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This research focused on the relationships among 34 major airports in China, analyzing how

these relationships are influenced by spatial dependence and heterogeneity. Using a spatial

econometric model, it found that passenger traffic in China’s airports displays a mutually

driven aggregation effect. Furthermore, the study revealed that the airport relationship

changes from complementarity to competition as the geographic distance between them

decreases. The study also classified the main airports in China into three hierarchical levels

and found significant complementarity and competition among those within the hub-and-

spoke network structure. Specifically, this study identified a complementary relationship

among regional trunk and local branch airports, as-well-as significant competition among hub

airports. Crucially, the study suggests that the absence of a hub airport weakens the colla-

borative interactions between different types of airports, emphasizing the critical importance

of hub airports for the connectivity and operational efficiency of China’s airport network.
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Introduction

The relationship between airports can take many forms and
is influenced by various factors, including geographical
proximity (Bełej et al., 2020), air traffic patterns (Francis

et al., 2003), ownership and management (Oum et al., 2008),
partnerships and alliances (Peng, Lu 2022), and regulations and
policies (Starkie, 2012). Airports close to each other may have a
competitive relationship or form partnerships to share resources
and coordinate air traffic (Cheung et al., 2020). Those with high
passenger traffic may route passengers to their destinations
through partnerships with other airports. Airports can be owned
and operated by local, regional, or national governments or pri-
vate companies, and the relationships between these entities can
impact their management and operations (Oum et al., 2006).
Additionally, airports may form partnerships or alliances with
other airports, airlines, and aviation-related companies to
increase efficiency. Furthermore, their relationship with reg-
ulatory bodies, such as the Federal Aviation Administration or
the European Union Aviation Safety Agency, can impact their
operations through safety, security, and environmental regula-
tions (Giovanelli, Rotondo 2022).

Inter-airport relationships can also be explained through the
concepts of spatial dependence and spatial heterogeneity in
regional science and geography. Within the context of airports,
spatial dependence emphasizes the mutual influences and
dependencies between airports due to their geographical proxi-
mity, which may lead to competitive or cooperative relationships
among neighboring airports. Their proximity to each other is a
critical factor in the formation of hub-spoke networks (Alderighi
et al., 2007). Airports close to each other tend to compete for the
same market, while those further apart often have complementary
roles, with one potentially acting as a hub for passengers headed
to the other. On the other hand, fierce competition between
airports close in proximity may reduce the efficiency of each one,
which may encourage cooperation between them. (Bergantino
et al., 2020). Spatial heterogeneity refers to the variation in
characteristics or attributes of a geographic area or a set of geo-
graphic units (LeSage, Pace 2009). In the context of airports, this
refers to the differences in factors such as location, size, and the
services offered by different airports and how these factors impact
their competitiveness and relationship with others. These differ-
ences can impact their inter-spatial relationship, as well as the
broader air transportation network. Spatial heterogeneity can
significantly impact the interplay between airports as either
competitive or complementary (Bergantino et al., 2020; Pagliari,
Graham 2020). Many airports attempt to stand out by devising
specialized development strategies in areas such as marketing,
route expansion, and service delivery, leading to more intense
competition (Pagliari, Graham 2020). In such scenarios, airport
substitution commonly occurs, where passengers choose to travel
to farther airports for lower prices and improved airline services
(O’Connor, Fuellhart 2016). Spatial heterogeneity significantly
impacts the formation and operation of airport hub–spoke net-
works. For instance, a large airport equipped with advanced
facilities and a wide range of international routes can serve as a
hub, while a smaller airport primarily catering to local or short-
haul flights can function as a spoke.

Many studies have used a spatial econometric approach to
quantify the degree of competition and complementarity between
airports in various geographical locations, including China
(Cheung et al., 2020), the European Union (Pavlyuk, 2010), the
United States (Bergantino et al., 2020) and Australia (Ke and
Baker, 2022). In this regard, these studies show that the compe-
tition and complementarity between airports are influenced by
several factors, such as geographic proximity, market segmenta-
tion, and the level of air traffic demand. A notable limitation of

previous research is the lack of a detailed examination of how
spatial dependence and heterogeneity influence airport relation-
ships. Specifically, existing studies overlook whether the interac-
tions between airports vary by geographical location or if these
relationships differ across various hierarchical levels of airports.
This oversight may restrict the applicability of findings and the
validity of conclusions derived from such studies. In addition, the
spatial econometric model applied in these studies only uses a
single spatial weight matrix, which may not accurately capture the
complex and dynamic effects of spatial dependence and spatial
heterogeneity on airport relations. Therefore, this study aims to
explore the following questions: First, does the spatial dependence
between airports change with geographical distance, and how
does this change affect their relationships? Second, how could
specific indicators be used to reflect the spatial heterogeneity
between airports? Third, how are the relationships between air-
ports affected by spatial heterogeneity?

This study seeks to address these questions by establishing an
analytical paradigm. Firstly, the research utilizes a spatial
econometric model to ascertain the degree of competition or
complementarity among airports, using spatial autoregressive
coefficients as the indicator. Secondly, it examines the dynamic
nature of the relationship between airports by considering the
changes in the relationship as a function of geographical distance.
Thirdly, the research identifies indicators capturing the spatial
heterogeneity among airports and applies the entropy-weighted
technique for order preference by similarity to the ideal solution
(TOPSIS) method to assess the comprehensive strength of air-
ports, subsequently classifying them into various hierarchies.
Lastly, the research examines the variations in airport relation-
ships across different hierarchies.

This study conducts empirical research using data from 34
major airports in China over 13 years. Chinese airports are
selected for empirical analysis due to the multifaceted nature of
their interactions, influenced by geographical proximity, traffic
flow, ownership, collaborations, and regulatory environments
(Wang et al., 2014; Chen et al., 2021). The diverse and complex
relationships among airports in China, marked by different levels
of traffic, ownership models, and strategic alliances, provide a rich
context to understand the dynamics of these relationships.
Moreover, the disparities in economic development and the
influence of location on route layouts introduce a layer of het-
erogeneity, making China an exemplary case for studying the
impact of these factors on airport competition. Therefore,
selecting Chinese airports as research samples is more repre-
sentative and provides a valuable reference for similar studies in
other regions. The findings of this study are expected to provide
useful insights and serve as a theoretical foundation for relevant
authorities to formulate effective airport policies.

