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The future of the labor force: higher cognition and
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Skills can be categorized into two types: social-cognitive and sensory-physical. Sensory-

physical skills, governed by explicit rules and transparent rationales, can be effectively exe-

cuted through meticulous programming, with humans spontaneously trusting machines to

perform these skills. In contrast, social-cognitive skills entail open interpretations reliant on

personal opinions or intuition and are contextually and problem-dependent. The inherent

complexity and subjectivity of social-cognitive skills, underscored by Polanyi’s paradox and

algorithm aversion, render machines less capable of replicating these skills. Thus, automation

exerts differential impacts on these two skill sets. Moreover, the specialization of machines

leads to expensive setup costs when switching tasks, whereas humans switch tasks with

much less effort. The versatility in skills enables workers to adapt to a wide array of tasks,

making them less prone to automation. Our empirical research, utilizing skill score data from

O*NET and employment data from Employment and Wage Statistics (OEWS), validated the

attributes of labor resistant to automation: the higher the scores of cognitive skills in a job,

the lower its susceptibility to automation; workers endowed with a diverse array of skills

experience an increase in their employment share. Conversely, jobs focusing on sensory-

physical skills are more likely to be supplanted by machines. Therefore, workers can adopt

two strategies to maintain a competitive edge. First, they can enhance cognitive skills, such as

creativity and critical thinking. Second, they can develop diverse skills, encompassing both

social-cognitive and sensory-physical skills. Specializing in a specific sensory-physical skill

does not offer an advantage. Fostering a workforce proficient in cognitive skills and equipped

with multifaceted skills, that is, flexible workers, becomes imperative. Our investigation

represents the inaugural effort to empirically affirm the differential impact of automation on

sensory-physical versus social-cognitive skills, thereby delineating the characteristics of

irreplaceable labor. This analysis offers critical insights for individual career development and

the strategic planning of national educational systems.
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Introduction

Automation and digitization are precipitating the dis-
placement and evolution of occupations. Certain con-
ventional occupations confront the peril of obsolescence,

exemplified by Insurance Underwriters and Data Entry Keyers
(Frey and Osborne, 2017). Burgeoning occupations, such as
Blockchain Engineers, Digital Forensics Analysts, and Informa-
tion Security Engineers, are flourishing. Lin (2011) observes that
the designations of newly introduced Census occupations pre-
dominantly aggregate into two categories: those entailing avant-
garde technologies, such as Web Developers or Database
Administrators, and those about innovative personal services.
Tasks in existing occupations are transforming due to the
deconstruction of complex production processes, where auto-
mation supplants certain human-performed tasks while simulta-
neously engendering novel tasks necessitating human execution
(Acemoglu et al., 2022). Rather than supplanting human labor,
automation technology mainly seeks to augment and synergize
with the human workforce by capitalizing on human comparative
advantages (Igami, 2020; Acemoglu et al., 2022; Autor, 2015;
Acemoglu and Restrepo, 2018). For example, a new trend is
emerging among some middle-skill workers, who are integrating
routine technical tasks with various non-routine tasks where
workers exhibit comparative strengths, such as interpersonal
interaction, flexibility, adaptability, and problem-solving acumen
(Autor, 2015). These modern workers are referred to as “new
artisans” (Holzer, 2015). Therefore, organizations and individuals
should not fear the rise of machines but regard them as tools for
enhancing productivity and forging the human–machine alliance
(Moritz and Kate, 2022).

New tasks emerge as certain tasks are automated, altering the
requisite skills. Two strategies exist for measuring labor skills. The
human capital approach perceives education and training as
investments in skill acquisition, yielding returns in the form of
elevated wages. Owing to data accessibility, education proxy is
extensively employed, yet it has faced substantial criticism for the
assumption of static skills. Some scholars use wages as a proxy for
skills, positing that occupations with high wages are deemed to be
skill-intensive. However, such a coarse-grained distinction may
overlook critical relationships between skills (Alabdulkareem
et al., 2018). Focusing on job content offers an alternative mea-
surement, suggesting that an individual’s tasks should reflect their
skill level. Therefore, the skill level is contingent upon the nature
and content of the tasks required for the occupation (Martinaitis
et al., 2021; Autor and Dorn, 2013; Autor et al., 2003). Autor and
Dorn (2013) classify tasks into routine, manual, and abstract tasks
to calculate routine task intensity, illustrating that the substitution
of routine tasks by computers leads to the reassignment of a
majority of middle-skill labor primarily engaged in routine tasks
to lower-skilled service occupations, elucidating the employment
polarization and growth of low-skilled service occupations in the
United States from 1980 to 2005. Based on task manual flexibility

