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Multi-class identification of tonal contrasts in
Chokri using supervised machine learning
algorithms
Amalesh Gope 1✉, Anusuya Pal 2, Sekholu Tetseo1, Tulika Gogoi1, Joanna J1 & Dinkur Borah1

This study examines and explores the effectiveness of various Machine Learning Algorithms

(MLAs) in identifying intricate tonal contrasts in Chokri (ISO 639-3), an under-documented

and endangered Tibeto-Burman language of the Sino-Tibetan language family spoken in

Nagaland, India. Seven different supervised MLAs, viz., [Logistic Regression (LR), Decision

Tree (DT), Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbors

(KNN), Naive Bayes (NB)], and one neural network (NN)-based algorithms [Artificial Neural

Network (ANN)] are implemented to explore five-way tonal contrasts in Chokri. Acoustic

correlates of tonal contrasts, encompassing fundamental frequency fluctuations, viz., f0

height and f0 direction, are examined. Contrary to the prevailing notion of NN supremacy,

this study underscores the impressive accuracy achieved by the RF. Additionally, it reveals

that combining f0 height and directionality enhances tonal contrast recognition for female

speakers, while f0 directionality alone suffices for male speakers. The findings demonstrate

MLAs’ potential to attain accuracy rates of 84–87% for females and 95–97% for males,

showcasing their applicability in deciphering the intricate tonal systems of Chokri. The pro-

posed methodology can be extended to predict multi-class problems in diverse fields such as

image processing, speech classification, medical diagnosis, computer vision, and social net-

work analysis.
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Introduction

Natural languages employ (different combinations of)
consonants and vowels to maintain meaning contrasts. In
addition to this strategy, an intriguing subset of languages

exploits pitch variations to control the same purpose, i.e., to
represent words (meanings) in their language. Pitch variations
refer to the auditory sensation that our ears perceive. The pho-
netic correlate of pitch is the fundamental frequency (f0) that
refers to a (speech) signal and the number of pulses per second
that the signal contains. Each pulse refers to a single vibration of
the vocal cord measured in Hertz (Hz), where each Hz refers to
one cycle per second (Gope 2016). Based on the functions, pitch
can be categorized as tone and intonation. Tone refers to pitch
patterns that intricately distinguish individual words, while
intonations convey broader contextual nuances within sentences.
This interplay between tones and intonations is most vividly seen
in tonal languages, where variations in pitch on individual words
alter their word meanings (Yip 2002). Interestingly, pitch varia-
tions are universally employed in all human languages to convey
information, either at the lexical (meaning contrasts of individual
words), post-lexical (accent or stress), or discoursal level (sen-
tential meaning differences) (Gope 2021).

Traditionally, researchers working on tonal languages relied on
f0 perturbation (viz., f0 height, f0 direction, f0 slope), duration,
and intensity, followed by suitable statistical tests and modeling to
establish the tonal contrasts in a given language (Gope and
Mahanta 2014). The visual interpretation of the f0 tracks gener-
ated through a production experiment aids in predicting the
tone’s quality, and suitable statistical modeling helps us quantify
it. This paper assesses and appraises the effectiveness of various
machine learning algorithms (henceforth MLAs) in identifying
intricate tonal contrasts, albeit a complex five-way tonal contrast
in Chokri (ISO 639-3) (VanDriem 2007). Chokri is a Tibeto-
Burman language of the Sino-Tibetan language family spoken in
Nagaland, India. A production experiment was carried out to
examine the tonal contrasts in this language. The visual inter-
pretation of the f0 tracks generated through the production
experiment followed by a repeated measure ANOVA and a
subsequent post-hoc Bonferroni test indicates a potential 5-way
tonal contrast in this language viz. four level tones- extra high
(EH), high (H), mid (M), and low (L); and one contour tone-
mid-rising (MR) (Gogoi et al. 2023). The other acoustic com-
ponents, viz., duration and intensity, are observed to be non-
significant factors in the realization of tonal contrasts in Chokri.
Therefore, we left out the duration and intensity values in our
further analysis.

Recently, studies have shown promise in a departure from the
conventional approach of tone analysis and adapted machine
learning algorithms (MLAs) (Gogoi et al. 2021; Li et al. 2006;
Wang et al. 2008), a subset of artificial intelligence, to achieve far
superior and accurate results. MLAs are a group of computational
algorithms adept at uncovering latent patterns (rooted in data or
images) and making predictions based on their training (pre-
vious) experiences. Selecting a generalized statistical model when
there are increased features and possible interactions is challen-
ging (Gope 2021). However, the same could be considered an
advantage when incorporating MLAs. These can efficiently pro-
cess extensive data volumes and manage numerous features,
rendering them highly suitable and remarkably effective for
addressing intricate multi-dimensional research challenges.

Beyond the supervised and unsupervised categorization of
MLAs, algorithms can further be classified into three distinct
categories— linear, non-linear, and ensemble-based (Boehmke
and Greenwell 2019). The choice of the most suitable algorithm
hinges upon the specifics of the dataset and its inherent char-
acteristics. For instance, when the data exhibits a linear trend, we

can use linear algorithms like Simple Linear Regression (SLR),
Multivariate Linear Regression (MLR), Logistic Regression (LR),
or Perceptron (Brownlee 2016b). On the other hand, if the data
boasts numerous intricate features and discerning a linear trend is
challenging, non-linear algorithms, such as Decision Trees (DT),
can be adopted. Algorithms such as Naive Bayes (NB) and
Hidden Markov model (HMM) are based on probabilities. In
contrast, Support Vector Machine (SVM), K-Nearest Neighbors
(KNN), and Learning Vector Quantization (LVQ) help uncover
intricate patterns within complex data points (Brownlee 2016b).
Furthermore, ensemble algorithms like Bootstrap Aggregation,
Random Forest (RF), and Stacked Generalization offer an effec-
tive approach when the data’s features are abundant and intricate,
necessitating a holistic understanding of the underlying rela-
tionships. Diving deeper, we encounter the realm of Deep
Learning (DL), which can handle both linearity and non-linearity
and encapsulates multi-layer perceptron (MLP), neural networks
(NN), convolutional neural networks (CNN), artificial neural
networks (ANN) (Brownlee 2016a), and more. Deep Learning has
been proven to handle even the most intricate patterns and
intricate relationships in data, making it a dynamic tool in the
MLA arsenal.