Literature review
There is a wealth of research focused on understanding inter-
airport relationships and their interaction with one another. The
relationship between airports can be defined as the inter-
dependence or interconnection between them (Cheung et al.,
2020; Wu et al., 2023). This relationship can be studied from
various perspectives, including competition (Thelle and Sonne,
2018), complementarity (Mantin, 2012), market structure (Choo
et al., 2018), and regional development (Tang et al., 2022). Many
studies have provided comprehensive overviews of the economic,
policy, and management aspects of the relationship between
airports, including the competitive and complementarity
dynamics between them (Wu et al., 2023), the role of airports in
regional and national economic development (Tveter, 2017), and
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the impact of regulatory and technological developments on
airport markets (Starkie, 2002).

In previous studies, researchers have utilized an array of
methodological approaches to analyze the inter-relationships
among airports. Quantitative analysis models have been widely
used in examining passenger or airline preferences for airport
choice in a multi-airport region. For instance, Zijlstra (2020)
utilized a conditional logit model to emphasize the significant
impact that national borders have on airport choice. This type of
analysis provides a systematic approach to understanding how
various factors, such as geographical barriers, influence airport
selection. In another study, Pavlyuk (2010) introduced a multi-
layer model of competition and cooperation effects, elucidating
how competition and cooperation between airports can have both
positive and negative impacts on efficiency depending on the
distance between them. The results of the study provide valuable
insights into the complex relationships that exist between airports
in a multi-airport region. These studies have played a critical role
in advancing the understanding of the complex relationships
between airports in a multi-airport region and allow researchers
to gain a deeper understanding of the strategic decisions made by
airports and how these decisions impact the overall performance
of the airport sector.

Airport inter-relationships have been extensively studied in the
literature, with several studies focusing on the correlation between
these relationships and airport efficiency. One such study by
Sugiyanto et al. (2018) used the Herfindahl–Hirschman Index
(HHI) to examine the impact of a scheme comprising two hubs
and eight spoke airports on the efficiency of cargo transportation
on Sumatra Island. The study found that this scheme can improve
the efficiency of cargo transportation in the region. Another study
by Bergantino et al. (2020) explored the effects of competition on
the technical efficiency in 2015 of 206 international airports in
Europe, North America, and Pacific Asia. This study discovered
that competition could have different impacts on the technical
efficiency of airports, depending on the cut-off distance con-
sidered. The findings from these studies emphasize the sig-
nificance of examining the inter-relationships among airports in
the analysis of airport efficiency and underscore the need for
additional research to gain a deeper understanding of how
competition and complementarity among airports affect their
efficiency and performance.

The field of applied economics has seen increasing attention
given to modeling airport relationships using spatial econometric
models. The spatial econometric model has obvious advantages in
analyzing the spatial relationship between airports. Such models
provide a flexible framework for analyzing the spatial relation-
ships between airports and can help to account for a variety of
unobservable factors that might impact these relationships. The
ability to model heterogeneity is particularly important, as it
allows us to capture the complexity and diversity of the rela-
tionships between airports and to account for differences across
regions. Additionally, spatial econometric models can handle
endogeneity, account for spatial autocorrelation, and incorporate
spatial weight matrices (LeSage, Pace 2009), all of which can help
to provide more accurate estimates of the relationships between
the airports. For many airports, spatial econometric theory pro-
vides a convenient way to model relationships based on geo-
graphic and economic data. Once the airports’ spatial attributes
have been determined, multivariate regression models with var-
ious spatial dependencies can be constructed to analyze their
influence on each other. Pavlyuk (2016) analyzed the spatial
heterogeneity of 365 airports in Europe in 2011 using a spatial
stochastic frontier model developed by Fusco and Vidoli (2013)
and an inverse distances matrix. The study found that spatial
heterogeneity significantly impacted airport efficiency and

productivity estimation. Bergantino et al. (2020) considered a
sample of 206 airports in Europe, North America, and Pacific
Asia in 2015 and used the same model to conclude that compe-
tition had an important effect on airport efficiency levels, which
varied depending on the geographical distance between airports.
Gudmundsson et al., (2014) conducted a survey on the conges-
tion spillover effect of London Heathrow Airport (LHR) on other
airports in the UK. The study suggested significant congestion
spillover effects from LHR to other airports in London, with the
extensive spatial impact of Heathrow possibly reaching the spa-
tially more distant Manchester and Birmingham airports. Cheung
et al., 2020 proposed an SDPMSE Model with an inverse travel
time and distance matrix to analyze the relationship among four
major airports in the Pearl River Delta region from the per-
spective of airport capacity. This study found a significant com-
petitive relationship between airports in the Pearl River Delta
region with different spillover effects between airports.

A limitation of the existing literature is its failure to shed light
on the underlying mechanisms of how spatial dependence and
spatial heterogeneity affect the competition or complementarity
between airports. The question of how changes in distance
between airports or changes in airport attributes might impact
inter-airport relationships remains largely unanswered. This gap
is important in the current understanding of airport relationships,
as it is unclear how changes in these factors would result in shifts
toward competition or complementarity. A clearer understanding
of these mechanisms can facilitate more informed policy deci-
sions for managing airport relationships and improving efficiency
and productivity. Moreover, the static capture of inter-airport
spatial relationships may not provide a comprehensive under-
standing of the dynamic nature of these relationships. Con-
sidering the dynamic changes in spatial dependence and
heterogeneity is crucial to accurately reflect real airport inter-
relationships and provide meaningful policy recommendations. A
more nuanced and dynamic view of the relationships between
airports can be obtained by continuously monitoring these ele-
ments and incorporating them into the analysis. This perspective
will help to identify the specific conditions that drive changes in
inter-airport relationships and inform effective policy-making for
real-time responses to these changes. Based on the literature
review, this study focuses on the impact mechanisms and
dynamic changes of how spatial dependence and heterogeneity
affect airport relationships, thereby providing a deeper and more
precise revelation of airport interrelations.