and cognition, Gong (2023) builds a machine endowment cost
model to examine the economic allocation of tasks between
humans and machines. Alabdulkareem et al. (2018) further dis-
sect tasks into skills, utilizing the O*NET data on the importance
of workplace skills, knowledge, abilities, and some generalized
work activities and employing unsupervised clustering techniques
from network science. They discover that skills bifurcate into
social-cognitive and sensory-physical sets, providing a new
interpretation of the employment polarization at a fine-grain
level. Building upon the insights of Alabdulkareem et al. (2018),
our inquiry centers on discerning the directional shifts in work-
ers’ skills within the United States in the context of the ongoing
technological revolution.

Literature review and research hypotheses
The advancements in automation are poised to disrupt the labor
market substantially (Dahlin, 2019). The application of technol-
ogy may lead to the displacement of some workers while con-
currently engendering new employment opportunities and
demands, necessitating other workers to develop, maintain, and
innovate these technologies. Hence, the consequences of tech-
nology are multifaceted. There are three predominant perspec-
tives: deskilling, upskilling, and reskilling.

The deskilling perspective contends that the decomposition
and delegation of originally complex production tasks to robots
simplifies these tasks for laborers over time, resulting in a decline
in worker skills (Manyika et al., 2017; Noble, 2017). The ups-
killing perspective holds that technological transformation
motivates workers to enhance their skills. Technology favor
skilled labor (e.g., those with higher education, abilities, and
experience) over unskilled labor. Reskilling posits that technology
spurs workers to learn new skills to adapt to automation
requirements. The deskilling and upskilling are not mutually
exclusive. In a report for the European Parliament, the Panel for
the Future of Science and Technology (STOA) (2021) under-
scores that technology impacts the distribution of tasks within
jobs. While technology may aid in skill enhancement and elevate
the quality of work, it can also lead to deskilling, creating low-
paid and low-autonomy work. The deconstruction of originally
complex production tasks, now performed by robots, liberates
workers from tedious, repetitive routine tasks, redirecting them to
more flexible positions, which demand higher non-routine skills
(Ge, Sun, and Zhao, 2021; Downey, 2021). Therefore, from the
perspective of task routineness, technology leads to deskilling in
routine tasks and upskilling in non-routine tasks. Using unsu-
pervised clustering techniques, Alabdulkareem et al. (2018) dis-
cover two skill sets: sensory-physical and social-cognitive. We
summarize the characteristics of sensory-physical skills and
social-cognitive skills in Table 1. Our investigation seeks to
explore the impacts of automation on these two skill sets.

Table 1 Key characteristics of sensory-physical and social-cognitive skills.

Skill sets Characteristics Description

Sensory-Physical Skills Physical Interaction Engaging in direct operation and control of physical objects, such as machines, tools, and equipment.
Sensory Sensitivity Utilizing senses like vision, hearing, and touch to gather information and respond.
Precision Control Requiring high control accuracy and hand-eye coordination during task execution.
Physical Capabilities Including strength, endurance, and balance.

Social-Cognitive Skills Cognitive Processing Involving understanding, analyzing, evaluating, and utilizing information.
Interpersonal Interaction Emphasizing effective communication, collaboration, and negotiation with others.
Problem Solving Requiring creative and critical thinking to address complex problems.
Resource Management Involving the efficient management of time, materials, and personnel resources.
Learning Ability Including active learning and applying learning strategies to adapt to new information and environments.
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A skill becomes a candidate for automation when it entails
repeatable actions or following some logical sequence. For
instance, control precision relies on controls’ rapid and recurrent
adjustment. The repetitive nature of this ability suggests it is
readily codifiable, and machines hold a comparative advantage in
speed of execution (Josten and Lordan, 2022). Sensory-physical
skills primarily involve direct interaction with the physical world.
Tasks utilizing these skills are predominantly objective tasks that
can be repetitively executed through precise programmatic design
and machine operation. For example, haptic feedback for upper
limb prostheses restores the sense of touch by relaying force,
pressure, and slip measurements to the user. These devices use
vibrotactile feedback and artificial impedance feedback to
improve the user’s interaction with their environment, enhancing
their grasp success and dexterity and reducing the need for visual
attention during manipulation. Significant advancements in
technology, such as vision aids for the blind, auditory aids for the
deaf, sensory augmentation, and identifying important sensory
feedback, demonstrate that sensory-physical skills like vision,
hearing, and motor abilities can be replaced by machines (Shull
and Damian, 2015; Yu et al., 2023). Additionally, people exhibit
varying preferences for machines performing different tasks and
skills (Castelo et al., 2019). Based on clear rules and transparent
reasons, sensory-physical skills engender spontaneous human
trust in machines to execute tasks that require these skills
(Bonnefon and Rahwan, 2020; Castelo et al. 2019). Lastly, skills
are enhanced through education, experience or training, and the
anticipated returns for a skilled worker are usually higher than
those for unskilled workers (Acemoglu, 1998; Autor et al., 2003;
Autor and Handel, 2013; Krueger, 1993; Card, 2001). From a cost
perspective, the higher the wages, the stronger the motivation to
automate such tasks under technological feasibility and human
trust. Considering these three factors: technical feasibility of
automation, human algorithmic trust, and cost factors, with the
decreasing costs of computers, enterprises are increasingly likely
to employ automation to replace occupations requiring high
sensory-physical skills. The deskilling of machines reduce the
sensory-physical skill requirements for workers. Based on this, we
propose our first hypothesis:

