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What predicts a neighborhood’s adaptability to essential public health policies and shelter-in-

place regulations that prevent the harmful spread of COVID-19? To answer this question, we

present a novel application of human mobility patterns and human behavior in a network

setting. We analyze 2 years of mobility data (January 2019 to December 2020) from New

York City and construct weekly mobility networks between census block groups based on

aggregated point-of-interest visit patterns. Our results indicate that neighborhoods’ socio-

economic and geographic characteristics play a significant role in predicting their adaptability

to active shelter-in-place policies. Our simulation outcomes reveal that, alongside factors

such as race, education, and income, the geographical attributes of neighborhoods, such as

access to amenities that satisfy community needs are equally important factors in predicting

neighborhood adaptability to public health policies. These findings offer valuable insights that

can enhance urban planning strategies, thereby aiding pandemic mitigation efforts and

fostering increased adaptability of urban areas in the face of exogenous shocks like the

COVID-19 pandemic.
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Introduction

Mobility in urban and metropolitan settings is the result
of the dynamic interaction, over space and time, of a
large number of agents with diverse goals and char-

acteristics. Understanding mobility patterns is crucial for pre-
dicting future social and economic well-being as well as growth
(Chong et al. 2020, Singh et al. 2015).

Studies have established its correlation with social interactions
(Bettencourt, 2013, Buera & Oberfield, 2020), health (Garcia-
Bulle et al. 2022, Horn et al. 2021), productivity (Bahrami et al.
2023, Bettencourt et al. 2007, Sveikauskas, 1975), and the eco-
nomic prosperity and resilience of a region (Alvarez et al. 2013,
Pan et al. 2013, Schläpfer et al. 2021, Steele et al. 2017, Yabe et al.
2023).

The dynamic interactions in mobility data are complex and are
typically represented in a network setting that is able to produce
critically important insights (Lazer et al. 2009). Researchers have
utilized mobility networks to explore and investigate the effects of
the COVID-19 pandemic from various perspectives (Chang et al.
2021, Gauvin et al. 2021, Kraemer et al. 2020, Schlosser et al.
2020). For instance, Schlosser et al. Schlosser et al. (2020) con-
struct inter-county mobility networks from mobile phone data
and display the topological changes as a result of the undertaken
non-pharmaceutical interventions (NPI) aimed at reducing the
spread of the Coronavirus (Flaxman et al. 2020, Kraemer et al.
2020).

Given the close link between changes in mobility patterns and
economic consequences, it is critical for researchers to carefully
investigate how diverse environmental and demographic factors
have shaped the adaptability of mobility networks to the enforced
NPIs during the COVID-19 pandemic. Adaptability, within the
framework of this study, is defined as a neighborhood’s ability to
conform and modify its behavior in response to the constraints
imposed by NPIs.

Using network science methodologies, this research aims to
enhance the comprehension of scientists and policy-makers
regarding the factors that contribute to adaptability in the wake of
exogenous shocks. In particular, we expand upon previous
research on the impact of the COVID-19 pandemic on human
behavior, by examining the alterations in mobility patterns. We
use a dynamic network analysis approach, focusing on one of the
most important economic hubs in the world: New York
City (NYC).

We construct weekly mobility networks spanning from January
2019 to December 2020, in which the nodes represent neigh-
borhoods (i.e., census block groups or CBGs), while the edges
between them correspond to the visitors from the source neigh-
borhood to various points-of-interest (POIs) such as restaurants
or supermarkets in the target neighborhood.

For every neighborhood within the weekly networks, we
compute node and ego-network-based features (Berlingerio et al.
2012) so the resulting feature vectors not only capture the
dynamics of local mobility but also encapsulate the relationship
with the neighboring CBGs. Such an approach, enables us to
incorporate the nuanced complexity of human mobility into our
analyses. We investigate the dissimilarity of the resulting feature
vectors for each neighborhood, between the same weeks of 2019
and 2020, and break down the results by different socioeconomic
groups. Combining the mobility network metrics with data from
various sources (e.g., census data and COVID-19 test results), we
are able to reveal how disparities in NYC neighborhood char-
acteristics predict dynamic structural changes in mobility net-
works and behavior.