Methodology
The analysis of spatial relationships is important for under-
standing economic growth, as it is influenced by both internal
and external factors in neighboring regions, creating natural
spatial externalities. Researchers often capture these effects
using spatial econometric models that account for spatial
dependence among variables across regions. In this context,
inter-airport spatial relationships are influenced by both geo-
graphic and economic factors, which can be captured using
distance weight matrix and economic weight matrix modeling
in accounting for unmeasured variables. This study classifies the
relationship between major airports in China as either compe-
titive or complementary, following an approach commonly used
in the literature (Cheung et al., 2020; Merkel, 2017). Specifically,
this study measures competition as the strength of negative
spatial dependence in passenger traffic demand between an
airport and adjacent airports, indicating that they are sub-
stitutes. Conversely, complementarity is defined as the intensity
of positive spatial dependence, indicating that these airports are
complements.
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Model specification. The spatial panel data model is an extension
of the standard panel data model, which considers spatial effects
among different units. The model can be represented as follows:

Yit ¼ δWijYit þ βXit þ ρWijXit þ μi þ εit ð1Þ

εit ¼ λWijεit þ νit ð2Þ
where, Yit represents the dependent variable for a particular unit i
(e.g., an airport) at time t (e.g., a year). The first term, δWijYit,
represents the spatial lag of Yit, where Wij is a spatial weight
matrix that specifies the spatial interaction structure among dif-
ferent units. It captures the spatial relationships between different
regions and assigns weights to the neighboring regions. The
second term, βXit, represents the non-spatial covariates that affect
Yit, where Xit is the matrix of independent variables. The third
term, ρWijXit, represents the spatially lagged independent vari-
ables. It captures the spatial spillover effects of the neighboring
units on the independent variables. Furthermore, μi represents
the unit-specific time-invariant fixed effects, and εit is the error
term. The last equation, εit = λWijεit + νit, represents the spatial
autoregressive structure of the error term. It shows that the error
term is a function of the neighboring units’ error term. The
disturbance vector, νit, is of size n × 1 and is assumed to follow a
normal distribution N (0, σ2), representing a disturbance process
with a mean of zero, constant variance of σ2, and no covariance
between observations.

Formulas (1) and (2) incorporate three spatial interaction
effects. The first effect is captured by including a spatially lagged
dependent variable term, where the parameter δ is referred to as
the spatial autoregressive coefficient. This coefficient enables the
identification of positive or negative spatial interactions between
different airports studied in this research. The second spatial
interaction effect is accounted for by incorporating spatially
lagged exogenous variables, where ρ represents the spillover
effects of the spatial lag of independent variables on dependent
variables. These terms control for possible correlations between
the dependent variable of each region and the level of explanatory
variables in neighboring regions. The third spatial interaction
effect is incorporated into the model by assuming that the error
term, εit, is spatially correlated, with λ representing the spatial
autocorrelation coefficient. This term reflects the effect of the
impact of unobserved shocks that follow a spatial pattern. The
inclusion of the first interaction effect in a model leads to the
“spatial autoregressive model” (SAR), also known as a “spatial lag
model.” On the other hand, a model with only the third spatial
interaction effect is called the “spatial error model” (SEM). The
“spatial Durbin model” (SDM) includes both first and second
interaction effects, with spatial lag for both the explained and
explanatory variables. Unlike models that ignore spatial depen-
dencies in disturbances, the SDM model provides a different
specification for error dependence, as described in the literature
on spatial econometrics (LeSage, Pace 2009). Furthermore, the
SEM model can be derived by imposing an appropriate non-
linear restriction on the parameters of the SDM model, making
the latter more general.

This study establishes the model by drawing on relevant
literature to include a set of control variables at the city level. In
many studies, the demand for airport services is estimated as the
annual passenger flow (Chen et al., 2021). Therefore, this study
considers air passenger traffic (PA) as the critical dependent
variable to estimate the spatial dependence of China’s airport
services. Additionally, household income and gross domestic
product (GDP) have been found to positively impact air travel
demand (Cheung et al., 2020). This study accordingly uses per
capita GDP as a control variable to measure the development

levels of the regional economy (Gong and Ling, 2017).
Furthermore, this research employs the amount of aviation
employment (EM) as a control variable, which corresponds to the
labor variables in a production function (Chen et al., 2021). It
should be noted that services such as cargo handling or transport
have no value on their own and are inputs into the production of
other goods (Merkel, 2017). Moreover, in the context of airport
competition, the behavior of passengers is extremely relevant for
leisure trips (Granados et al., 2012). From this scenario, this study
assumes that the demand for passenger transport is derived from
regional tourism demand. Therefore, it includes variables
corresponding to regional tourism as control variables to account
for the correlation in passenger traffic among airports due to
increased tourism (Albayrak et al., 2020). Specifically, this study
uses an airport city’s foreign exchange income (FTI) from
tourism to measure the tourism factor, as foreign tourists
generally use air transport. Furthermore, demand for airport
services may be related to the level of shipping costs, which is
addressed in this study by including the price of crude petroleum
(CP) in the estimation function as an approximation for shipping
costs (Cheung et al., 2020). The empirical model (Formula 3) is
formalized by incorporating the framework presented in Formula
1 with the control variables as follows:

lnPAit ¼ δWijlnPAit þ β1lnGDPit þ β2lnEMit þ β3lnFTIit þ β4lnCPt

þρ1WijlnGDPit þ ρ2WijlnEMit þ ρ3WijlnFTIit þ μi þ εit

ð3Þ
The spatially lagged dependent variables are distinct from the

serial lags and are inherently connected to the error term, as they
reflect two-directional neighbor relationships (Elhorst, 2014). Due
to endogeneity problems, the ordinary least squares (OLS)
estimator is biased and inconsistent. In attempting to address
this issue, various estimation methods have been proposed,
including the generalized method of moments (GMM), max-
imum likelihood (ML), and quasi-maximum likelihood (QML)
(Elhorst, 2014). However, GMM estimates can result in
coefficient estimates that fall outside the parameter space, and
ML estimates rely on the assumption that disturbance terms
follow a normal distribution. As a result, QML estimation offers
clear advantages over these approaches (Elhorst, 2014). This
study accounts for the structural form of endogeneity arising
from the spatially lagged dependent variable by employing the
QML estimate proposed by Lee (2004).

Spatial weighting matrix. Formula (1) includes a spatial weight
matrix, Wij, which is an N × N table that characterizes the spatial
arrangement of the observed units. This weight matrix plays a
crucial role in capturing spatial dependence and heterogeneity.
The spatial dependence of airports was incorporated using the
inverse distance matrix (Wd), given that the proximity between
airports affects their spatial dependence.

Wd ¼
0; i ¼ j

d�2
ij ; i≠j

(
ð4Þ

The great circle distance between airports i and j is represented
by dij, while dij−1 represents the reciprocal of dij, which is the
inverse distance between both airports.