H1: The higher the sensory-physical skill requirement of
workers, the more likely they are to be replaced by machines.

Social-cognitive skills, which involve responding to others (in
nursing or teaching occupations), performing services (mechanics
or high-end restaurant servers) or engaging in agile or creative
thinking (in leadership or knowledge work), are open inter-
pretations based on personal opinions or intuition. In essence,
social-cognitive skills are abstract. Frey and Osborne (2017)
estimates that 47% of total US employment is at risk of auto-
mation, noting that jobs requiring high social intelligence and
creativity are less likely to be automated despite some studies
suggesting an overestimation of automation risks due to an
occupation-based approach (Arntz et al., 2016; Nedelkoska and
Quintini, 2018). Automation impacts sensory-physical and social-
cognitive skills differently. For instance, the da Vinci Surgical
System precisely controls instruments during procedures like
prostatectomies, automating incisions, tissue cutting, and sutur-
ing tasks, thereby reducing bleeding and recovery time. However,
planning surgery, interpreting patient responses, and making
intraoperative decisions still require a doctor’s direct involve-
ment, underscoring the importance of social-cognitive skills. This
difference is due to two factors.

Firstly, the technical challenge in automating social-cognitive
skills lies in the Polanyi paradox—“we know more than we can
tell”. People can implicitly understand and complete tasks that
require social-cognitive skills, but neither computer programmers
nor anyone else can elucidate the vague “rules” or procedures

(Autor, 2015). As Jordan (2019) points out AI focuses on
humans’ high-level or cognitive capability to reason and think.
Sixty years later, however, high-level reasoning and thought
remain elusive. In recent years, due to advances in machine
learning technology, some people have come to believe that uti-
lizing massive data can capture the implicit and opaque heuristic-
based mode. However, technical feasibility does not mean that
such tasks will be automated. An algorithm can only be applied if
it is trusted. Humans do not trust machines to undertake sub-
jective tasks requiring social-cognitive skills (Castelo et al., 2019).
People tend to think that machines lack essential human emo-
tions or emotional abilities (that is, they lack emotions similar to
humans) (Haslam et al., 2008; Gray et al., 2007), so they are
skeptical of machines performing socio-cognitive skills. For
example, a Parature (2014) survey found that 60% of customers
prefer interacting with a live customer service agent. Even though
intelligent customer service can provide quick and immediate
responses, people often wait or press the right sequence of
numbers to talk to someone who can solve their issue, because
human agents can offer more personalized and empathetic ser-
vices (Brown, 2019). In the medical domain, medical imaging
enhanced by AI systems may surpass human doctors in disease
identification, yet this does not render doctors superfluous.
Instead, integrating such technology allows physicians to devote
more attention to designing treatment plans and fostering doctor-
patient relationships because medicine requires a combination of
skills, including critical thinking, problem-solving, empathy, and
communication skills, which machines lack. The Polanyi paradox
and algorithm aversion in cognitive skills determine that the
substitution of machines for these skills presents considerable
challenges., i.e., the “upskilling” characteristic of machines, which
will expand the scores of workers’ cognitive skills. This view is
consistent with current studies indicating the difficulty of repla-
cing high cognitive tasks with machines (Autor 2015; Autor and
Dorn 2013; Gong 2023). Based on the above analysis, we propose
our second hypothesis:

H2: The higher a worker’s social-cognitive skills, the less likely
they are to be replaced by machines.