Network analysis approaches, as demonstrated by a large body
of the literature (Aleta et al. 2020, Chang et al. 2021, 2023, Eds-
berg Møllgaard et al. 2022, Fan et al. 2021, Galeazzi et al. 2021,

Yuan et al. 2023), enable researchers to explore the multifaceted
impact of policy changes on mobility outcomes. Mobility net-
works coupled with epidemiological models are employed in
different settings such as evaluating the effect of business closures
on case counts (Chang et al. 2021) and designing optimal vaccine
distribution policies (Yuan et al. 2023). Furthermore, network
analyses serve as valuable tools for elucidating latent mobility
patterns during the pandemic. Møllgaard et al. Edsberg Møllgaard
et al. (2022) investigate how different travel behaviors play a part
during the pandemic by applying factorization techniques on
mobility networks.

In contrast to existing studies, our aim is to dissect the topo-
logical changes within the mobility networks over the course of
the pandemic using established network metrics, such as cen-
trality indicators. This approach enables us to rapidly discern and
analyze the altering landscape of interactions and connections
within these networks, providing valuable insights into urban
adaptability in the face of a public health crisis. For example, an
exploration of the betweenness centrality metric can uncover the
specific role played by certain neighborhoods during the pan-
demic. This may involve acting as a crucial bridge among various
neighborhoods (nodes) in a mobility network, consequently
generating a spreader effect.

Additionally, we utilize a straightforward yet widely acknowl-
edged framework rooted in the well-established Huff gravity
model (Huff, 1964) to simulate the mobility flows among
neighborhoods (i.e., CBGs). This approach enables us to model
and simulate diverse hypothetical scenarios by adjusting POI
densities, facilitating analyses of both mobility patterns and
adaptability. The simplicity of this framework eliminates the
necessity for intricate settings or complex configurations.

The results of our study indicate that the centrality metrics and
geographic attributes significantly predict neighborhood adapt-
ability to shelter-in-place orders. In addition to confirming the
results of previous research (Althouse et al. 2020, Chang et al.
2021, Chetty et al. 2020, Heroy et al. 2021, Hunter et al. 2021),
our findings reveal that not only are race, education, and income
important factors in predicting neighborhood adaptability to
shelter-in-place orders but so are geographical attributes such as
access to diverse amenities that satisfy community needs. This
indicates that in the same city, communities with similar socio-
economic and demographic features may have different mobility
responses based on their neighborhoods’ urban structure.

Using the information extracted from the mobility network
structure, we study the case of the COVID-19 hotspots to
investigate which neighborhoods act as the COVID-19 bridges
among the hotspots and other neighborhoods and uncover the
associated factors. We then utilize the Huff gravity model to
analyze how higher levels of access to essential businesses (e.g.,
grocery stores) could potentially reduce the interaction among the
COVID-19 hotspots and other neighborhoods, leading to a
reduction in infection rates and saving more lives. The findings of
this study offer significant insights and suggest policies aimed at
improving urban planning strategies. Implementing these
recommendations can strengthen efforts to alleviate the impact of
pandemics, ultimately enhancing the resilience of urban areas to
external shocks like the COVID-19 pandemic, which significantly
affects and constrains movements and interactions.

Methods
Datasets
SafeGraph mobility and places data. The dataset released by
SafeGraph (www.safegraph.com) provides fine-grained user geo-
location information collected through the smartphone
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applications of millions of users who consented to share their live
location. The data is anonymized and then aggregated by the total
visits from CBGs to POIs of various categories (e.g., restaurants,
grocery stores, and supermarkets) within a defined time period
(i.e., weekly and monthly). More specifically, we use the Weekly
Patterns(SafeGraph) dataset that provides the weekly aggregated
visits from January 2019 to December 2020. The patterns dataset
is geographically filtered with respect to the administrative
boundaries of the New York Metropolitan Area, encompassing
6,493 CBGs from New York City, and 333,241 POIs in total.