Linguistic research has recently integrated MLAs into its
methodologies to examine tonal contrasts (Gogoi et al. 2020;
Lemus-Serrano et al. 2021; Ramdinmawii and Nath 2022) and
other linguistic properties (Krasnyuk et al. 2023; Liu et al. 2023;
Wang et al. 2023). To identify and explore the tonal properties in
various languages, researchers have adopted various MLAs. This
includes the application of SVM and DNN-based algorithms to
assess the recognition of four tones in Mizo, a Kuki-Chin lan-
guage spoken in Mizoram, India (Gogoi et al. 2020). This research
explores the f0 perturbations and reveals a notable challenge in
distinguishing the high and low tones. Interestingly, a comparison
between 1D-CNN and DNNs suggests that the former offers
superior tone recognition (Gogoi et al. 2021). Further investiga-
tions employ SVM, NB, and Boosted Aggregation to probe the
stressed and unstressed syllables linked to contrasting tones in
Mizo (Ramdinmawii and Nath 2022). In another recent study,
MLAs, including KNN, SLR, RF, and SVM, are harnessed to
uncover the pivotal acoustic components driving the identifica-
tion of 3-way tonal contrasts in Dharmashala Tibetan, a language
spoken in the Indian subcontinent. Researchers have also com-
bined different acoustic features (f0 height, duration, and inten-
sity) with MLAs and investigated different features in various
languages, such as Mandarin (Chang et al. 1990; Li et al. 2006;
Wang et al. 2008), Cantonese (Lee et al. 1995, 2002; Peng and
Wang 2005), English (Levow 2005), and Yukuna (Lemus-Serrano
et al. 2021), to name a few.

A striking realization emerges in the dynamic realm of
(experimental) linguistic research integrating MLAs to yield more
conclusive results. The comprehensive grasp of these methodol-
ogies, scattered across disconnected studies, often perplexes us
when choosing a suitable MLA, such as exploring the intricate
tonal contrasts in a given language. As we venture into this
direction, our paper becomes a guiding light, illuminating the
path for those embarking on the journey of data-driven intelli-
gence. In this context, our study of Chokri tonal contrasts takes
on a novel significance in multiple dimensions. Firstly, it unveils
the intricacies of complex five-way tonal contrasts that include
four level tones–extra high (EH), high (H), mid (M), low (L), and
a contour tone– mid-rising (MR). Secondly, we pioneer the uti-
lization of f0 directionality as a crucial feature, augmenting our
ability to identify essential traits (f0 height, directionality, and
their fusion) for MLA implementation. Furthermore, our work
offers an unprecedented and comprehensive comparison of six
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traditional MLAs (LR, DT, RF, SVM, KNN, and NB) against the
backdrop of ANN. This illuminates a spectrum of methodologies,
unveiling their strengths and subtleties. A primary goal of this
research is to address the context itself. Chokri is an under-
documented and endangered language. Through our exploration,
we unravel its tonal intricacies and embark on a broader quest to
understand less explored languages such as Chokri, laying the
foundation for a potential corpus and nurturing its preservation.

The conventional implementation process of MLAs follows a
structured path, outlined in Fig. 1a–f. This includes the imple-
mentation of crucial stages, each contributing to the accuracy and
effectiveness of the outcome. The initial step involves data gath-
ering and organization, commencing with the dataset preparation
(Fig. 1a). Subsequently, the dataset undergoes preprocessing,
entailing outlier removal and normalization to ensure data quality
(Fig. 1b). In Fig. 1c, the dataset is partitioned into training and
testing subsets, setting the stage for model evaluation. In this
study, supervised MLAs take the spotlight. It includes traditional
methods (LR, DT, RF, SVM, KNN, and NB) alongside the neural
network (ANN), all leveraged for tonal classification in the
Chokri language. The following phase entails model selection,
considering whether the task involves category prediction (clas-
sification) or quantity estimation (regression). Cross-validation is
then applied to gauge model performance (Fig. 1d). Moving
forward, the chosen MLAs are applied to the testing datasets (Fig.
1e), paving the way for result evaluation. The ensuing step
involves the construction of accuracy parameter tables (Fig. 1f),
aggregating the output values and culminating in a conclusive
insight. It’s imperative to highlight that the dataset preparation
forms the basic of this process, and the selection of attributes
(features) and the volume of instances in the final dataset pre-
dominantly influence MLA performance.

Methods
Experiments: production of data
Material and data recording procedure. The dataset for the pro-
duction experiment contains eight monosyllabic toneme pairs

with five-way meaning contrasts. Participants were instructed to
produce a priming sentence (containing the target word) first that
would trigger the lexical meaning, followed by the target word in
a fixed carrier sentence of ‘Repeat X again,’ where X is the target
word, and in isolation. The sentences were given in Chokri and
English. Data was recorded using a linear portable recorder
(Tascam- DR-100MKII) connected with a unidirectional micro-
phone (Shure SM10A-CN). The distance between the mouths of
the participants and the mouth was approximately 25 mm to
ensure a minor noise intervention and turbulence-free speech
data. The speech data were recorded with a sampling frequency of
44.1 kHz and 32-bit resolution. A total of 15,400 tokens
(8 toneme sets × 5 way meaning contrasts × 7 subjects × 5 repe-
titions × 11 time points) are analyzed in this study.

Participants. Seven native speakers (five females and two males),
aged between 19 and 39 years, from the Thipüzu village in the
Phek district of Nagaland, India, participated in the production
experiment. None of the participants had any reported language
disability or hearing impairment. All the participants speak
Chokri as their first language. They also speak English and
Nagamese (a lingua franca spoken in Nagaland, India) fluently.
All the participants were asked to provide informed consent
before the production experiment and were paid for participation.

Data annotation and acoustic measures. Post-recording, the target
words were manually annotated in Praat (Boersma and Weenink
2012). Multiple tiers were created to mark each target syllable’s f0,
duration, and intensity. The tier on f0 was marked following the
visible f0 track in Praat; duration and intensity, on the other
hand, were marked for the whole syllable. All the acoustic mea-
surements were generated using VoiceSauce (Shue et al. 2010) for
each token.

Data analysis. In the data analysis phase, we begin by processing
the raw experimental data to prepare it for further analysis using
machine learning algorithms (MLAs). Additionally, we describe

Fig. 1 Flowchart for Implementing Machine Learning Algorithms (MLAs). a Generation of Data: The process initiates with the collection and organization
of the dataset. b Data preprocessing: Data refinement occurs through outlier removal and normalization, ensuring data quality. c Splitting into Training and
Testing Datasets: The dataset is partitioned into distinct subsets for training and testing purposes. d MLAs Implementation: Different MLAs encompassing
traditional methods and neural networks are applied to the training dataset. e Execution on Testing Datasets: The chosen MLAs are executed on the
independent testing datasets. f Performance Evaluation: Results are evaluated to gauge the algorithm’s performance.
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the various MLAs utilized in this study and their underlying
principles.