The inverse distance matrix used to represent the spatial
relationships between airports considers only the distance
between adjacent airports. However, it is unrealistic to assume
that adjacent airports have identical economic interrelationships,
which can vary. This issue is addressed by choosing the passenger
traffic difference between airports as a metric to measure the
economic distance between them. This approach is justified since
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spatial heterogeneity among airports is eventually reflected in the
differences in passenger traffic. The economic distance matrix is
defined as follows:

We ¼
0; i ¼ j

1
jPAi�PAjj ; i≠j

(
ð5Þ

Wp ¼ We ´ diag
PA1

PAa
; ¼ ;

PAn

PAa

� �
; ði ¼ 1; ¼ ; nÞ ð6Þ

Here, PAi and PAj represent the average passenger traffic of
airports i and j during the sample period. A smaller difference
(|PAi − PAj|) in passenger traffic indicates greater similarity in
the traffic levels between both airports, implying a closer
economic distance. As such, airports with smaller economic
distances are assigned larger spatial weight coefficients in We. In
this study, the economic distance matrix (We) is transformed into
an asymmetrical matrix, where diagðPA1

PAa
; ¼ ; PAn

PAa
Þ represents a

diagonal matrix, and PAa represents the average passenger traffic
of all airports during the sample period. In Wp, the mutual effects
of both airports are not identical (i.e., Wij ≠ Wji). The economic
information contained in this asymmetric matrix is directional,
reflecting the difference in mutual influence between any airport
pairs (Zhang et al., 2018). Furthermore, the use of an asymmetric
matrix can account for the fact that among airports with the same
economic distance, those with higher passenger traffic should
carry greater weight. This approach can also assign more weight
to an airport that connects to a hub airport with high passenger
traffic, even if there is a considerable economic distance
between them.

Data description. The research targeted 34 major airports in 25
provincial capitals and nine populous cities across mainland
China (2007–2019). In selecting airports for our study, we
prioritized primary criteria, like passenger and cargo throughput,
to focus on those with the most substantial operational volume
and regional or national impact, specifically targeting airports
within the top 40 rankings for passenger-cargo throughput,
highlighting their importance in China’s aviation network. Spatial
diversity was also critical, aiming for a representation that spans
mainland China’s varied geographical landscapes to capture a
broad spectrum of spatial interactions, including airports from all
major economic regions and a variety of locations (coastal,
inland, northern, and southern) to mirror the spatial hetero-
geneity of the air transport network. Additionally, the selection
process accounted for the availability of consistent and reliable
airport data, such as operational statistics, route information, and
economic indicators, and excluded airports with incomplete
records during the study period to ensure the integrity of our
analysis. In the case of Shanghai, the study accounted for two
airports (the Pudong and Hongqiao airports). As a result, a
balanced panel data set was formed, with 442 observations.

The current study draws data from multiple databanks. The
passenger traffic data utilized in this study were obtained from the
Civil Aviation Administration of China’s (CAAC) publication of
the Civil Aviation Airport Production Statistics Bulletin, covering

both domestic and international operations. Four control
variables originate from the China Economic Net database
(2007–2019). All variables underwent natural logarithm conver-
sion to mitigate potential heteroscedasticity. The results of the
descriptive statistics are displayed in Table 1.

In seeking to avoid spurious results from correlated random
patterns in non-stationary variables, the panel data sets of
passenger traffic series were checked for non-stationary variables
using the HT test (n > t) for panel unit roots (Harris and Tzavalis,
1999). The test results show a rejection of the null hypothesis of
joint non-stationary (z=−2.102, p= 0.018), indicating the
reliability of the subsequent coefficient estimation.

Empirical results
Moran’s I Index. This study employs the Moran’s I statistic
(Anselin, 1988; Moran, 1950) as a preliminary diagnostic tool to
detect the spatial correlation of China’s airports. Specifically, the
annual passenger traffic of each airport is used to calculate
Moran’s I value, utilizing both the geographical distance (Wd)
and economic distance (Wp) matrices. The result of Moran’s I
value, as presented in Table 2, reveals a significant positive spatial
correlation, indicating that airports with high passenger traffic
tend to cluster. This finding aligns with the geographical dis-
tribution of China’s airports, whereby the ones with high pas-
senger traffic are concentrated in the eastern coastal region, while
those with low traffic are situated in central and western inland
areas.

Moreover, the study demonstrates that controlling for
economic proximity significantly improves the detection of
spatial correlation in airport passenger traffic, as evidenced by
the considerably higher Moran’s I value obtained using the
economic distance matrix (Wp) than the geographical distance
matrix (Wd). The analysis also indicates that the spatial
interaction and correlation of passenger flow are more likely to

Table 1 Definition of the variables.

Variable Mean Std. Dev. Min Max

PA (passenger throughput, people) 1.93 × 107 1.81 × 107 802167 1.00 × 108

GDP (GDP per capita, 104 yuan/person) 9.86 8.25 1.45 62.13
EM (aviation employment, people) 18148 25971.3 142 134402
FTI (international tourism receipts, 106dollar) 2666.37 3814.14 3.00 20521.31
CP (price of crude petroleum, $/barrel) 79.10 23.06 44.04 111.96

Table 2 Spatial correlation of the comprehensive strength of
China’s coastal ports.

Year Wd Wp

Moran’s I Z Value Moran’s I Z Value

2007 0.273*** 2.91 0.541*** 6.309
2008 0.281*** 2.99 0.534*** 6.231
2009 0.272*** 2.903 0.546*** 6.363
2010 0.296*** 3.132 0.568*** 6.61
2011 0.289*** 3.063 0.570*** 6.632
2012 0.276*** 2.937 0.582*** 6.756
2013 0.274*** 2.913 0.578*** 6.698
2014 0.284*** 3.000 0.589*** 6.798
2015 0.272*** 2.887 0.581*** 6.719
2016 0.253*** 2.708 0.574*** 6.639
2017 0.257*** 2.748 0.568*** 6.574
2018 0.266*** 2.837 0.561*** 6.506
2019 0.265*** 2.825 0.579*** 6.696

t-statistics in parentheses, ***p < 0.01.
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occur between airports with high passenger traffic and a slight
economic difference. Furthermore, the study finds that Moran’s I
value exhibits a relatively stable spatial correlation of passenger
traffic from 2007 to 2019, with only a minor fluctuation range.
This outcome implies that the spatial pattern of China’s airport
passenger traffic remains relatively consistent over time.