Google COVID-19 community mobility reports. This dataset is
prepared by Google to provide insights into mobility trends in
order to help understand communities’ responses to interventions
against the COVID-19 pandemic. The data is collected from
various smartphone applications including Google Maps. The
data shows the dynamics of mobility trends by region, across
different POI categories compared to a baseline day that repre-
sents a normal day prior to the pandemic. The baseline is the
median value from the 5-week period from January 3rd to Feb-
ruary 6th, 2020. The POI categories include retail and recreation,
groceries and pharmacies, parks, transit stations, workplaces, and
residential buildings.

COVID-19 cases and infection rates. The Center for Systems
Science and Engineering (CSSE) at Johns Hopkins University
(Badr et al. 2023) provides a COVID-19 data catalog presenting
the latest updates all around the world with differing granularity
levels. In NYC, the statistics for variables such as new cases, test
counts, and deaths, are provided by ZIP Code Tabulation Areas
(ZCTAs). A CBG may be located inside the borders of multiple
ZCTAs. In order to work with the estimated weekly cases per
CBG, the numbers were inferred by taking a weighted average
based on the ratio of the population of a CBG in each ZCTA and
its corresponding COVID-19 case rate. Assume S is the set of
ZCTAs that geographically intersect with CBGi. Then the number
of COVID-19 cases for CBGi at time t are estimated using the
following equations.

wij ¼
population of CBGi in ZCTAj

population of ZCTAj
ð1Þ

CCBGt
i ¼ ∑

j2S
ðwij ´ case

t
j Þ ð2Þ

CCBGt
i denotes the estimated COVID-19 cases in CBGi at time

t, and casetj is the number of COVID cases in ZCTAj at time t.
Furthermore, the resulting case counts are normalized by the
number of residents in each CBG to obtain a more accurate
estimate of infection rates.

The United States Census data. The American Community Survey
(ACS) of the U.S. Census Bureau reports the estimates of
demographic features at a CBG level. The most recently published
5 year ACS data collected in 2019, is utilized to extract the
demographic features, namely: total population, median house-
hold income, education level, commuting time, and population
distribution by race for each CBG. The resulting features are also
represented with corresponding percentile levels.

New York metropolitan area. In 2019, New York Metropolitan
Area hosted the highest population at 19.22 million as one of the
leading economies in the U.S. with 1.522 Billion Dollars (Statista).
The metropolitan area consists of counties from four different
states, New York, New Jersey, Connecticut, and Pennsylvania. In
total, 7,809 census tracts and 23 counties are represented. POIs
provided by the SafeGraph Patterns dataset are filtered by their

location with respect to the New York Metropolitan area. New
York City (NYC) with about 9 million residents is the largest city
in the New York Metropolitan area containing 6,493 CBGs. NYC
is also divided into five administrative boundaries called bor-
oughs. Those five boroughs are Manhattan, Brooklyn, Bronx,
Queens, and Staten Island.

Mobility networks. We model the mobility patterns among
CBGs as weighted directed networks, G(t)= (V(t), E(t)), for each
time step t. In this context, the nodes V(t) correspond to CBGs,
and the edges E(t) depict the visits from the source CBG i to the
target CBG j, with the number of visits recorded as the edge
weight wðtÞ

ij . The time steps span from January 2019 to December
2020, each representing a week. The Weekly Patterns dataset
provides weekly aggregated number of visits from CBGs to POIs.
To construct the mobility networks of CBGs, we exploit the home
CBG information of a POI. The number of visits between CBGs i
and j is obtained by the aggregation of all visits made by the
residents of CBG i to all of the POIs inside CBG j in a time step.
For further details on network construction, please see the Sup-
plementary Information.