Machines can be programmed to perform specific tasks effi-
ciently, yet they cannot execute multiple tasks that necessitate a
combination of skills. This is because transitioning between
diverse tasks incurs expensive setup costs. Although complex
tasks can be decomposed into simpler ones, some occur infre-
quently and need to achieve economies of scale, thus rendering
machines not cost-effective. Gong et al. (2022) argue that in
future smart factories, humans will primarily be responsible for
setup tasks requiring workers to have various skills and produc-
tion tasks will be delegated to machines. Machines excel in
repetitive tasks, thereby assigning work demanding flexibility to
humans. The emergence of new tasks imposes new demands on
humans. Addressing new tasks and problems with automation
technology necessitates collaborative expertise across multiple
disciplines, departments, and fields. Thus, the more diverse the
workforce’s skills, the smoother their transition to new roles. In
other words, automation motivates workers to ‘reskill’. The
World Economic Forum estimates that by 2025, 50% of
employees will require retraining due to adopting new technol-
ogies. Five years later, over two-thirds of the skills currently
deemed important in job requirements will change (Li, 2022).
Workers need to acquire diversified skills to cope with task
optimization and upgrades brought about by technological
advancements. Based on this, we propose our third hypothesis:

H3: The greater the number of skills a worker possesses, the
less susceptible they are to being replaced by machines.

Our research contributes by conducting the first empirical
investigation into the differential impacts of machines on
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sensory-physical skills and social-cognitive skills, affirming the
characteristics of irreplaceable labor. This provides valuable
insights for individual career planning and the development of
national educational systems.

Data sources, models, and measurements
Data sources. This study used the O*NET and OEWS databases
under the Standard Occupational Classification (SOC) system.
There are three versions of SOC, namely SOC2000, SOC2010,
and SOC2018. It is necessary to establish crosswalks to compare
the occupations under different SOC systems. Therefore, we
aggregated some occupations to form SOC2010dd based on
SOC2010. Appendix S.1 shows the necessity and detailed process
of establishing SOC2010dd.

The O*NET program by the U.S. Department of Labor annually
produces the publicly available database detailing the importance
and the level of 118 workplace skills, knowledge, and abilities (these
three categories are collectively referred to as skills) for the 923
occupations. The time range of database is 1998–2023, and we
selected data from 2003 to 2022 because the data from 1998–2002 is
Transitional Databases. O*NET encourages researchers conducting
longitudinal data studies to use the O*NET 5.0(2003) database as a
starting point. The latest employment data is for 2022 in OEWS.
O*NET has the O*NET-SOC Taxonomy based on the SOC system.
Generally speaking, O*NET-SOC is more detailed than the SOC.
For example, The O*NET-SOC 2019 taxonomy structure is based
on the 2018 SOC. The former includes 1016 occupational titles, 867
of which in 2018 SOC. In order to map O*NET databases to the
corresponding SOC system, we reviewed and summarized the
Taxonomy History from 2003 to 2022 and identified the O*NET
SOC on which the data is based. Then, the occupational
classification of each year was mapped to the SOC system.
Table 2 summarizes the O*NET-SOC taxonomy and its corre-
sponding SOC system.

The OEWS program produces employment and wage estimates
annually for ~830 occupations. These estimates are available for
the nation, individual states, and metropolitan and nonmetropo-
litan areas. After mapping O*NET and OEWS to the SOC
system, we used a crosswalk between SOC2000/2010/2018 and

SOC2010dd to map databases to the unified system SOC2010dd
(see Fig.1). The processed data can be used for time series
research and cross-sectional analysis. After processing, we
obtained panel data on occupations from 2003 to 2022.

Model. Based on the panel data from 2003 to 2022, we examined
the direction of occupational transitions induced by automation
technology from three factors: scores of sensory-physical skills,
scores of social-cognitive skills, and the number of skills mastered
by workers.

ΔGESj;t ¼ α0 þ α1Phyj;t�10 þ α2Cogj;t�10 þ α3NSj;t�10

þα4OIj;t�10 þ α5ΔWagej;t þ εj

ΔGESj;t represents the Box-Cox transformation of the growth rate
of employment share in occupation j at year t. The impact of
machines on employment is long-term; thus, following Autor and
Dorn (2013), we used a decade as a period to provide a longer-
term perspective. Phyj;t�10 and Cogj;t�10 represents the scores of
sensory-physical and social-cognitive skills of occupation j ten
years ago, respectively. NSj;t�10 is the number of skills mastered
by workers. OIj;t�10 is the offshorability index of occupation j at
year t � 10. ΔWagej;t measures the change in the 90th percentile
of annual wages from year t � 10 to t. We controlled for occu-
pation fixed effects and year fixed effects and used
heteroskedasticity-robust standard errors.