Z-score calculation. The raw f0 values are converted to Z scores to
neutralize the inter-speaker and intra-speaker variability. The
Z score (Adank et al. 2004) is derived by subtracting the overall
average of the fundamental frequency (f 0) across the contrastive
tones from the raw f0 value of each tone. This difference is then
divided by the standard deviation (σf0) of the measured f0 values
across all tone types. The formula to calculate the Z score is

expressed as: Z score = f 0i�f 0
σ f 0

, f 0 ¼ 1
n∑

n
i¼1 f 0ðtiÞ, and σ f 0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i¼1 ðf 0i�f 0Þ2

n�1

q

where t, t1, t2. . . ti, and n represent any tone,
aggregate measure of all tones (including repetitions), and total
number (including repetitions), respectively, where f0i represents
the raw f0 value of a specific ith tone. f 0 denotes the overall
average of f0 for all tones. σf0 is the standard deviation of the
measured f0 values. The average f 0 is computed as 1

n∑
n
i¼1 f 0ðtiÞ,

where n represents the total number of tones, and t1, t2,…, ti are
individual tones.

Machine Learning Algorithms (MLAs). The study analyzes the
data using diverse machine learning algorithms (MLAs). Here’s
an overview of the process:

Dataset and Division: The dataset, denoted as D, comprises
pairs of input features (xi) and corresponding output labels (yi).
The dataset is randomly divided into two sets: Dtrain and Dtest.
The supervised algorithm aims to learn the mapping from input
(X) to output (Y), and it seeks to predict y∈ Y for any given input
x∈ X present in the Dtrain set. The algorithm’s performance is
evaluated on the Dtest set.

Data Manipulation: Data manipulation uses Pandas (ver.
0.24.2) (McKinney et al. 2011) and Numpy (ver. 1.16.4) (Harris
et al. 2020) in Python (Raschka 2015). These libraries enable
efficient data handling and transformation tasks.

Data Splitting: In Python, the sci-kit-learn (Pedregosa et al.
2011) library’s train_test_split() function divides the data into
training and testing datasets. A test size of 0.3 is chosen, meaning
that 30% of the original data is reserved for testing, leaving the
remaining 70% for training. While a 70:30 ratio is commonly
used, alternatives like 60:40 to 90:10 can also be considered. The
choice of split ratio affects training accuracy, but careful
consideration is needed to prevent overfitting. The random_state
parameter ensures reproducibility by producing the same results
across different runs. A value of zero is used to mitigate
randomness during data splitting. This study employs a repeated
measures design, ensuring that multiple recordings from the same
participants are considered for both training and testing purposes
in such a way that the tokens of a particular subject that appear in
the training set, do not occur in the testing test. The
implementation of GroupShuffleSplit from the sklearn.model_se-
lection ensures this process. The raw data is processed,
transformed, and divided for subsequent analysis using different
MLAs by executing the above steps. The data is now ready to
undergo the training and testing phases of the machine learning
algorithms.

a) K-Nearest Neighbors (KNN): K-Nearest Neighbors (KNN)
is a classification algorithm that relies on the similarity between
data points to make predictions. The choice of distance metric is
crucial as it determines how the algorithm measures the similarity
between data points. One common choice is the Minkowski
distance, which results in the Euclidean distance formula when
the parameter is set to 2. The Euclidean distance formula is given

by: DðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
l¼1 ðx1i � x2iÞ2

q

where x1i and x2i are the values of

the specific column i for the first and second rows of data, and n
is the total number of columns. Using this formula, the KNN
algorithm starts by calculating the distance between two rows
(data points) in the dataset. Conceptually, this calculation draws a
straight line between the two data points in a multi-dimensional
space. KNN predicts the class of a future data point in the testing
dataset by considering the classes of its nearest neighbors. In this
case, the five nearest neighbors are considered. For implementa-
tion, the KNeighborsClassifier(n_neighbors= 5, weights= ‘dis-
tance’, p= 2, metric=‘minkowski’) from the sklearn.neighbors
module is employed. The parameter n_neighbors specifies the
number of neighbors to consider, weights= ‘distance’ indicates
that closer neighbors have more influence, p= 2 denotes the
Minkowski distance with Euclidean distance, and metric= ‘
minkowski’ signifies the choice of metric. This algorithm analyzes
and classifies data points based on their similarity.

b) Naive Bayes (NB): The Naive Bayes algorithm is a
probabilistic classification technique that utilizes Bayes’ Theorem
to calculate the probability of a data point belonging to a specific
class, given our prior knowledge. Bayes’ Theorem is expressed as
PðcjxÞ ¼ PðxjcÞ ´ PðcÞ

PðxÞ , where P(c∣x) represents the probability of class
c (target) given the predictor x (attributes), P(x∣c) is the
probability of the predictor x given the class c, P(c) is the prior
probability of the class, and P(x) is the prior probability of the
predictor. Naive Bayes calculates these probabilities for each
possible class and then assigns the data point to the class with the
highest probability. This analysis uses the Gaussian Naive Bayes
implementation, denoted as gnb=GaussianNB() from the
sklearn.naive_bayes module. This classifier assumes that the
likelihood follows a Gaussian (normal) distribution. Another
variant, BernoulliNB(), was also considered but disregarded due
to achieving an overall accuracy of 56%, which was unsatisfactory
for the subsequent analysis.

c) Decision Tree (DT): The DT algorithm constructs a tree-like
structure by recursively breaking the dataset into smaller subsets
through binary splits based on feature values. This splitting
process involves selecting the feature that provides the best
separation between classes at each step. The criterion often used
for making these splits is the concept of entropy. Entropy, in this
context, measures the impurity or disorder in a dataset. A lower
entropy implies that the dataset is more homogeneous with
respect to the target classes. The entropy for a node Qm is
calculated using the formula: Pmk ¼ 1

nm
∑y2Qm

Iðy ¼ kÞ, where k is
the number of possible classes, m= no of nodes, and Qm= data
at the particular node m. Then entropy is computed by
E(Qm)=−∑kPmk(logPmk). Here, Pmk is the proportion of
instances in node Qm that belong to class k. The goal of building
the decision tree is to minimize entropy. At each step, the
algorithm selects the feature that results in the greatest reduction
in entropy when the dataset is split based on that feature. This
process is repeated for every tree branch until certain stopping
criteria are met, such as reaching a maximum depth or having a
node with a minimum number of samples. The Decision Tree
classifier builds a tree with decision nodes (internal nodes) and
leaf nodes (terminal nodes). In this analysis, the DecisionTree-
Classifier from the sklearn.tree module is employed with the
criterion set to ‘entropy’ and max_depth set to None (allowing
the tree to grow until all leaves are pure or until the minimum
samples per leaf are reached). This classifier uses entropy to guide
the decision-making process during tree construction. DT is
simple to understand, visualize, and interpret. However, they can
be prone to overfitting if not properly controlled through
parameters like maximum depth or minimum samples per leaf.