Temporal topological shifts. To showcase how the mobility
network structure evolves over time, we begin by examining the
dissimilarities between paired weekly networks from 2019 and
2020. We then further break down the nodes based on demo-
graphic groups. Subsequently, we explore the connection between
centrality metrics and these demographic groups.

Dissimilarity analysis. To quantify the magnitude of mobility
change in response to enforced NPIs from a network standpoint,
we compute the dissimilarity between the aligned weekly net-
works of 2019 and 2020. To this end, we consider ego-network-
based node features by Berlingerio et al. Berlingerio et al. (2012)
that aim to infuse a small set of aggregated descriptive features,
such as degree and clustering coefficient. In the node-level dis-
similarity analysis, paired node feature vectors are utilized with-
out any aggregation, and a score is generated for each node.
Canberra distance (Lance & Williams, 1967) is applied to the
paired feature vectors to quantify their dissimilarity. For further
details, please see the Supplementary Information.

Centrality evolution. Neighborhoods with different demographic
backgrounds manifest varying repercussions to the enforced NPIs
over time, due to their distinctive needs and socioeconomic
dynamics. In parallel, CBGs with ample POIs become frequent
destinations. To this end, centrality metrics are employed to
demonstrate the temporal change in the topological importance
of the CBGs in the mobility network structure. In particular, we
focus on betweenness, in-degree, out-degree, and self-visit ratio. In
order to estimate the number of visits to the POIs in the home
CBG, the self-visit ratio of CBG c in time step t is denoted by Stc
and formally defined as:

Stc ¼ Wt
l

Wt
l þWt

o
ð3Þ

In Equation (3), Wt
l is the sum of weights on self-loops (i.e.,

visits made by residents of CBG c to the POIs inside CBG c), and
Wt

o is the sum of weights on outgoing edges (i.e., total visits made
by residents of CBG c to POIs located in other CBGs) in time step
t. The self-visit ratio is considered as an indicator of the locality of
residents visits.
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COVID-19 hotspots and bridge CBGs. The mobility per CBG is
a function of multiple parameters that are heavily affected by
intricate social dynamics. Because of the evident correlation
between mobility and the spreading of COVID-19 infections
(Chang et al. 2021, Iacus et al. 2020, Xiong et al. 2020), CBGs with
higher mobility rates may cause a potential threat to restraining
the disease prevalence. We refer to the CBGs that rank in the top
weekly new COVID-19 cases as COVID-19 hotspots, and the
CBGs that interact frequently with such hotspots as COVID-19
bridge CBGs. To detect the potential bridges, we analyze the visit
frequencies among CBGs. First, we consider a two-week long
time span as the incubation period for new cases to emerge
(Chang et al. 2021, Iacus et al. 2020). Starting from March 2nd,
2020, when the first case in NYC was reported, we isolate the
CBGs in the top weekly new cases quartile in week t, and label
them as hotspots. Next, in a degree-oriented setting, we isolate the
CBGs that have an outgoing edge to the previously obtained
hotspot CBGs in week t− 2 (pre-incubation period). To deter-
mine the COVID-19 bridge CBGs, percentile-based frequency
filtering is applied. To this end, we investigate CBGs with
occurrence frequencies in the 75th percentile as bridges. The aim
of this analysis is to find out if the bridge CBGs have special
socioeconomic and demographic features and to understand why
they show such mobility patterns.

Huff gravity model. The Huff gravity model (Huff, 1964) is a
well-known and widely used market share estimation model that
focuses on the relationship between retail stores and customer
patronage by modeling it as a function of distance and store
attractiveness traits such as store area. To understand the mobility
patterns under varying POI densities, we employ the Huff gravity
model. Equation (4) formalizes the basic version of the Huff
gravity model that we use in our analyses.