Variable measurements. To stabilize variance and normalize the
distribution of the dependent variable, we applied the Box-Cox
transformation as follows:

ΔGESj;t ¼
Growth of employment shareλ�1

λ ; λ≠0

lnðGrowth of employment shareÞ ; λ ¼ 0

(

The Growth of employment share measures the rate of growth
in the labor share between periods t � 10 and t. The parameter λ,
obtained through maximum likelihood estimation, was found to
be λ ¼ �1:092.

Table 2 Taxonomy and SOC systems for OEWS and O*NET databases.

OEWS OEWS SOC SOC O*NET O*NET SOC SOC

2022May SOC2018 2018 O*NET 26.3 May 2022 2019 2018
2021May SOC2018 2018 O*NET 25.3 May 2021 2019 2018
2020May OES2019 2018 O*NET 24.3 May 2020 2010 2010
2019May OES2019 2018 O*NET 23.3 May 2019 2010 2010
2018May OES2018 2010 O*NET 22.3 May 2018 2010 2010
2017May OES2018 2010 O*NET 21.3 May 2017 2010 2010
2016May SOC2010 2010 O*NET 20.3 April 2016 2010 2010
2015May SOC2010 2010 O*NET 20.0 August 2015 2010 2010
2014May SOC2010 2010 O*NET 19.0 July 2014 2010 2010
2013May SOC2010 2010 O*NET 18.0 July 2013 2010 2010
2012May SOC2010 2010 O*NET 17.0 July 2012 2010 2010
2011May OES2010 2010 O*NET 16.0 July 2011 2010 2010
2010May OES2010 2010 O*NET 15.0 July 2010 2009 2000
2009May SOC2000 2000 O*NET 14.0 June 2009 2009 2000
2008May SOC2000 2000 O*NET 13.0 June 2008 2006 2000
2007May SOC2000 2000 O*NET 12.0 June 2007 2006 2000
2006May SOC2000 2000 O*NET 10.0 June 2006 2006 2000
2005May SOC2000 2000 O*NET 8.0 June 2005 2000 2000
2004May SOC2000 2000 O*NET 6.0 July 2004 2000 2000
2003May SOC2000 2000 O*NET 5.0 April 2003 2000 2000

OES2019 means that OEWS data collected under two different structures were combined to create a “hybrid” structure based on SOC2010&2018 for the May 2019 and 2020 estimates. Similarly,
OES2018 is used for the May 2017 and 2018 estimates collected under SOC 2010. OES2010 based on SOC2000&2010 is used for the May 2010 and 2021 estimates.
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Task execution necessitates skills. We utilized the importance
of skill in O*NET denoted by onetðj; sÞ to construct variables of
interest. Importance is rated on a scale of five, with a higher score
indicating the skill’s greater importance. Alabdulkareem et al.
(2018) and Xu et al. (2021) note that raw O*NET data do not
control for ubiquitous skills, such as “Identifying Objects” and
“Communicating with Supervisors and Peers” and they focus on
skills that are overexpressed in an occupation, a distinct
characteristic that differentiates one occupation from others.
Accordingly, we calculated the revealed comparative advantage
(RCA) of each skill in an occupation using the following formula:

RCA j; s
� � ¼ onetðj; sÞ=∑s02Sonetðj; s0Þ

∑j02J onetðj0; sÞ=∑j02J;s02Sonetðj0; s0Þ
onetðj; sÞ is the importance of skill s ∈ S to occupation j ∈ J.

RCA j; s
� �

quantifies the comparative advantage of skill s in
occupation j relative to the overall distribution of that skill across
all occupations. We denote effective use of a skill using e j; s

� � ¼ 1
if RCA j; s

� �
>1, and e j; s

� � ¼ 0 otherwise.
We calculated the scores of skills using the average importance

scores of effectively utilized skills. The formulas are as follows:

Phyj ¼
∑s02Ponet j; s0

� � � e j; s0
� �

∑s02Pe j; s0
� �

Cogj ¼
∑s02Conet j; s0

� � � e j; s0
� �

∑s02Ce j; s0
� �

P represents sensory-physical skills, and C represents social-
cognitive skills, as categorized by Alabdulkareem et al. (2018)
(refer to Appendix S.3 online). Their paper conducted a cluster
analysis on 161 workplace skills, knowledge, abilities, and
generalized work activities. Since a subset of skills from the
generalized work activities was utilized to construct the OI
variable in this study, we employed 118 skills, knowledge, and
abilities to construct the variables Phyj and Cogj, in which we are
interested. These variables, representing the scores of sensory-
physical and social-cognitive skills, were log-transformed.