d) Random Forest (RF): Random Forest often performs better
than a single Decision Tree, providing higher accuracy and better
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generalization to new data. The choice of the number of trees
(n_estimators) is a hyperparameter that can be optimized.
Increasing the number of trees usually improves performance
up to a point, after which it might plateau or even lead to
overfitting. It’s robust, easy to use, and handles high-dimensional
data well. However, due to the ensemble nature, it might be
computationally more expensive than a single Decision Tree. The
number of trees in the forest (n_estimators) varies from 10, 50,
and 100, and we see the overall accuracy has increased when the
number of trees is the highest. The entropy criterion computes
the Shannon entropy of the possible classes to decide which
feature to split on at each step in building the tree, similar to DT.
We have used the classifier= RandomForestClassi®er(n_estima-
tors= 100, criterion= ‘entropy’) imported from sklearn.ensemble.

e) Multinomial Logistic Regression (LR): It is an extension of
logistic regression, which solves a multi-class problem. It models
the relationship between the predictors and probabilities of each
class and predicts the class with the highest probability among all

the classes. Let us consider P(y= j∣zi)= ez
ðiÞ

∑k
j¼0 z

ðiÞ
k

, where j is the class

of the input (i), ranging from 0 to k, where k is the number of
possible classes. The term, ∑k

j¼0 z
ðiÞ
k normalizes the distribution

such that P(y= j∣zi)= 1. The net input vector is z such that
z ¼ w1x1 þ :::þ wmxm þ b ¼ ∑m

l¼1 wlxl þ b, where x is the
feature vector of training dataset, w is the weight vector, and b
is the bias unit. We have used the classifier= LogisticRegression(-
multi_class= ‘multinomial’, solver= ‘newton-cg’) imported from
sklearn.linear_model.

f) Support Vector Machine (SVM): Support Vector Machine
(SVM) is a robust and widely used machine learning algorithm
for both classification (Support Vector Classification - SVC) and
regression (Support Vector Regression - SVR) tasks. It works by
finding the hyperplane that best separates different classes or fits
the data points in the regression case. Different parameters are
checked to have the best estimator for the training
datasets–linear, polynomial of degree 3, and Gaussian radial
basis function (RBF) with γ of [1, 0.001, 0.0001] and c of [1, 10,
100, 1000]. A kernel transforms the training dataset so that a non-
linear decision surface can transform into a linear equation in a
high-dimension space. The optimized kernel is given by linear
scale. The net input vector is defined as z such that
z ¼ ∑m

l¼1 wlxl þ b, where w is the weight vector, x is the feature
vector of the training dataset, and b is the bias unit. LR and SVM
without any kernel provide almost similar performance, but the
SVM is tuned better depending on the parameters. We have used
the svm_model=GridSearchCV(SVC(), params_grid, cv= 5)
imported from sklearn.svm.

g) Artificial Neural Network (ANN): An Artificial Neural
Network (ANN) is a versatile and powerful machine learning
model inspired by the human brain’s neural structure. ANNs
consist of interconnected layers, each performing specific
transformations on the input data. The key components in
building an ANN include Convolution Layer: Filters or kernels
convolve across the data to capture local features like edges,
corners, and textures. The output is a feature map that represents
the presence of these features. Pooling Layer: After each
convolutional layer, pooling layers reduce the dimensions of the
feature maps while retaining the most important information.
Dropout Layer: It is a regularization technique that prevents
overfitting. Flattening Layer: It reshapes the multi-dimensional
output from the convolutional and pooling layers into a one-
dimensional vector. Fully Connected Layer: Fully connected
(dense) layers connect every neuron from the previous layer to
every neuron in the current layer. They enable the network to
learn complex relationships between features. Proper tuning of

these hyperparameters can enhance the network’s ability to
extract relevant features and generalize well to new data. Epochs,
Batch Size, and Learning Rate: The number of epochs determines
how often the entire dataset is used to train the network. Batch
size specifies the number of samples used in each iteration during
training. These parameters must be carefully chosen, often
through trial and error, to balance convergence speed and avoid
overshooting. We have used Keras to build the ANN. There are
three convolution layers, with each one including keras.layers.-
Conv2D(32, kernel_size=(3, 3), activation=‘relu’. We also used
max pooling for each convolution layer using MaxPooling2D(-
pool_size=(2, 2)). The dropout layer is used as keras.layers.Drop-
out with a rate of 0.2. Then, the layer is flattened using
keras.layers.Flatten() to get it ready for the dense layer. The
function for the out layer consists of keras.layers.Dense(number_-
of_classes, activation=‘softmax’), where the number_of_classes =
number of tones in this study. Everything is compiled using
model.compile(optimizer=‘adam’, loss= ‘categorical_crossentropy,’
metrics=[‘accuracy’]).

Machine learning algorithms (MLAs) are evaluated using a set
of parameters designed to assess their effectiveness in multi-class
identification scenarios.

a) Confusion Matrix: It is a pivotal tool for evaluating the
performance of a classifier. It compares the actual and predicted
values and takes the form of an N ×N matrix, where N represents
the number of output classes. The matrix is constructed based on
four key components: False Negative (FN), False Positive (FP),
True Negative (TN), and True Positive (TP). FN for a class is
calculated by summing the values in the corresponding row
except for the TP value. FP for a class is determined by summing
the values in the corresponding column except for the TP value.
TN for a class is computed by summing values across all columns
and rows except those corresponding to the class in question. TP
represents cases where the actual and predicted values match. The
confusion matrix is generated using the confusion_matrix
function from the sklearn.metrics module.

b) ROC Curve and AUC Values: Although receiver operating
characteristic (ROC) curves and area under the curve (AUC)
values are conventionally associated with binary classification,
they can be adapted for multi-class scenarios using a one vs. rest
strategy. This strategy trains the datasets to classify instances as
belonging to a specific class. The OneVsRestClassifier() is
employed, wherein each MLA is integrated. Alternatively, the
one vs. one strategy, which employs a separate classifier for each
combination of two or more classes, can be used. The ROC curve
is a probability curve plotting the True Positive (TP) rate against
the False Positive (FP) rate at various threshold levels, effectively
distinguishing between the actual ‘signal’ and ‘noise’. The AUC
quantifies a classifier’s ability to distinguish between classes;
higher AUC values indicate better performance in distinguishing
positive and negative classes. An AUC value of 1 signifies perfect
classification. The ROC curve and AUC values are computed
using functions like roc_curve, auc, and roc_auc_score from the
sklearn.metrics module.