Pij ¼
Aα
j

Dβ
ij

∑n
k¼1

Aα
k

Dβ
ik

ð4Þ

In this equation, Pij corresponds to the probability of customer
i choosing POI j for shopping among all available stores in her
choice set k. The exponents α and β control the weights of store
area and distance respectively. Since there was a significant
decline in movement activities during the COVID-19 pandemic,
in order to have a reasonable amount of observations that can
provide a better fit for the model, we aggregate the visits from a
CBG level into a census tract level. For further details, please see
the Supplementary Information.

Analytical setting. To demonstrate the impact of the COVID-19
pandemic on different socioeconomic groups, we first analyze the
change in network topologies in a weekly resolution at a CBG
level. To this end, we extract the node-level feature vectors
summarizing the statistical properties of their respective ego-
networks (Berlingerio et al. 2012). The resulting node feature
vectors are then used to compute the dissimilarities between
paired weekly networks from 2019 and 2020. Then, we analyze
the course of centrality metrics with respect to different demo-
graphic groups and highlight their variability. Next, we analyze
the possible COVID-19 bridges, neighborhoods that frequently
interact with COVID-19 hotspots (CBGs with a higher rate of
infected residents), by focusing on incoming and outgoing edges
between CBGs over two-week periods, which is considered as the
virus incubation time (Chang et al. 2021). Finally, utilizing the
Huff gravity model, we simulate the change in mobility patterns
in Staten Island under different hypothetical grocery store den-
sities in order to estimate the shift in visit patterns to hotspot

CBGs that frequently appear in the top new COVID-19 cases
quartile.

Results
Demographic disparities: Temporal changes in mobility
networks
CBG-level dissimilarity analysis. We compute the node-level dis-
similarity scores between paired weekly networks of 2019 (pre-
pandemic) and 2020 (pandemic) using the extracted ego-network
feature vectors. The weeks across both years are aligned to
compute dissimilarity scores for each CBG. The CBGs are then
ranked with respect to their dissimilarity scores at each time step
(i.e., weekly). To demonstrate the differences between the CBGs
with distinct behaviors, we focus on the CBGs in the top and
bottom dissimilarity quartiles and create two cohorts of CBGs
that frequently appear in those quartiles during the first wave of
the pandemic between March and June 2020. Figure 1 shows the
spatial and socioeconomic distribution of the resulting cohorts of
CBGs that appear in at least 60% of the time steps in the top and
bottom dissimilarity quartiles. At a threshold value of 60%, we
achieve a balanced number of CBGs in each group, facilitating a
more effective comparison. To demonstrate the demographic
profile of each cohort, we illustrate their distribution across
socioeconomic traits using quartiles, using a color scheme con-
sistent with the spatial distribution visualization.

Among the CBGs exhibiting the most significant shifts in their
mobility patterns—belonging to the top dissimilarity quartile—a
predominant concentration is observed within Manhattan, the
financial center of NYC. From all CBGs in this cohort, 63% of
them rank in the top quartile for income, 79% in the top
education quartile (share of bachelor or higher degree holders),
62% in the top white population percentage quartile, and 52% in
the bottom quartile for commute time, meaning they either do
not travel relatively long distances to get to their workplace or are
located in areas that have greater access to fast and frequent
transportation. There is no evident socioeconomic profile for the
bottom dissimilarity quartile (i.e., the group of CBGs that
changed their mobility patterns the least). However, the
distributions in socioeconomic quartiles delineate the residents
to some extent. There exists a decreasing trend from bottom to
top quartiles in income, education level, and white population
percentage.

Node degree and centrality metrics. Centrality metrics help us
examine a node’s role in the network, such as influence and
information diffusion (Deville et al. 2016, Miritello et al. 2011). In
this proposed mobility network, where each node represents a
CBG, centrality metrics pinpoint the CBGs that stand out due to
their significant influence on mass movements.