Effect of geographic distance disparities on the spatial rela-
tionships of airports. Table 3 provides insight into the auto-
regressive coefficients of the SDM, SAR, and SEM for passenger
traffic with Wd. The δ coefficient is the spatial autoregressive
coefficient, and the values of δ in both the SDM and SAR models
are significantly positive at a level of 1% or below. A positive δ
value indicates a complementary effect, where an increase in the
average level of passenger traffic in neighboring airports results in
a corresponding increase in the passenger traffic of a particular
airport. For instance, in the SDM, the δ value is 0.643, implying
that a 1% rise in the average passenger traffic of neighboring
airports will result in an increase of approximately 0.643% in the
passenger traffic of the airport being analyzed. Therefore, the
passenger traffic in China’s airports displays a good mutually-
driven aggregation effect. Additionally, the results of the analysis
show that the residuals in the model are spatially correlated,
indicating that unobserved factors are influencing neighboring
airports, as evidenced by the positive λ value. This spatial auto-
correlation of residuals may be due to the presence of omitted
variables correlated across the sample region, such as factors that
affect passenger demand and supply chain networks. Accounting
for these unobserved spatial factors in modeling passenger traffic
in China’s airports is crucial for obtaining more accurate

estimates and understanding the underlying mechanisms behind
passenger traffic patterns. Furthermore, this finding emphasizes
the importance of considering spatial dependence when modeling
passenger traffic, particularly in the presence of neighboring
airports and other spatially related factors.

Moreover, various statistical tests were employed in this study to
determine the most suitable model form. Firstly, the Hausmann test
was utilized based on spatial panel data (Lee and Yu, 2012). Only
individual fixed effects were utilized since the model included crude
oil price variables that were constant across individuals. The results
of the Hausmann test indicated that all three models rejected the
null hypothesis of using individual random effects and preferred the
individual fixed-effects model. Secondly, both the LM and robust
LM tests rejected the null hypothesis that the model lacked spatial
dependence and recommended using panel data models with spatial
effects (SAR or SEM). Finally, the LR and Wald tests were executed
for the three model forms, and the findings suggested that the
simpler SAR and SEM models should be substituted with more
comprehensive SDM models. Furthermore, the R-squared and log-
likelihood function values also indicated that the SDM had a
significantly better fit for the sample data compared to the SAR and
SEMmodels (Elhorst, 2014). Hence, the SDMmodel with individual
fixed effects was chosen for subsequent analysis in this study.

The positive spatial autoregressive coefficient in Table 3
represents the average spatial relationship among the 34 airports.
This coefficient reflects the overall spatial relationship of the
sample set rather than the specific spatial relationship between
each pair of airports because a dataset with a sample size of n can
have at most n(n-1) spatial autoregressive coefficients, which is
beyond the sample size range. The spatial autoregressive
coefficient is estimated using the quasi-maximum likelihood
estimation to calculate the mean value of the spatial autore-
gressive coefficient. However, the inter-airport spatial relationship
at different distances may vary significantly. Many studies have
suggested that the impact of geographic distance on spatial
relationships between airports may be subject to a threshold.
Some research suggests that if the great circle distance between
two locations is less than 500 km, high-speed rail transport may
substitute air transport (Chen et al., 2021; Rodrigue et al., 2017).
Thus, it is suggested that as the geographic distance between
airports decreases, the spatial relationship between them may
change, reflecting a weakening of the spatial relationship or a shift
toward competition.

To better analyze the impact of geographic distance on spatial
dependence between airports, this study investigates inter-airport
spatial relationships at different distances and examines how
these relationships change with geographic distance. Additionally,
this paper tests the hypothesis that the relationship between
airports has a spatial attenuation boundary, meaning that the
closer the distance between airports, the weaker the complemen-
tary relationship and the more likely it is to become competitive.
This study seeks to achieve these objectives by modifying the Wd,
cutting off the geographical distances between airports.

W*
d ¼

0; dij>d

d�2
ij ; dij ≤ d

(
; d 2 fdmin; dmin þm; dmin þ 2m; ¼ ¼ ; dmaxg

ð7Þ
In this study, the attenuation changes of spatial dependence

over short distances were observed by modifying the Wd by
setting a distance interval (dmin, dmax) and progressive distance m
from dmin to dmax. For distances dij ≤ d (threshold distance), the
geographical unit element was set to the square of the inverse
distance between two airports, while for distances dij > d, the
geographical unit element was set to “0.” This method enables the
removal of airports beyond the distance d from the spatial weight

Table 3 Spatial regression results for the full data model
with Wd.

SDM SAR SEM

lnGDP −0.017 0.254*** 0.055
(−0.31) (5.78) (0.82)

lnEM 0.052*** 0.071*** 0.060***
(3.00) (4.14) (3.19)

lnFTI 0.072*** 0.082*** 0.097***
(3.44) (3.82) (4.60)

lnCP −0.061** −0.056** −0.647***
(−2.53) (−2.30) (−3.02)

W×lnGDP 0.645***
(7.58)

W×lnEM −0.023
(−0.59)

W×lnFTI −0.102**
(−2.08)

δ 0.643*** 0.470***
(17.55) (9.60)

λ 0.889***
(44.72)

Log-lik 239.359 209.604 163.296
R2 0.903 0.892 0.396
N.o. obs 442 442 442
Hausman test 14.95*** 26.48*** 27.59***
LM-lag test 163.554***
R-LM-lag test 66.589***
LM-err test 108.789***
R-LM-err test 11.823***
LR-lag test 59.51***
Wald-lag test 59.23***
LR-err test 152.13***
Wald-err test 96.98***

t-statistics in parentheses, **p < 0.05, ***p < 0.01.
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matrix, facilitating a more accurate observation of short-distance
attenuation changes in spatial dependence. In this study, the
initial threshold distance for the inverse distance spatial weight
matrix was set at 100 km, with a step distance also set at 100 km.
Since the farthest distance between the 34 airports is 3508.77 km
(from the Urumqi airport to the Xiamen airport) and the shortest
distance is 10.46 km (from the Pudong airport to the Hongqiao
airport), the distance threshold was reduced from 3600 km to
100 km.