c) Accuracy, Precision, Recall, and F-1 Score with Micro- and
Macro-weighted Averages: For multi-class identification chal-
lenges, calculating an overall F-1 score isn’t straightforward.
Instead, the F-1 score is computed for each class using the one vs.
rest strategy. Micro- and macro-weighted averages are then used
to determine the overall F1-score. Precision is given by the
formula TP

TPþFP, Specificity by TN
TNþFP, Sensitivity and Recall by

TP
TPþFN, and the F-1 Score by 2 ´ Precision ´Recall

PrecisionþRecall . Micro-averaging
assigns equal weight to each instance or prediction, while macro-
averaging calculates the arithmetic mean of scores across different
classes. Evaluation metrics such as accuracy, precision, recall, and
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F-1 score are calculated using functions like accuracy_score and
classification_report from the sklearn.metrics module.

Results
In our investigation of tonal contrasts, we delve into the intri-
cacies of f0 fluctuations, explicitly focusing on f0 directionality
and height, duration, and intensity. However, duration and
intensity appeared to be non-significant contributors in identi-
fying tonal contrasts in Chokri. The computation of f0 direc-
tionality entails the division of the f0 track into eleven equidistant
time points, ranging from the onset (0%) to the offset (100%) of
the f0 trajectory. To trigger the meaning of the target words, a
priming sentence was first recorded, followed by the target word
occurring in a fixed sentence frame (where the target words occur
in the middle position of the sentence) and in isolation. In our
analysis, we have used the values of the tokens uttered in fixed
sentence frames and in isolation to maintain uniformity. Five
female and two male speakers, aged between 19 and 39 years,
participated in the production experiment and naturally pro-
duced the scripted sentences. The dataset comprises eight
monosyllabic toneme sets with 5-way meaning contrasts
(8 toneme pairs ×5-way lexical contrasts= 40 lexical items). The
toneme pairs were randomly distributed and displayed on a
monitor screen. Each speaker produced the whole set five times
with an interval of 30 minutes between each repetition. Finally,
the data is annotated using the Praat program (Boersma and
Weenink 2012) (see Fig. 1a). Guided by the workflow outlined in
Fig. 1b, the collected data undergoes preprocessing and refine-
ment. This preparatory stage involves the removal of outliers and
subsequent scaling via the Z-score normalization technique. This
normalization method is a potent tool to address intra-speaker
and inter-speaker variability. The transformation of these values
through normalization lays the foundation for our subsequent in-
depth analysis.

Visual inspection of different tones based on f0 directionality.
The normalized f0 tracks measured at 11 equidistant time points
are averaged across all the tonemes and repetitions for each
speaker individually and plotted in a line chart for visual
inspection. The normalized data of individual speakers [Fig. 2a–g]
and the mean z-score values of the individual toneme averaged
across all the speakers’ data represent a uniform trend [Fig. 2h].
The trend of the f0 direction confirms four level tones, viz., extra
high (EH, in blue color), high (H, in red color), mid (M, in black
color), low (L, in green color), and a contour tone (MR, in purple
color). A noteworthy aspect worth highlighting is the depiction of
speaker-wise raw f0 directionality, presented in Supplementary
Fig. S1 of the supplementary section. Supplementary Figure S1
shows the f0 range disparities between females (140–300 Hz) and
males (90–200 Hz). The disparities in the f0 range are due to the
differences in the vocal tract of male and female speakers. The
size and the grid of the grown-up adult male’s vocal tract are
usually bigger than their female counterparts, producing sig-
nificantly lower f0. Therefore, our further investigation segregates
male and female data for in-depth exploration. Additionally,
sample sound files representing a toneme set ([pu] series) with
five-way meaning contrast produced by one male and one female
speaker are provided in SF1–SF10 of the supplementary section.

Multi-class identification of tonal contrasts using
Traditional MLAs. The significant acoustic components, viz., f0
height and direction, are included as the feature vector in this
study. The data is divided into training and testing sets in the
70:30 ratios (Fig. 1c). Based on the training on the 70% data (Fig.
1d), the testing dataset is used to evaluate the performance of each
MLA (Fig. 1e–f).

Evaluation of traditional MLAs based on the confusion matrix.
The performance of the six traditional MLAs are highlighted

Fig. 2 Z-score values of f0 directionality for different speakers. a S1_F, b S2_F, c S3_M, d S4_M, e S5_F, f S6_F, and g S7_F, and the (h) speaker-wise
average are shown. M indicates the gender of the speakers- M for males and F for females. The f0 directionality entails the division of the f0 track into
eleven equidistant time points, ranging from the onset (0%) to the offset (100%) of the f0 trajectory. Different tones include four level tones- extra high
(EH, in blue color), high (H, in red color), mid (M, in black color), low (L, in green color), and a contour tone (MR, in purple color).
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using a confusion matrix, as shown in our flowchart of Fig. 1f.
Distinct insights emerge when breaking down the data by
gender (viz., female and male), illustrated in Figs. 3a–f (female)
and 4a–f (male). Each value in the confusion matrices’ rows has
been normalized for a holistic comparison. A notable pattern
emerges in the color variations, reflecting the dichotomy
between diagonal and off-diagonal positions. The color bar (0 to
1) visually encapsulates our analysis, with diagonal entries
indicating precise tone predictions, reaching 100% accuracy for
individual MLAs.

The evaluation of confusion matrices of female data consistently
reveals that off-diagonal values rarely surpass the 10% threshold
(Fig. 3a–f). Analyzing the predictions for each tonal class provides
intriguing insights. The EH tone achieves a commendable 91%
accuracy, with minor divergences into the H tone (9%). Similar
success is observed for the L tone (97% accuracy) and MR tone
(86% accuracy). However, the M and the H tones pose challenges,
with correct predictions at 64% and 42%, respectively. Observing
diagonal values across MLAs, each MLA’s accuracy percentages for
tonal contrasts (EH, H, M, L, and MR) fall within specific ranges

Fig. 3 Normalized confusion matrix of the female data showcasing the performances of different MLAs in classifying the five tones (EH, H, M, L, and
MR) present in Chokri. a Decision Tree (DT), b K-Nearest Neighbors (KNN), c Logistic Regression (LR), d Naive Bayes (NB), e Random Forest (RF), and
f Support Vector Machine (SVM). The color bar exhibits shades from light (=0) to dark (=1).