In this context, the temporal changes in centrality metrics
reveal the interaction patterns between different socioeconomic
communities, which consequently indicate complex mobility
behaviors from a network perspective. To this end, we
concentrate on fundamental node degree centrality metrics and
scrutinize their evolution within specific demographic groups,
namely CBGs located in the top and bottom socioeconomic
quartiles. We use the node betweenness to illustrate a CBG’s
importance based on its connections and position in the network.
Furthermore, we use degree centrality metrics to reveal the weekly
incoming and outgoing visitors among CBGs. Lastly, we use a
custom metric named self-visit ratio to represent the fraction of
visits to the POIs inside the home CBG.

Betweenness: This centrality score measures how frequently a
CBG appears along the shortest paths in a network and is the only
node centrality metric that demonstrates a significant difference
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between the selected demographic groups. As displayed in Fig. 2-
A, CBGs in the top income quartile held a higher betweenness
value until the beginning of March 2020 (the start of the
pandemic), meaning that they played a critical role in terms of
bridging the flow of masses. However, an abrupt decrease of
betweenness in the top-income CBGs took place after the start of
the pandemic, while less affluent CBGs gained higher between-
ness scores. That is, less affluent CBGs increasingly acted as
connectors among the nodes in the mobility network but only
until September 2020, when the economic activity revived. The
same relationship can also be observed when focusing on
education levels. CBGs with lower education levels had a higher
betweenness score in the same time interval (Supplementary
Information Figure 5).

Degree: Node degree analysis indicates that income and
education play a significant role in the distribution of degree
centrality values as well (Supplementary Information Figure 5).
Affluent CBGs were more successful in decreasing their mobility
compared to less affluent neighborhoods as shown in Fig. 2-B.

Self-Visit ratio: Another metric we defined to investigate the
change in visit patterns is called the self-visit ratio. This ratio
represents the proportion of visits made by residents of a
particular CBG to the POIs inside their own home CBG,
compared to their total number of visits (Equation (3)). Figure 2-
C displays the course of the self-visit ratio with respect to the top
and bottom income quartiles. From March to June 2020, during
the first wave and the most striking decline in mobility, CBGs in
the top-income quartile had a higher rate of visits to the POIs
inside their home CBGs, while on the contrary, the residents of

lower-income CBGs displayed a lower self-visit ratio. However,
starting in June 2020, as the re-opening of economic activity
commenced, the disparity of self-visit ratio between income
groups is narrowed.

Analysis of COVID-19 hotspots, bridge CBGs & the case of
Staten Island. As explained in the Methods section, we define the
COVID-19 hotspots as those CBGs that frequently appear among
the CBGs with the highest weekly new COVID-19 cases. Fur-
thermore, we designate CBGs with substantial interactions with
hotspots, occurring at the onset of the virus incubation period as
COVID-19 bridge CBGs. Examining the COVID-19 bridge CBGs
can potentially reveal invaluable insights for policymakers and
urban planners attempting to prevent the spread of new infec-
tions and build cities that are resilient to future pandemics.

To achieve this, we initially identify the hotspot CBGs by
isolating the top quartile in terms of weekly new cases at each
time step t. Subsequently, we compile a list of potential bridge
CBGs that were connected to the hotspot CBGs in time step t− 2,
accounting for a two-week period as the incubation time for new
cases to emerge. Afterward, we apply a frequency analysis on the
possible bridges to check how often they were connected to CBGs
with the highest weekly cases. Finally, we list the CBGs in the 75th
frequency percentiles as bridges, to be considered for further
analyses.