The study estimated the spatial autoregression coefficient by
employing an SDM that used a spatial weight matrix based on
threshold distances. Figure 1 shows that when the threshold
distance is at its maximum value of 3600 km, the spatial
autoregressive coefficient is positive and reaches its maximum
value. As the distance threshold decreases, the spatial autore-
gressive coefficient shows a significant decreasing trend. This
trend reflects a gradual weakening of spatial complementarity
between airports as the distance between them reduces. When the
threshold distance is in the range of 1500 km–3600 km, the
spatial autoregressive coefficient decreases but remains positive.
This outcome indicates that there is still significant spatial
complementarity between airports within this distance range.
Figure 2 shows that when the threshold distance is less than
1400 km, the spatial autoregressive coefficient becomes negative,
and the magnitude of the negative coefficient increases as the
geographic distance decreases.

This result indicates that the spatial relationship between
airports changes from complementarity to competition when the
geographic distance between airports is less than 1400 km. This
competitive relationship gradually strengthens as the geographic
distance between airports decreases further and reaches its

maximum value at a threshold distance of 100 km. Appendix 1
contains a comprehensive record of the spatial autoregressive
coefficients and corresponding t-statistics across various distance
thresholds. All of the spatial autocorrelation coefficients are
statistically significant at a level of at least 10%. This robust result
strengthens the validity of the findings.

The results validate the initial hypothesis that the spatial
relationships among the 34 Chinese airports are influenced by
geographic distance. This geographic influence on airport
relationships manifests in several critical ways, driving both
competition and complementarity within the network. Firstly, the
introduction and expansion of high-speed rail networks across
China have introduced a significant shift in the competitive
landscape for short-haul travel. High-speed trains, offering
convenience, speed, and competitive pricing, have emerged as a
formidable alternative to air travel for parallel routes, particularly
affecting nearby airports. This shift has not only reduced the
complementarity between such airports but also heightened the
competitive pressure, compelling them to innovate and diversify
services to retain passenger volumes. Moreover, the substitut-
ability phenomenon observed among neighboring airports is
markedly pronounced, driven by the enhanced urban transport
infrastructure. Improved road, rail, and public transport systems
have made it easier for passengers to choose between airports
based on factors beyond mere geographic closeness, such as flight
availability, ticket prices, and service quality. This increased
flexibility in airport choice amplifies the competition among
nearby airports, pushing them towards strategic differentiation
and specialization in services offered. The improved connectivity
between cities, facilitated by China’s ambitious infrastructure
development initiatives, plays a pivotal role in this context.
Adequate ground transport facilities linking two adjacent cities
can effectively render their airports interchangeable for passen-
gers, fostering a unique form of competition where airports vie
not just on-air services but also on their accessibility and
integration with ground transport networks. Conversely, the
spatial complementarity observed among airports situated farther
from each other illuminates the distinct advantages of air
transport over long distances. These airports, serving disparate
catchment areas, are less prone to direct competition and more
likely to develop synergistic relationships within hub–spoke
configurations. Such networks optimize the flow of air traffic,
enhancing the operational efficiency and coverage of the air
transport system across vast geographic expanses. This arrange-
ment not only leverages the speed and range capabilities of air
travel but also facilitates a more structured and efficient
organization of air traffic, reinforcing the essential role of air
transport in bridging long distances swiftly and effectively.

Effect of economic distance disparities on the spatial rela-
tionships of airports. This study also employed an asymmetric
economic distance matrix to measure the spatial relationships
between 34 Chinese airports. The economic distance matrix used
in this study does not include geographic distance factors, which
allow for a clearer understanding of the impact of heterogeneity in
airport traffic, levels of economic hinterland development, policy
support, and other factors on spatial relationships. Additionally,
the use of this matrix can reflect the hub-spoke network structure
mainly because 1) in this matrix, hub airports with high traffic
have a greater spatial impact on feeder airports; 2) the spatial
connections between hub airports with high traffic are closer than
those between feeder airports, and 3) although the economic dis-
tance between feeder and hub airports is relatively large (smaller
spatial weight), this matrix allows for larger spatial weights to be
assigned when feeder airports are connected to hub airports.

Fig. 1 Spatial dependence affected by distance (1500 km ≤ distance ≤
3600 km). Shows that when the threshold distance is at its maximum value
of 3600 km, the spatial autoregressive coefficient is positive and reaches its
maximum value.

Fig. 2 Spatial dependence affected by distance (100 km ≤ distance ≤
1400 km). Shows that when the threshold distance is less than 1400 km,
the spatial autoregressive coefficient becomes negative, and the magnitude
of the negative coefficient increases as the geographic distance decreases.
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Table 4 presents the estimation results of the SDM, SAR, and
SEM models based on the asymmetric economic weight matrix.
The spatial autoregressive coefficients of the three models are all
significant and positive at a level of at least 1%, indicating a
complementary spatial relationship among these airports at the
overall level. This complementary spatial relationship further
confirms the existence of a hub-and-spoke network structure
among China’s airports. Comparison with the estimation results
based on the geographic matrix in the previous section reveals
that the spatial autoregressive coefficients estimated based on the
economic distance matrix are larger. This result is consistent
across all three models. It suggests that the differences between
airport hierarchical levels due to various complex spatial
heterogeneities, such as the economy of the surrounding cities,
policy environment, historical traditions, and other factors, have a
more significant impact on inter-airport spatial relationships.

Notably, the spatial autoregressive coefficient of SEM is as high
as 0.919, indicating that some unobservable factors exhibit a
strong spatial correlation under the influence of the economic
distance matrix. Furthermore, this outcome reflects that the
asymmetric economic distance matrix can explain the influence
of unobservable spatial heterogeneity on inter-airport spatial
relationships. In addition, regarding the model specification, the
results indicate that the individual fixed-effects model should be
used, and both the LM and robust LM tests suggest that the
model should include spatial lag terms. The LR and Wald tests
show that the SDM model can better fit the sample data, which is
also confirmed by the R-square and log-likelihood function
values.

The above findings suggest significant complementarity among
the 34 major airports in China under the hub–spoke network

structure. However, this broad conclusion cannot explain the
specific spatial relationships between specific groups of airports.
The significant positive spatial autoregressive coefficients in
Table 4 represent the average value of all spatial relationships.
Consequently, the average value might mask competitive
relationships between specific airports. Due to the sample’s
limitations, spatial econometric models cannot provide spatial
autoregressive coefficients for any two individuals. However, it is
possible to study the spatial relationship between specific
individuals by dividing the sample (Merkel, 2017). This study
aims to classify the 34 airports into different hierarchical levels
and explore the specific forms of spatial relationships between
airports in these varying levels.