Fig. 4 Normalized confusion matrix of the male data showcasing the performances of different MLAs in classifying the five tones (EH, H, M, L, and
MR) present in Chokri. a Decision Tree (DT), b K-Nearest Neighbors (KNN), c Logistic Regression (LR), d Naive Bayes (NB), e Random Forest (RF), and
f Support Vector Machine (SVM). The color bar exhibits shades from light (=0) to dark (=1).
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(Fig. 3a–f). Different MLAs, viz., DT, KNN, LR, NB, RF, and SVM,
achieve the accuracy range of identifying tonal contrasts (viz., EH,
H, M, L, and MR) in the range of (91%, 42%, 64%, 97%, and 86%),
(91%, 68%, 85%, 95%, and 83%), (91%, 72%, 77%, 97%, and 92%),
(91%, 70%, 79%, 95%, and 75%), (91%, 72%, 82%, 1%, and 94%),
and (91%, 70%, 82%, 97%, and 92%), for each tone type
respectively. Notably, the EH tone consistently garners 91%, and
the L tone surpasses 94% accuracy. The H and the M tones,
however, show uncertainty across MLAs. On the flip side, the MR
tone maintains an average of 89% accuracy, except for NB at 75%.

Figure 4a–f presents the normalized confusion matrix for male
speakers. DT achieves 93% accuracy for the EH tone, with a 7%
spill into the H tone. Similar trends emerge for the MR and L
tones, standing at 93% accuracy (Fig. 4a). A striking divergence
appears in predicting M and H tones when comparing female and
male speakers’ data, indicating a possible gender influence on

MLA performance. All MLAs achieve higher accuracy in
identifying contrastive tones for male speakers. Some MLAs
reach 100% accuracy without classification errors. The accuracy
achieved by individual MLA in classifying the contrastive tones
(EH, H, M, L, and MR) is as follows: DT= (91%, 94%, 87%, 93%,
and 93%), KNN= (93%, 100%, 87%, 100%, and 93%),
LR= (86%, 100%, 87%, 100%, and 100%), NB= (93%, 100%,
93%, 100%, and 80%), RF= (100%, 100%, 93%, 100%, and 93%),
and SVM= (86%, 100%, 87%, 100%, and 100%). A general trend
shows that H and L tones are consistently predicted with 100%
accuracy, except for DT (93–94%), and MR tone is predicted with
93% accuracy by DT, KNN, and RF. The lowest accuracy (80%) is
for NB in classifying the MR tone, with dual-sided misclassifica-
tion– 7% with the H tone and 13% with the M tone. DT, KNN,
LR, and SVM achieve 87% for the M tone, while NB and RF
improve it by 6–93%.

Fig. 5 The Receiver Operating Characteristic (ROC) curves show the implementation of different MLAs for classifying the contrastive tones (EH, H,
M, L, and MR). I [a–f] represent the curve generated on the female speakers for different MLAs, and II [a–f] show the curve generated on the male
speakers data for different MLAs. The different MLAs include a Decision Tree (DT), b K-Nearest Neighbors (KNN), c Logistic Regression (LR), d Naive
Bayes (NB), e Random Forest (RF), and f Support Vector Machine (SVM).
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Evaluation of traditional MLAs based on ROC curve analysis.
Figure 5(I-II)a–f presents the Receiver Operating Characteristic
(ROC) curve, evaluating the performance of classification meth-
ods (DT, KNN, LR, NB, RF, and SVM) in identifying contrastive
tones produced by the female [Fig. 5(I)a–f] and male speakers
[Fig. 5(II)a–f]. The true positive rate (Sensitivity) is on the vertical
axis, showcasing the correct identification of positive cases. The
horizontal axis reflects the false positive rate (1-Specificity),
indicating the misclassification of negative cases as positive. An
ideal MLA would have a curve from the bottom left to the top left,
resulting in an Area Under the Curve (AUC) value of 1, signifying
perfect accuracy.

In female speakers’ data, RF and SVM exhibit high AUC values
for all tones (EH, H, M, L, and MR) at 0.99, 0.94, 0.96, 1.00, and
0.99, respectively, indicating excellent performance. However, DT
and LR show weaker results, especially for the H tone (AUC= 0.84
and 0.73) and the M tone (AUC= 0.75 and 0.69) [Fig. 5(I)(a–f)].

Transitioning to male speakers, RF and KNN excel with AUC
values of 1 for all tones. DT, NB, and SVM maintain respectable
performance (AUC > 0.92), while LR falls short, particularly for
the M tone (AUC= 0.76) [Fig. 5(II)a–f]. Comparing RF and
SVM for male speakers, RF’s AUC values (all 1.00) outperform
SVM (AUC= 0.96–1.00). Notably, DT’s performance improves
for male speakers, while LR remains subpar for both groups.

The ROC curves visually guide us on the effectiveness of each
method in distinguishing contrastive tones, while the AUC values
quantitatively measure accuracy. The insights gained from these
aid in selecting appropriate methods for tonal identification in
specific gender groups.

Multi-class identification of tonal contrasts using neural network-
based MLAs. Following conventional practices for traditional

MLAs, the ANN undergoes training on the dataset. A well-fitting
algorithm should accurately conform during validation, with the
validation set constituting 10% of the data unseen during train-
ing. The number of epochs denotes how often the ANN iterates
through the training set, adjusting parameters based on observed
errors and the optimization function.

The ANN algorithm exhibits a robust fit for both training and
validation datasets, unaffected by gender differences (females in
Fig. 6a and males in Fig. 6b). The loss curve consistently reduces
signal noise during training without unexpected spikes. Accuracy
saturates with increasing epochs, indicating a balanced training
model. No signs of underfitting or overfitting emerge; both curves
converge harmoniously.

Examining the confusion matrix reveals the ANN’s perfor-
mance for each tonal class (EH, H, M, L, and MR) among females
(Fig. 6c) and males (Fig. 6d). Tone L achieves 97% accuracy, with
a 3% misclassification as tone M. EH, H, M, and MR achieve
accurate identification rates of 86%, 78%, 73%, and 89%,
respectively. Among females (Fig. 6c), tones H and M exhibit
slightly lower accuracy (73–78%). In males (Fig. 6d), EH and M
achieve 100% accuracy, while L and MR showcase 94%.
Misclassifications include 6% of L confused with M and 6% of
MR misclassified as EH. Overall, male speakers outperform
females in ANN performance, mirroring trends in traditional
MLAs.