As demonstrated in Fig. 3, the majority of the resulting CBGs
in the 75th frequency percentile are comprised of those in the
lower quartiles for income and education and higher quartiles for

Fig. 1 The socioeconomic distribution of the CBGs that changed their mobility patterns the most, colored in green, in comparison to the previous year
in at least 60% of the time steps, versus the least, colored in purple. In addition to depicting the spatial distribution, the identical coloring scheme is
employed to represent the demographic characteristics of both groups, showcasing their distribution by quartiles across socioeconomic traits. Note that
there are only significant socioeconomic characteristics for the top quartile CBGs but not for the bottom.
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commuting time. Yet the spatial distribution of the potential
bridges in the 75th frequency percentile in Fig. 3 unveils the
special case of Staten Island, where 90% of the CBGs located in
Staten Island are identified as the COVID-19 birdges. Moreover,
as the threshold value is increased to the 95th frequency
percentile, the demographic features begin to display Staten
Island’s presence. Figure 4 shows the box plot of the COVID-19
bridge CBGs at a borough level.

We further extend the analysis to a scenario where edge
weights are incorporated, controlling for the volume of interac-
tions based on the premise that a greater number of visits could
increase the risk of virus transmission. Despite this additional
consideration, our findings reveal that the outcomes are
consistent whether we examine the network structures with or
without weighting the edges. For more details, please see the
Supplementary Information.

Subsequently, we perform an Ordinary Least Squares regres-
sion (OLS) analysis to further investigate the association between
the geographic location of CBGs and their appearance in the set
of the COVID-19 bridge CBGs. In the corresponding regression
model, the frequency of presence among the set of bridge CBGs is
the dependent variable, and borough code is the independent
variable. The regression analysis results reveal the significant
predictive influence of boroughs on the occurrences of CBGs
within the bridge set, thus, confirming the frequency analysis
results that underscored the presence of about 90% of the CBGs
located in Staten Island among the COVID-19 bridge CBGs. The
regression analysis results are provided in the Supplementary
Information.

This study reveals a surprising pattern in the mobility behavior
of CBGs in Staten Island, which is counter-intuitive and does not
align with the previous findings that primarily attribute
neighborhood adaptability in adhering to different NPIs to their
demographic factors. Despite 48% of Staten Island’s CBGs being
classified in the high-income bracket with predominantly white
residents - characteristics shared with CBGs in other boroughs -
Staten Island exhibits unique mobility trends. This distinction is
particularly striking given Staten Island’s relative geographical
isolation and limited connectivity to other boroughs, primarily
through bridges and ferries, and its lack of direct access to the
New York City subway system. Contrary to expectations, one
might anticipate Staten Island to have been more insulated from
the impacts of the pandemic. To better understand this anomaly,
we conducted further borough-level analysis, aiming to illuminate
the underlying factors driving this unexpected trend.

Borough level analyses results. Since the Safegraph mobility data
has limited coverage on workplaces and offices, we use Google’s
COVID-19 Community Mobility Reports (goo, 2023) to investi-
gate the mobility trends for places of work. As shown in Fig. 5,
Staten Island has the minimum relative change in mobility trends
for workplaces among all NYC boroughs, indicating that the
residents of Staten Island reduced their mobility and visits to
POIs noticeably less than the residents of other boroughs.

Additionally, the POIs analysis results show that Staten Island
has the lowest number and diversity of POIs among all boroughs
of NYC, where the majority of visits to POIs inside the city
originating from Staten Island are made to Brooklyn and

Fig. 2 The temporal change in A betweenness, B total-degree, and C self-visit ratio metrics in the top (green) and bottom (purple) income quartiles.
Vertical dashed lines depict the milestones of the pandemic. The vertical line segments on the curves show a 95% confidence interval.
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Manhattan, which are the neighboring boroughs of Staten Island.
This observation is in line with a report by the NYC government’s
planning department (NYC Planning) documenting that 24% of
workers residing in Staten Island have their workplaces located in
Manhattan.