Traditional airport comprehensive strength rankings are
measured by passenger and cargo throughput, such as the
percentage of national annual passenger traffic (Chen et al.,
2021). However, this factor alone cannot fully reflect the
comprehensive strength of an airport, as non-airport-related
factors, such as hinterland policies and resource advantages,
undoubtedly influence its total strength. This study combines the
ideas of systems science and uses the entropy weight TOPSIS
method (Li et al., 2018; Zhao et al., 2020) to construct a
comprehensive strength index system for Chinese airports. The
comprehensive strength of an airport is crucial in determining its
position and role within a network. It is, therefore, an essential
aspect to consider when examining the airport relationship within
the airport system. In this index system, the airport’s compre-
hensive strength will be calculated based on multiple indicators
and their weights. The study standardized the raw data to address
the differences in dimension and the order of magnitude in each
index. Subsequently, the entropy method was used to determine
the index weight, and the TOPSIS evaluation model was
employed to calculate the airport’s comprehensive strength.
Appendix 3 lists the indexes selected in this study and their
corresponding weights. Figure 3 shows the comprehensive
strength index and standardized index of the 34 airports. Based
on the analysis of the index and assessment of common
knowledge of China’s airports, this study classified the 34 airports
into three hierarchical levels. Those airports with a comprehen-
sive strength index greater than 0.5 were classified as the five
large-hub airports (i.e., the Pudong, Guangzhou, Shenzhen,
Beijing, and Hongqiao airports); those with an index between
0.2 and 0.4 were classified as the nine regional trunk airports (i.e.,
the Chongqing, Wuhan, Chengdu, Hangzhou, Nanjing, Kunm-
ing, Tianjin, Qingdao, and Xian airports); and those with an
index less than 0.2 were classified as the 20 local branch airports
(i.e., the Changsha, Jinan, Zhengzhou, Fuzhou, Xiamen, Hefei,

Table 4 Estimated results of SDM, SAR, and SEM under Wp.

SDM SAR SEM

lnGDP 0.049 0.139*** 0.075
(1.02) (3.81) (1.50)

lnEM 0.072*** 0.075*** 0.085***
(4.78) (5.13) (5.66)

lnFTI 0.084*** 0.080*** 0.068***
(4.61) (4.36) (3.89)

lnCP −0.040* −0.020 −0.667*
(−1.86) (−0.94) (−1.82)

W×lnGDP 0.245***
(3.00)

W×lnEM −0.118***
(−3.34)

W×lnFTI 0.068
(1.25)

δ 0.703*** 0.784***
(16.32) (25.81)

λ 0.946***
(77.71)

Log-lik 280.608 269.531 232.937
R2 0.906 0.889 0.407
N.o. obs 442 442 442
Hausman test 28.34*** 10.65* 20.15***
LM-lag test 251.28***
R-LM-lag test 20.03***
LM-err test 373.47***
R-LM-err test 142.23***
LR-lag test 22.15***
Wald-lag test 21.53***
LR-err test 95.34***
Wald-err test 59.95***

t-statistics in parentheses, *p < 0.10, ***p < 0.01.

Fig. 3 Airport comprehensive strength. Shows the comprehensive
strength index and standardized index of the 34 airports.
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Shenyang, Nanning, Haerbin, Changchun, Shijiazhuang, Nan-
chang, Haikou, Wulumuqi, Huhehaote, Guiyang, Taiyuan,
Lanzhou, Yinchuan, and Xining airports). The comprehensive
strength index of the five hub airports accounted for more than
40% of the total standardized index, which could fully reflect the
status of hub airports.

This study examined the spatial relationships between airports
of different hierarchical levels. Based on Wp, SDM was adopted to
re-estimate the spatial autoregression coefficients of the three
airport groups. Firstly, as shown in Table 5, the results of the
model tests indicate that the SDM with individual fixed effects
can better fit the data. Secondly, it can be seen that the spatial
autoregression coefficient between the five hub airports is −0.286,
which is statistically significant at the 1% level, indicating
significant competition between China’s five large-hub airports.
This competition is manifested as a 1% increase in the passenger
traffic of one hub airport, resulting in an average decrease of
about 0.286% in the traffic of the other four hub airports. This
result differs significantly from the estimated result (0.703) in
Table 4.

It shows that, although there is an overall complementary
relationship among the 34 Chinese airports, there is significant
competition among the hub airports when they are specifically
considered. Competition between hub airports may be reflected
in the transfer of international flights. Since the majority of
China’s international routes are concentrated at hub airports, a
considerable number of passengers using these airports are transit
passengers. Passengers have the option to choose their transfer
airport, which creates substitutability between hub airports and
leads to competition. However, although there is complementar-
ity between hub airports on domestic routes, the competition on
international routes takes the dominant position. Secondly, the
analysis shows a complementary spatial relationship between the
regional trunk and local branch airports, as evidenced by the
significant and positive spatial autoregression coefficients between

both groups of airports. However, it is important to note that
these coefficients (0.536, 0.533) are significantly smaller than the
results in Table 4 (0.703), suggesting a decrease in the strength of
complementary relationships among Chinese airports without
hub airports. This observation further highlights the crucial role
of hub airports in China’s overall airport network.

This study also explored the spatial relationships between
different airport groups, the results of which are presented in
Table 6. The spatial autoregression coefficient between hub and
regional trunk airports is statistically significant at the 1% level,
with a value of 0.276. The spatial autoregression coefficients
between the hub and regional branch airports, as well as between
regional trunk and regional branch airports, are also statistically
significant at the 1% level, with values of 0.467 and 0.485,
respectively. These findings reflect a complementary spatial
relationship among the various hierarchies of airports within
China’s airport network. Notably, the spatial autoregression
coefficient between the hub and regional trunk airports is lower
than the other two coefficients, indicating a weaker complemen-
tary relationship between both types of airports. This result
suggests that there may be some level of competition between
them. In seeking to attract local and nearby passengers, local
governments throughout China are eager to invest in expanding
airports and increasing international routes, which has gradually
reduced the gap between the hub and regional trunk airports,
increasing their substitutability.

For example, between 2018 and 2021, the airports in Nanjing
and Hangzhou, located near Shanghai Pudong Airport, expanded
their international routes. This expansion inevitably resulted in a
portion of passengers choosing these airports over the Shanghai
Pudong Airport. In addition, the three spatial autoregressive
coefficients are all smaller than the results in Table 4, indicating
that the complementary effects among Chinese airports can only
reach their maximum level when all airports are included in the
hub-and-spoke airport network, reflecting the small-world

Table 5 SDM estimation results of airports of different
comprehensive strengths.