In the O*NET database, if onet j; s
� � ¼ 1, the skill s is

unimportant for occupation j; if onet j; s
� �

>1, the skill is somewhat
important. We calculated the number of important skills for each
occupation where onet j; s

� �
>1. Occupations with a skill number

greater than the average were assigned a value of 1, while those with a
skill number less than or equal to the average were assigned a value of
0, thus the number of skills mastered by workers (NS) was generated.

Our study focuses on the impact of machines on the workforce.
However, job offshoring might produce effects similar to those of
machines. Literature suggests that tasks suitable for offshoring can
be effectively performed without needing physical proximity to
customers or specific job locations (Firpo et al., 2011; Autor and
Dorn, 2013). Sensory-physical skills involving physical actions can
be easily offshored. In contrast, cognitive occupations often require
high interpersonal interaction between workers and clients, making
them less susceptible to offshoring. This reasoning indicates that
offshoring can partially explain the increase in social-cognitive
skills and the decrease in sensory-physical skills. Following Autor
(2015), we incorporated the offshorability of jobs into our analysis.
Occupational offshoring is not included in national accounts and is
thus largely unmeasured (Autor and Dorn, 2013). Firpo et al.
(2011) and Autor and Dorn (2013) measure the offshoring
potential (offshorability) of jobs rather than actual offshoring.
Referring to their study, we used a simple average of two aggregate
variables: direct interpersonal interaction and proximity to a
specific work location (face-to-face contact and on-site job), then
reversed the sign of the resulting variable so that it measures
offshorability instead of non-offshorability. The offshorability
index was then log-transformed to obtain OI. The correspondence
between non-offshorability and O*NET codes is shown in Table 3.

To capture shifts in wage structure, we utilized changes in the
annual 90th percentile wage, as suggested by Autor and Dorn
(2013). Then the changes in wages were log-transformed to
obtain the variable ΔWage.

Results and analysis
Main results. Table 4 presents the regression results. The coef-
ficient of Phy α1 is −3.480 (t value is −2.54). After reverse

Fig. 1 Crosswalk O*NET and OEWS database to SOC2010dd. The figure presents the methodology for harmonizing the O*NET and OEWS databases with
the hybrid occupational classification standard, SOC2010dd. At the top of the diagram, the process begins with the extraction of sensory-physical and
social-cognitive scores from the O*NET database, categorized according to O*NET SOC 2000/2006/2009/2010/2019. The bottom portion of the figure
outlines the acquisition of national employment data from the OEWS database based on Official SOC 2000/2010/2018 and OES SOC 2010/2018/2019.
The central area of the figure illustrates the crosswalk procedure, demonstrating how data from each source is crosswalked to SOC2010dd, which enables
the comparative analysis across the databases and years.
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transformation, the coefficient is −3.357%, indicating that a 100%
increase in the sensory-physical scores leads to a 3.357% decrease
in employment share. Hypothesis 1 is supported. The coefficient
of the variable Cog α2 is 6.361 (t value is 4.36), and the coefficient
on the original scale is 6.815%. This suggests a 6.815% increase in
employment share for every 100% increase in social-cognitive
scores. Hypothesis 2 is supported. Moreover, since α2 is greater
than α1, it implies that the impact of Cog is dominant. The
coefficient of NS α3 is 0.509 (t value is 2.35); after reverse
transformation, the coefficient is 0.512%. This means that com-
pared to the group with a lower number of skills, the group with a
higher number of skills has a 0.512% higher employment share.
The coefficients of OI and ΔWage are as expected.

Emerging occupations. The discussion above does not encom-
pass emerging occupations. Between 2000 and 2023, a total of 150
new occupations have been identified. We analyzed the skill
scores of these 150 emerging occupations to discern their dis-
tinctive characteristics (refer to Fig. 2). The mean values of the

two scores bisect the graph into four quadrants. Most new
occupations cluster in the first and second quadrants, suggesting a
predominant orientation towards social-cognitive skills. Some
occupations in the fourth quadrant exhibit high sensory-physical
scores and low social-cognitive scores. Only a handful of occu-
pations reside in the upper right corner of the third quadrant,
indicative of “sunset occupations” with low cognitive and physical
skills.

In line with the OEWS occupational classification standards,
the 150 emerging occupations can be categorized into eight
principal groups. As Table 5 illustrates, the most significant
emergence of new occupations is seen in Computer, Engineering,
and Science Occupations, encompassing roles such as Blockchain
Engineers, Human Factors Engineers and Ergonomists, and
Bioinformatics Scientists. Breaking this major occupation down
further reveals that Computer and Mathematical Occupations
and Life, Physical, and Social Science Occupations demand
considerably more social-cognitive skills than sensory-physical
skills. Time Management Architecture and Engineering Occupa-
tions exhibit a balanced social-cognitive and sensory-physical
skills requirement. Healthcare Practitioners and Technical
Occupations and Management, Business, and Financial

Table 3 Characteristics linked to non-offshorability.

