3.98 0.53 0.13

GFDL-ESM2G 5.38 0.77 0.14 4.22 0.64 0.15 3.84 0.59 0.15

GFDL-ESM2M 5.35 0.76 0.14 4.22 0.63 0.15 3.96 0.55 0.14

GISS-E2H 8.43 0.78 0.09 6.47 0.64 0.10 8.55 0.37 0.04

GISS-E2R 8.19 0.79 0.10 6.65 0.66 0.10 7.86 0.35 0.04

HadCM3 5.22 0.77 0.15 3.47 0.61 0.18 4.52 0.59 0.13

HadGEM2-CC 5.16 0.77 0.15 3.43 0.61 0.18 5.09 0.54 0.11

HadGEM2-ES 5.02 0.77 0.15 3.35 0.62 0.19 5.07 0.54 0.11

INM-CM4 6.66 0.73 0.11 5.06 0.55 0.11 4.24 0.51 0.12

IPSL-CM5-LR 5.93 0.78 0.13 3.63 0.65 0.18 5.68 0.38 0.07

IPSL-CM5-MR 5.89 0.81 0.14 3.70 0.70 0.19 5.50 0.32 0.06

MIROC4h 7.59 0.83 0.11 4.22 0.76 0.18 4.17 0.60 0.14

MIROC5 5.33 0.82 0.15 3.44 0.72 0.21 4.12 0.69 0.17

MIROC-ESM 5.43 0.67 0.12 4.70 0.48 0.10 4.87 0.29 0.06

MIROC-ESM-CHM 5.43 0.66 0.12 4.71 0.47 0.10 4.98 0.27 0.05

MPI-ESM-LR 5.57 0.83 0.15 3.87 0.74 0.19 4.14 0.62 0.15

MRI-CGCM3 6.93 0.82 0.12 5.17 0.72 0.14 6.46 0.46 0.07

NorESM1-M 4.87 0.78 0.16 3.61 0.63 0.17 4.14 0.54 0.13
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etc.), however, if the physical parameterizations are not satisfac-
tory, the final simulation may turn out to be worse even though
the resolution is high. The major improvement in such a case
would be seen over the locations where the bottom boundary
plays a critical role. The MIROC5 model has a spatial resolution of
1.4° × 1.4°, whereas MIROC4h model has a spatial resolution of
0.56° × 0.56°. Some aspects such as rainfall over the Western Ghats
are better simulated in MIROC4h due to its higher resolution. As
shown above, the increase in model resolution does not show any
major improvement in the temperature biases, however, for
rainfall, some of the biases get significantly alleviated due to the
increase in spatial resolution. We have also checked the PCC by
RMSE ratio for each individual model and the MMM (Table 1). This
ratio is ~0.17 for the MMM and for the individual model it varies
from 0.04 to 0.20. There are two models, viz. EC-Earth and MIROC5,
for which this ratio is higher than MMM. For the EC-Earth model,
the PCC is higher and RMSE is lower than MMM and the
magnitude of regional biases is similar to the MMM, thereby
suggesting the good performance of this model over the MMM.
We next look at other aspects of rainfall that are equally

important for many applications of the climate information
provided by models. Similar to the analysis done for temperature,
in the following we analyze the annual cycle, occurrence
probability, and trends in rainfall over the Indian land. It can be
seen from Fig. 4a that the MMM captures the annual precipitation
cycle over the Indian land quite well, but there is a dry bias during
June–August, and wet bias during November–January. Since the
distribution of rainfall on sub-monthly timescales is equally
important for many climate applications (e.g., agriculture), we
next look at the PDFs of daily precipitation from observations and

the MMM. Given the large range in rainfall values (as compared to
temperature values), we use a finer bin width (0.2 mmday−1) for
the 0–20mm day−1 range, and a coarser bin width (5 mm day−1)
for the 20–500 mm day−1 range, and show the PDFs in two
separate panels. The PDFs for the precipitation are computed
using the same methodology as the PDFs for the temperature to
avoid issues due to the out-of-phase behavior of the individual
models in simulating rainfall over a given grid point. It can be seen
from Fig. 4b, c that the MMM overestimates the occurrence
probability in the low to moderate precipitation range (0–20mm
day−1) and fail to capture the heavy precipitation. In the MMM,
the maximum daily precipitation values are ~60mm day−1,
whereas in observations it goes beyond 500mm day−1. The
underestimation of extreme events in CMIP5 models may be
attributed to the coarse resolution of the models, and to the issue
of high-frequency low-intensity drizzle that prevents the moisture
to build up in the atmosphere to a level where it can cause
extreme rain events. This could also be substantiated from Fig. 4b,
c which shows that the PDFs for MIROC-ESM model (shown by the
green line) and MIROC4h model (shown by the blue line) at their
native resolutions. The MIROC-ESM model overestimates the low
to moderate precipitation intensity (0–20mm day−1) but severely
underestimates the high precipitation intensity >20 mm day−1.
This model also fails to capture the precipitation intensity
>120mm day−1. In contrast to this, the fine resolution model,
MIROC4h, is very close to the observations and captures the
extreme events realistically.
Finally, we analyze the fidelity of the MMM in reproducing the

observed spatial pattern of trends in the last few decades. Figure
4d shows that the trend in IMD precipitation is less consistent in