Comparison of the performance of all MLAs based on different
features and F1-scores. We have calculated the aggregate F1-
scores in Fig. 7a–b for female and male speakers to evaluate each
MLA’s effectiveness in the multi-class identification of various
tones. All seven classifiers (DT, KNN, LR, NB, RF, SVM, and
ANN) underwent extensive evaluation, with detailed metrics in

Fig. 6 Plots showcasing the training, validation, and confusion matrix of artificial neural network (ANN). The model’s loss and accuracy curves are
validated using the training image set of all five tonal classes produced by the female speakers in (a) and male speakers in (b). The confusion matrix of the
testing dataset for different tonal classes produced by the female and male speakers are shown in (c, d), respectively.

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-024-03113-2 ARTICLE

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |          (2024) 11:610 | https://doi.org/10.1057/s41599-024-03113-2 9



Supplementary Table ST1 in the Supplementary Section. The
metrics, including accuracy, precision, recall, and F1-score,
exhibit consistency across MLAs. The F1-score, a harmonic
average of precision and recall, holds particular significance. A
high F1 score indicates elevated precision and recall, while a low
score suggests both are diminished.

Figure 7a, b reveals a trend: all MLAs, traditional and neural
networks alike, demonstrate admirable performance with male
speaker data, achieving F1-scores surpassing 0.85. Conversely, F1-
scores decline to approximately 0.7 for female data, especially in
identifying tones H and M. Notably, traditional MLAs like NB

exhibit an F1-score under 0.8 when pinpointing tone MR. RF
stands out with an F1-score of ~0.88 for females and an even
more impressive ~0.97 for males, surpassing other MLAs (DT,
KNN, LR, NB, SVM, and ANN). NB performs least for females
(~0.81), while DT shows the lowest F1-score for male speaker
data at 0.92. Delving deeper, DT and NB hover around 0.82–0.83
for female speaker data, while ANN achieves F1-scores of 0.84
and 0.95 for females and males, respectively.

Our investigation explores the impact of f0 height, f0 direction,
or their combined influence on MLA performance. Two feature
vectors are considered: (a) f0 directionality alone, excluding f0
height, and (b) a vector incorporating both f0 height and f0
directionality. Table 1 presents MLA performance in terms of the
crucial F1-score metric, with detailed data in Supplementary
Table ST2 for all seven classifiers (DT, KNN, LR, NB, RF, SVM,
and ANN), encompassing accuracy, precision, recall, and F1-
score for both female and male speakers using these feature
vectors.

A notable observation emerges: for male speaker data, F1-
scores by KNN, LR, NB, RF, SVM, and ANN remain consistent,
regardless of considering f0 height (scores: 0.9465, 0.9459, 0.9325,
0.9733, 0.9459, and 0.9577, respectively). However, DT displays a
2% F1-score increase when both f0 height and f0 direction are
considered. Conversely, female speaker data shows an overall
enhancement in MLA performance. When comparing f0
height+ f0 direction to solely f0 direction, F1-scores improve
for all MLAs. For instance, DT scores progress from 0.79 to 0.83,
KNN from 0.84 to 0.82, LR from 0.85 to 0.83, NB from 0.8194 to
0.8145, RF from 0.8768 to 0.8719, SVM from 0.86 to 0.85, and

Fig. 7 F1-score to estimate the performance of different MLAs for classifying contrastive tones (EH, H, M, L, and MR). Decision Tree (DT), K-Nearest
Neighbors (KNN), Logistic Regression (LR), Naive Bayes (NB), Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN)
for a Females, and b Males. The dashed line shows an F1-score of 0.85.

Table 1 Evaluation of different MLAs for classifying different
tones (EH, H, M, L, and MR).

MLAs F_f0 M_f0 F_f0
directionality

M_f0
directionality

DT 0.83076 0.920315 0.798672 0.906667
KNN 0.841651 0.946500 0.823503 0.946500
LR 0.855796 0.945903 0.833356 0.945903
NB 0.819437 0.932509 0.814570 0.932509
RF 0.876814 0.973305 0.871904 0.973305
SVM 0.862024 0.945903 0.856361 0.945903
ANN 0.844666 0.957733 0.847646 0.957733

Decision Tree (DT), K-Nearest Neighbors (KNN), Logistic Regression (LR), Naive Bayes (NB),
Random Forest (RF), Support Vector Machine (SVM), and ANN, for different features and
gender combinations in terms of average F1-score: a) Females with f0 height+f0 directionality
as features (F_f0), b) Males with f0 height+ f0 directionality as features (M_f0), c) Females
with f0 directionality as a feature (F_f0 directionality), and d) Males with f0 direction as a
feature (M_f0 directionality).
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ANN from 0.8476 to 0.8446. This underscores the significance of
considering both f0 height and directionality, particularly for
female speaker data.

Discussion
Performance measures and evaluation of different MLAs.
Evaluating the performance of machine learning algorithms
(MLAs) for tonal classification requires a comprehensive assess-
ment using various metrics that include confusion matrix, AUC
measure, ROC curve, accuracy, precision, recall, and F1-score. It’s
noteworthy that, on average, male speaker data consistently
performs better than female data across all MLAs, whether tra-
ditional or network-based MLAs are implemented in this study
(see Supplementary Table ST2 in the supplementary section).
Although classification accuracy is commonly employed for
assessing MLA performance, it might not be suitable when class
distribution is imbalanced and different errors carry varying
costs. The F1 score balances precision and recall and provides a
more informative evaluation (see Table 1).

An interesting trend emerges in the area under the ROC curve
(AUC). KNN and RF perform similarly for male data
(see Fig. 5(II)b, e), while RF surpasses KNN for female data
(see Fig. 5(I)b, e). The F1-score averages around 84% for females
and 94% for males with KNN, whereas RF achieves a 3%
improvement, reaching 87% for females and 97% for males
(see Table 1). This suggests that RF outperforms KNN and is a
more suitable choice. However, MLAs’ performance evaluation
goes beyond a single metric. LR, for instance, yields an F1-score
of 85% for females and 95% for males, showcasing impressive
results (see Table 1). Nevertheless, closer examination reveals
LR’s challenges in classifying the H and the M tones, indicating its
limitations. Similarly, DT exhibits F1-scores of 83% and 92% for
females and males, respectively. Despite these seemingly good
scores, the confusion matrix uncovers DT’s struggle to capture
tones H and M, warranting its exclusion (see Figs. 3a and 4a).
Another case emerges with Naive Bayes (NB), which should be
omitted due to its 75% accuracy in classifying tone the MR,
significantly lower than the 89% average accuracy across MLAs
for female speakers (see Figs. 3d and 4d). The RF and SVM
comparison presents a nuanced scenario. While both exhibit high
AUC values for female speaker data, RF surpasses SVM in male
speaker data, indicating RF’s superiority (see Figs. 3e–f and 4e–f).