Element ID Element name

Face-to-Face 4.C.1.a.2.l Face-to-Face Discussions
4.A.4.a.4 Establishing and Maintaining Interpersonal Relationships
4.A.4.a.5 Assisting and Caring for Others
4.A.4.a.8 Performing for or Working Directly with the Public
4.A.4.b.5 Coaching and Developing Others

On-Site Job 4.A.1.b.2 Inspecting Equipment, Structures, or Material
4.A.3.a.2 Handling and Moving Objects
4.A.3.a.3 Controlling Machines and Processes
4.A.3.a.4 Operating Vehicles, Mechanized Devices, or Equipment
4.A.3.b.4 Repairing and Maintaining Mechanical Equipment
4.A.3.b.5 Repairing and Maintaining Electronic Equipment

Table 4 Scores and number of skills on the growth of
employment share Dependent variable: 100X Box-Cox
transformed annual growth in employment share between
2003 and 2022.

Variables

Phyj;t�10 −3.480**
(−2.54)

Cogj;t�10 6.361***
(4.36)

NSj;t�10 0.509**
(2.35)

OIj;t�10 −3.205***
(−4.51)

ΔWagej;t 1.781***
(3.02)

Constant 25.676***
(4.30)

Observations 6,295
Adjusted R-squared 0.140
Occupation FE YES
Year FE YES

To linearize relationships, we applied the Box-Cox transformation (λ=−1.092) to the growth
rate of employment share in occupations. However, this means that effects on the original scale
are no longer linear, which poses a challenge for the interpretation of our coefficients. The
relationship between the original scale and those after the transformation (αi) is discussed in
Appendix S.2. The heteroskedasticity-robust standard errors are shown in parentheses and the
coefficients with *** are significant at the 1% confidence level; with ** are significant at the 5%
confidence level; and with * are significant at the 10% confidence level.

Fig. 2 Skill scores of emerging occupations and all occupations. The
scatter plot represents the distribution of normalized sensory-physical and
social-cognitive scores across all occupations, depicted as blue hollow
circles, and emerging occupations, shown as red solid circles. Two
intersecting red lines indicate the mean values of the respective scores,
dividing the plot into quadrants and providing a reference point to ascertain
the relative positioning of emerging occupations in comparison to the
overall job market. The clustering of red solid circles suggests that
emerging occupations possess cognitive score characteristics when
contrasted with the broader landscape of all occupations.
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Occupations also show activity. These three major categories are
termed “sunrise occupations” and are poised for rapid employ-
ment growth in the future.

Robustness test. To mitigate the impact of the financial crisis and
COVID-19, we kept data between 2003–2007 and 2013–2017,
yielding our first robustness test (as shown in the first column of
Table 6). In the main regression, Phy and Cog were constructed
based on the skill classification by Alabdulkareem et al. (2018).
They categorize skills into two clusters: social-cognitive skills and
sensory-physical skills. Our second robustness test used different
skill classification to construct Phy and Cog. The O*NET content
model divides 52 abilities into four categories: Cognitive Abilities,
Psychomotor Abilities, Physical Abilities, and Sensor Abilities
(refer to Appendix S.4 online). Cognitive Abilities were utilized to
form Cog, while the remaining three skill categories were used to
develop Phy (refer to the second column of Table 6). Due to the
missing of the 90th percentile wage for 355 observations, the third
robustness test supplemented these missing values with the
average wage. Initially, we identified occupations without missing
and calculated the multiplier of the 90th percentile wage to the

average wage, denoted as p90p50. We then obtained the average
of p90p50 for the same major occupation category (at the two-
digit level). Subsequently, we filled in the missing values by
multiplying the average wage by the average value of p90p50
(refer to the third column of Table 6).

The three columns of Table 6 display the robustness tests 1–3,
respectively. The results align with our main findings. Cog and NS
exert a significantly positive influence on employment share,
which suggests that higher cognitive skills and a broader skillset
decrease the likelihood of being replaced by machines. Higher
sensory-physical skills increase the likelihood of machine
replacement. The results from the robustness tests corroborate
our hypothesis.