Fig. 2 a Annual cycle of all-India weighted area average pentad surface air temperature from IMD and MMM with (blue) and without (red) the
north box (Indian land between 33–38.5°N), b PDFs (%) of daily surface air temperature from IMD and mean of the distributions of individual
models, without the north box. PDFs for MIROC-ESM and MIROC-4h are also shown. Spatial distribution of JJAS surface air temperature trends
(°C per decade) from c IMD and d MMM. Grid points with a trend value significant at the 90% level have been stippled
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space as compared to temperatures. The trend values are
significant (stippled) over a very limited region of Indian land
and over this limited region, there is a drying trend in precipitation
with values from −0.3 to −0.6 mm day−1 per decade. However,
during the same period, the MMM shows a weak positive trend
over the monsoon trough zone, and the values are not significant
over most of the grid points. Thus, one may conclude that the
MMM fails to capture the observed rainfall trend over the Indian
land.

DISCUSSION
From the analysis of the MMM in regard to its fidelity in simulating
some of the salient features of the ISM, the following broad
conclusions may be drawn. The MMM captures the observed

pattern of surface air temperature to a great extent (pattern
correlation of ~0.80), however, there are large biases in the
magnitude of the order of 10–15 °C (RMSE of 5.3 °C), particularly
over the northern and northeast India. The analysis shows that the
coarser resolution of many of the CMIP5 models may not be
playing an important role in causing this large negative bias. The
large cold bias in surface air temperature over northernmost parts
of India persists across models and resolutions, and it may need
targeted numerical experiments to identify and alleviate this bias.
The MMM captures the annual cycle of surface air temperature

over Indian land, although there is a cold bias throughout the
year. Even after removing the north box, the cold bias still prevails
throughout the year. The MMM simulates the moderate tempera-
tures between 15 and 35 °C realistically, but overestimates the
extremes (<15 and >35 °C) on both sides of the PDF. Similar to the

Fig. 3 JJAS climatological mean (1975–2005) rainfall (mm day−1) from a IMD, b MMM, c MMM-IMD, d MIROC-ESM at 2.8° resolution, e MIROC-
ESM regridded to 0.25° resolution, f MIROC-ESM at 2.8°, g MIROC5 at 1.4°, and h MIROC4h at 0.56° resolution

Fidelity of CMIP5 multi-model mean in assessingy
SK Mishra et al.

6

npj Climate and Atmospheric Science (2018)  39 Published in partnership with CECCR at King Abdulaziz University



systematic cold bias in models, the simulation of temperature
extremes does not appear to improve with the increasing spatial
resolution of the models and independent experiments are
required to address this particular aspect. Analysis of the spatial
pattern of temperature trends reveals that the MMM fails to
capture the observed trends.
The MMM captures the large-scale features of observed rainfall

but there are large biases in the magnitude. For example, the
MMM shows maxima over the Western Ghats, but the seasonal
mean precipitation is severely underestimated over this region.
There is general dry bias over the Indian land region. Investigation
of the dependence of model biases on the spatial resolution of the
model shows that rainfall features that have a strong dependence
on the lower boundary (e.g., orography over the Western Ghats
region) show significant improvement with the increase in
resolution. However, over other locations, the model physics
seems to have a more important role to play. The MMM captures
the seasonal cycle quite well, although there is a dry bias during
JJAS and wet bias during November–January. The MMM over-
estimate the low to moderate precipitation (0–30mm day−1) and
underestimate the heavy precipitation. The MMM also fails to
capture the extreme events with precipitation >60mm day−1,
however, the simulation of extremes is expected to improve with
the increase in the model resolution. The analysis of trends in JJAS
rainfall shows that the MMM fails to capture the observed rainfall
trend.
Thus, while MMM is a useful way of extracting first-order climate

change projections information from the CMIP5 models it has its
own limitations that need to be understood by the community of
researchers working on climate applications. There are several
individual models (for example, CCSM4 for temperatures) that are
found to perform better than the MMM in terms of biases and
overall performance. Some systematic biases have been identified
in this study that are present across the models and resolutions,
and hence simply taking a MMM does not help in such cases.
Thus, only a targeted exercise of model improvement would help
in reducing such model biases in the longer term, unless one

prefers to adopt other methods, such as bias correction to get
better estimates of climate change projections but again it has its
own shortcomings.

METHODS
Monthly and daily means of surface air temperature and precipitation from
28 CMIP5 models have been analyzed over the Indian land for
June–September. Daily gridded observed surface air temperature (2 m
above the surface) at one-degree resolution15 and daily gridded observed
precipitation at quarter-degree resolution16 over the Indian land have
been analyzed. The model and observed surface air temperature datasets
have been interpolated to quarter degree resolution using bilinear
interpolation for making them consistent with the quarter degree rainfall
observation, and also to avoid exclusion of land grid points in the
neighborhood of the Indian coastline.

DATA AVAILABILITY
This study uses the data from CMIP5 models available at the Earth System Grid
Federation (ESGF) (https://esgf-index1.ceda.ac.uk/search/cmip5-ceda). The IMD data
can be found at this link (http://www.imd.gov.in/).
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20–500mmday−1 range with bin width of 5mmday−1. JJAS rainfall trends (mmday−1 per decade) from d IMD and eMMM. Grid points with a
trend value significant at the 90% level have been stippled
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