It is crucial to emphasize that judging an MLA’s performance
requires considering all relevant metrics rather than relying solely
on the average F1-score. This holistic perspective makes RF the
preferred choice among the traditional MLAs; nevertheless,
compared to neural network-based algorithms (ANN) [see Fig.
6c, d], both prove equally adept at classifying the five contrastive
tones in Chokri. ANN achieves an average F1-score of 84–87%
for females and 95–97% for males, highlighting its competence
(see Table 1).

Evaluation of feature importance by implementing
different MLAs. Since we have established RF as the best-
performing MLA in this study, our focus is narrowed to exploring
features specifically relevant to RF. Table 1 provides insights into
the variation in MLAs’ performance levels based on the average
F1-score. Notably, including f0 height as a feature yields an
overall enhancement in RF’s performance for female speaker
data, while there’s no notable impact on male speakers. For
example, when comparing female speaker data with and without
f0 height as a feature, Accuracy, Precision, Recall, and F1-score
exhibit improvements of 0.532%, 0.322%, 0.532%, and 0.491%,
respectively (see Supplementary Table ST2 in the Supplementary
Section). This observation leads to the conclusion that

incorporating f0 height as a feature may be advantageous for
enhancing the performance of RF, specifically for female speakers.
However, this augmentation does not significantly influence male
speakers’ ability to discern different tones in the Chokri language.
This insight sheds light on the nuanced relationship between
features and MLA performance, emphasizing the importance of
tailoring features to specific contexts and characteristics of
the data.

This study highlights a captivating finding– contrary to the
prevailing notion that the neural network techniques exemplified
by Artificial Neural Networks (ANN) do not necessarily outper-
form traditional MLAs in all scenarios. Instead, the approach’s
efficacy hinges on various factors, including dataset quality,
quantity, class complexity, and feature representation. While
neural networks might demonstrate robust performance in many
instances, their superiority is not guaranteed. This investigation
underscores that tried-and-true methods, such as Random Forest
(RF), can effectively discern complex tonal distinctions. Further-
more, this study underscores a gender-specific nuance in the
feature composition. Combining f0 height and f0 directionality is
a pivotal feature for female speakers, enhancing tonal contrast
discernment. Interestingly, relying solely on f0 direction for male
speakers appears sufficient to achieve the same task. It is worth
noting that each of the seven MLAs exhibits commendable
performance in classifying the five tonal contrasts in Chokri.
However, the key takeaway is the importance of comparisons and
selection of MLAs for various investigations. This insight
transcends the tonal classification, serving as a generalized
framework for evaluating MLAs across diverse problem domains
like phoneme classification and image detection.

In tonal classification, this paper establishes that MLAs can
achieve an accuracy range of 84–87% for female speakers and
95–97% for male speakers. This adds significance to the study,
especially considering that the size and shape of the vocal cords of
a grown-up male adult are relatively bigger and wider, leading to
a relatively lower f0 compared to their female counterparts. This
study, however, does not draw conclusive evidence if this factor
(the relative differences amongst the contrastive tones being less
in terms of f0) is an advantage for the MLAs to detect the intricate
tonal contrasts exhibited in Chokri. Its status as a less
documented and endangered language adds another layer of
significance to this work. By unraveling the complexity of the
tonal contrasts in Chokri, the study also provides a noble
technique for examining the tonal structure of a given language. It
is to be noted that the present work is the first comprehensive
study based on production experiments to establish the complex
tonal structure in this language. This work will help other
researchers who aim to explore other linguistic aspects of Chokri
and safeguard its longevity. This research demonstrates how
technology can be harnessed to explore complex linguistic
nuances, such as the multi-class tonal contrasts in a language.

Data availability
The data that support the findings of this study are available with
the corresponding author (Amalesh Gope, email id: amaleshte-
zu@gmail.com) and can be made available upon reasonable
request. The representative sound files are given in the Supple-
mentary Section. The details include: (a) SF1_s3_M_pu_-
bridge_sen, where SF1= soundfile 1, s3= subject 3, M=Male,
[pu]= ‘pu’ series, English equivalent= bridge, sen= fixed sen-
tence frame, and the target word occurs in the sentence medial
position, uttered by a male speaker, (b) SF2_s3_M_pu_fall_sen,
where SF2= soundfile 2, s3= subject 3, M=Male, [pu]= ‘pu’
series, English equivalent= fall, sen= fixed sentence frame, and
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the target word occurs in the sentence medial position, uttered by
a male speaker, (c) SF3_s3_M_pu_fat_sen, where SF3= soundfile
3, s3= subject 3, M=Male, [pu]= ‘pu’ series, English equiva-
lent= fat, sen= fixed sentence frame, and the target word occurs
in the sentence medial position, uttered by a male speaker, (d)
SF4_s3_M_pu_hit_sen, where SF4= soundfile 4, s3= subject 3,
M=Male, [pu]= ‘pu’ series, English equivalent= hit, sen= fixed
sentence frame, and the target word occurs in the sentence medial
position, uttered by a male speaker, (e) SF5_s3_M_pu_take_sen,
where SF5= soundfile 5, s3= subject 3, M=Male, [pu]= ‘pu’
series, English equivalent= take, sen= fixed sentence frame, and
the target word occurs in the sentence medial position, uttered by
a male speaker, (f) SF6_s2_F_pu_bridge_sen, where SF6=
soundfile 6, s2= subject 2, F= Female, [pu]= ‘pu’ series, English
equivalent= bridge, sen= fixed sentence frame, and the target
word occurs in the sentence medial position, uttered by a female
speaker, (g) SF7_s2_F_pu_fall_sen SF7= soundfile 7, s2=
subject 2, F= Female, [pu]= ‘pu’ series, English equivalent= fall,
sen= fixed sentence frame, and the target word occurs in the
sentence medial position, uttered by a female speaker, (h)
SF8_s2_F_pu_fat_sen, where SF8= soundfile 8, s2= subject 2,
F= Female, [pu]= ‘pu’ series, English equivalent= fat, sen=
fixed sentence frame, and the target word occurs in the sentence
medial position, uttered by a female speaker, (i) SF9_s2_F_pu_-
hit_sen, where SF9= soundfile 9, s2= subject 2, F= Female,
[pu]= ‘pu’ series, English equivalent = hit, sen= fixed sentence
frame, and the target word occurs in the sentence medial position,
uttered by a female speaker, (j) SF10_s2_F_pu_take_sen, where
SF10= soundfile 10, s2= subject 2, F= Female, [pu]= ‘pu’ ser-
ies, English equivalent= take, sen= fixed sentence frame, and the
target word occurs in the sentence medial position, uttered by a
female speaker.
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