Conclusion
As technology advances, innovations like machine learning
extend automation into previously thought irreplaceable
domains: autonomous vehicles, legal document analysis, and
agricultural field labor (Autor, 2015), seemingly overcoming the
Polanyi Paradox. In early 2023, OpenAI released GPT-4, a large-
scale language model whose primary function is to comprehend
and generate language by analyzing and learning from extensive
text data. This poses a challenge to the unique understanding,
creativity, and decision-making abilities of humans. However, the
job replacement by machines is determined by technological
capabilities and human acceptance of the technology. Humans
exhibit distinctly different attitudes towards sensory-physical and
social-cognitive skills. There is a spontaneous trust in machines to
perform tasks requiring sensory-physical skills, as such operations
are based on clear rules and transparent reasons. Additionally, the
higher the sensory-physical skills required, the more training or
experience accumulation is needed by workers, and employers
pay higher wages, hence motivating businesses to introduce
machines to replace such labor. Cognitive skills, on the other
hand, often involve open interpretations based on personal opi-
nions or intuition. There is an algorithm aversion regarding
machines undertaking these tasks, as people tend to think
machines lack essential human emotions or emotional abilities.
Using skill importance scores from the O*NET database and
occupational wage and employment data from the OEWS data-
base, we empirically studied for the first time the differential
impacts of machines on sensory-physical skills and social-
cognitive skills. The study finds that low sensory-physical skills,
high social-cognitive skills, and a wide array of skills characterize
occupations less likely to be replaced by machines.

A key advantage of humans over machines is the flexibility
and adaptability. Cognitive flexibility permits the appropriate
adjustment of thoughts and behaviors in response to changing
environmental demands (Yeo et al., 2015; Uddin, 2021). This
capability involves creative thinking, critical reasoning, and
analyzing problems from multiple perspectives. Drawing from
the definition of cognitive flexibility, we conceptualize worker

Table 5 The major category of emerging occupations.

Major occupations Number of emerging occupations %

Computer, Engineering, & Science Occupations 54 36
Healthcare Practitioners and Technical Occupations 38 25.33
Management, Business, & Financial Occupations 34 22.67
Natural Resources, Construction, & Maintenance Occupations 7 4.67
Service Occupations 7 4.67
Production, Transportation, & Material Moving Occupation 5 3.33
Education, Legal, Community Service, & Arts Occupations 3 2
Sales & Office Occupations 2 1.33
Total 150 100

Table 6 Robustness test Dependent variable: 100 X Box-Cox
transformed annual growth in employment share.

(1) (2) (3)

Variables Time period is
limited to
2003–2007 and
2013–2017

Phy and Cog
based on the
Classification of
O*NET

Handling
missing
values of the
90th
percentile
wage

Phyj;t�10 −9.708*** −3.755*** −3.310**
(−5.18) (−2.91) (−2.47)

Cogj;t�10 6.042*** 3.943*** 6.120***
(3.13) (2.81) (4.18)

NSj;t�10 0.795*** 0.381* 0.606***
(2.62) (1.76) (2.84)

OIj;t�10 −4.462*** −4.094*** −3.197***
(−4.29) (−6.31) (−4.57)

ΔWagej;t 3.059*** 1.991*** 1.172**
(5.58) (3.48) (2.00)

Constant 24.620*** 28.265*** 32.309***
(4.34) (4.62) (5.40)

Observations 3083 6277 6650
Adjusted
R-squared

0.184 0.136 0.132

Occupation FE YES YES YES
Year FE YES YES YES

Robust t-statistics in parentheses.
***p < 0.01, **p < 0.05, *p < 0.1.
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flexibility as the ability to adapt and switch between multiple and
varied tasks. In our paper, worker flexibility encompasses cog-
nitive flexibility and the number of mastered skills. Cognitive
flexibility allows for adjusting cognitive functions in response to
varying cognitive demands, facilitating adaptation to complex
and changing task requirements (Yeo et al., 2015). Consequently,
higher cognitive capabilities correlate with greater flexibility.
Similarly, the more skills a worker possesses, the easier it
becomes for them to switch between diverse tasks, enhancing
their flexibility. Thus, workers with high cognitive skills and
diverse abilities can collectively be termed as “flexible workers.”
The future require flexible workers. Therefore, workers should
focus on enhancing cognitive skills, such as creativity and critical
thinking, developing diverse skills encompassing both social-
cognitive and sensory-physical skills, and emphasizing lifelong
learning to adapt to technological changes. National education
should underscore cognitive skills and interdisciplinary learning
and offer lifelong education and professional retraining
opportunities.

A limitation of our study is that the O*NET database are based
on collection methodology featuring job incumbent, occupational
expert, big data, and other sources, which carry a degree of
subjectivity. Scholars might consider developing objective ways to
measure skill scores in the future.

Data availability
All data generated or analyzed during this study are included in
this published article and its supplementary material files.
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