Hub Trunk Branch

lnGDP 0.009 0.004 0.086
(0.13) (0.08) (1.31)

lnEM 0.086*** 0.027 0.069***
(3.03) (1.36) (3.48)

lnFTI 0.389*** 0.012 0.076***
(8.27) (0.43) (3.29)

lnCP −0.054*** −0.094*** −0.064**
(−2.99) (−2.85) (−2.06)

W×lnGDP 0.386*** 0.359*** 0.282***
(6.19) (4.06) (2.71)

W×lnEM 0.058* 0.030 −0.090*
(1.95) (0.85) (−1.96)

W×lnFTI 0.429*** 0.003 0.248***
(7.41) (0.05) (3.79)

δ −0.286*** 0.536*** 0.533***
(−2.98) (5.75) (7.32)

Log-lik 117.871 115.134 160.469
R2 0.976 0.953 0.931
N.o. obs 65 117 260
Hausman test 32.23*** 12.20** 40.70***
LR-lag test 80.22*** 29.07*** 29.08***
Wald-lag test 163.18*** 23.69*** 26.98***
LR-err test 45.48*** 130.53*** 79.40***
Wald-err test 83.43*** 29.84*** 49.58***

t-statistics in parentheses, *p < 0.10, **p < 0.05, ***p < 0.01.

Table 6 SDM estimation results of airports of different
airport group.

Hub_trunk Hub_branch Trunk_branch

lnGDP −0.020 0.036 0.025
(−0.36) (0.60) (0.48)

lnEM 0.012 0.065*** 0.063***
(0.60) (3.51) (4.09)

lnFTI 0.121*** 0.107*** 0.052***
(4.47) (4.86) (2.78)

lnCP −0.101*** −0.069*** 0.030
(−3.76) (−2.61) (1.18)

W×lnGDP 0.547*** 0.423*** −0.156*
(6.14) (4.73) (−1.65)

W×lnEM −0.012 −0.159*** −0.125***
(−0.33) (−4.10) (−3.25)

W×lnFTI 0.087 0.293*** 0.103*
(1.24) (4.72) (1.88)

δ 0.276*** 0.467*** 0.485***
(2.91) (7.44) (6.34)

Log-lik 173.409 208.343 258.589
R2 0.940 0.924 0.935
N.o. obs 182 325 377
Hausman test 240.13*** 15.47** 40.58***
LR-lag test 64.43*** 64.72*** 7.08*
Wald-lag test 58.24*** 61.16*** 6.94*
LR-err test 154.77*** 140.26*** 54.43***
Wald-err test 78.55*** 92.82*** 33.59***

t-statistics in parentheses, *p < 0.10, **p < 0.05, ***p < 0.01.
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properties of mutual complementarity among China’s airport
network (Chen et al., 2020; Wang et al., 2014; Zanin and Lillo,
2013).

Robustness test. This study re-estimated the model using an
inverse distance spatial weight matrix. The results show that,
despite slight numerical differences, the spatial autoregression
coefficient values still increase with the geographic distance and
similarly turn negative for distances less than 1400 km (Appendix
2), indicating that the study’s results are robust. Furthermore, the
study validated the results of Section 4.3 using We. The outcomes
revealed no significant differences among the various spatial
autoregression coefficients, confirming the robustness of the
results (Appendix 4).

Conclusion
This study used a spatial econometric model to examine the effect
of spatial dependence and spatial heterogeneity on the spatial
relationships of Chinese airports. The results showed that pas-
senger traffic in China’s airports displays a good mutually-driven
aggregation effect. The study also found that the spatial rela-
tionship between airports changes from complementarity to the
competition when the geographic distance between airports is less
than 1400 km, and this competitive relationship gradually
strengthens as the geographic distance between airports further
decreases.

Additionally, the study captures the unobservable spatial het-
erogeneity that affects inter-airport spatial relationships by
exploring the influence of disparities in economic distance on the
spatial relationships of Chinese airports. Based on the research
findings, it can be concluded that there is significant com-
plementarity and competition among Chinese airports within the
hub-and-spoke network structure, which is shaped by various
complex spatial heterogeneities. The study classified the 34 air-
ports in China into three hierarchies based on the comprehensive
strength index and investigated the specific spatial relationships
between these airport groups. The results reveal a complementary
spatial relationship between the regional trunk and local branch
airports and significant competition among hub airports. More-
over, the findings suggest that the absence of a hub airport
weakens the strength of complementary relationships among
different types of airports, highlighting the crucial role of hub
airports in China’s overall airport network and their impact on
the relationships of other airport groups.

The study’s findings suggest that policymakers should consider
the competition between airports that are in close proximity
when planning transportation infrastructure and investment
since these airports may serve as substitutes for each other.
Additionally, China’s government should prioritize the develop-
ment and integration of hub airports to improve the overall
efficiency of the airport network. Moreover, a coordinated
approach to airport development is needed. The study reveals a
complementary spatial relationship among the various hier-
archies of airports within China’s airport network. Thus, policy-
makers should adopt a coordinated approach to airport
development to ensure that investments in airport infrastructure
are distributed to maximize the benefits of these complementary
spatial relationships between different airport groups.

It is important to note that this study has several limitations
that must be addressed in future research. One of the primary
constraints is the lack of the possibility to extrapolate the results
beyond the context of Chinese airports. The specific spatial,
economic, and infrastructural contexts of these airports may limit
the generalizability of the findings to other countries or regions
with different airport networks and operational dynamics.

Another limitation arises from the sampling methodology. While
methodologically sound, the focus on 34 major airports based on
a comprehensive strength index may not fully capture the
diversity and complexity of all airports within China. This
selection criterion may overlook smaller or more remotely located
airports, which could offer additional insights into the spatial
relationships and competitive dynamics within the broader net-
work. Moreover, the study’s reliance on a spatial econometric
model to examine spatial dependence and heterogeneity may not
fully account for unobservable factors that could influence these
relationships.

Future research should address these limitations by incorpor-
ating a broader range of airports, exploring additional models and
analytical techniques to capture the complexity of airport rela-
tionships, and examining the applicability of the findings in dif-
ferent geographic and economic contexts. This approach would
enhance the robustness of the research and provide deeper
insights into the strategic development of airport networks
globally.

Data availability
The datasets generated and analyzed during the current study are
available from the corresponding author upon reasonable request.
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