In summary, in Staten Island due to the shortage of POIs and
its relatively isolated location (e.g., just one automobile bridge to
Brooklyn, three automobile bridges to New Jersey, one free ferry
to Manhattan, no subway), which promotes using personal cars
(NYC Department of Transportation; NYC Planning), the
residents had to visit POIs in other boroughs to accommodate
their needs and thus traveled longer distances to workplaces and
the majority of POI categories. We conclude that this is likely why
we observe the CBGs in Staten Island displayed a distinct
response behavior compared to their demographic counterparts

(i.e., relatively high income and high percentage of white
population CBGs), and that this is what led to higher infection
rates in its neighborhoods.

Hypothetical scenario analysis. In order to understand the
mobility patterns of CBGs in Staten Island under hypothetical
POI distributions, we perform a simulation analysis utilizing the
Huff Gravity Model (Huff, 1964) that focuses on two attractive-
ness factors, namely: the distance between CBGs and POIs, and
POI areas in square meter. More details are provided in the
Supplementary Information. In addition, instead of including all
POI categories, we only incorporated grocery stores into the
model to narrow down the scope of our simulation analysis to
those stores that provide the most essential needs of human daily

Fig. 3 The spatial and demographic distributions of CBGs within the 75th and 95th frequency percentiles, identified as COVID-19 bridges, highlight
Staten Island as a distinct standout. The distributions of sociodemographic attributes are displayed by their quartiles as bar charts.

Fig. 4 A box plot demonstrating the distribution of bridge CBGs, illustrating the frequency of identification for CBGs within each borough as
bridge CBGs. The y-axis shows the bridge occurrences in each borough.
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life. Table 1 provides extracted information from the dataset,
about the number of grocery stores per 1K residents and the
median distance traveled by residents of NYC to visit grocery
stores in kilometers from March 22nd to June 8th, 2020 at bor-
ough level.

As shown in Table 1, Staten Island has the lowest number of
grocery stores per resident and at the same time the highest
distance traveled by residents to visit a grocery store among all
NYC boroughs. Our aim is to simulate the mobility patterns of
Staten Island residents with a higher POI density equal to that of
other boroughs with similar demographic traits. We choose the
analysis time frame to be during the first wave of the pandemic
between March 22nd (pause program start date) and June 8th
(phase I of the reopening) of 2020. Since the NYC officials
enforced a strict citywide lockdown policy during this time frame
(Birge et al. 2022), most of the workplaces were closed, and only
essential businesses like grocery stores were allowed to operate.
Therefore, we contend that most trips to grocery stores during
that time frame could be considered single-purpose trips rather
than multi-purpose ones (Lucchini et al. 2021), and thus it is
reasonable to use the distance between the stores and customers’
home locations in the model as a proxy for the traveled distance.
Moreover, due to the lowered mobility levels during the lockdown
period, we use census tract level visit patterns to capture broader
mobility observations. It is important to note that, on average,
there are about 4 CBGs per census tract. We consider each census
tract as an independent mobility center and develop a model
based on the aggregated mobility patterns within the defined time
frame. This approach allows us to estimate the probabilities or
fractions of visits paid by residents of a specific census tract to the
POIs of study. For more details, please refer to the Supplementary
Information.

We add randomly generated hypothetical grocery stores with
an area equal to the mean grocery store area within Staten Island
and continue until the new grocery stores per 1K residents match
the grocery store densities of Manhattan and Queens, which are

the two other boroughs with more similar demographics to that
of Staten Island. We employ historical mobility data to generate
the synthetic visit numbers based on the previously derived
probabilities within the hypothetical scenario. Next, we accumu-
late the synthetic visits to the POIs located in the hotspot CBGs.
We aggregate the visits in each census tract both for the ground
truth and simulated cases and then analyze the change in visits by
residents of Staten Island to hotspot CBGs, that frequently appear
in the top new cases quartile. The simulation results show that the
visits to hotspot CBGs by Staten Island residents decreased by
47% and 23% under scenarios of Manhattan and Queens’ grocery
store densities, respectively. Such results mean less exposure to
possible COVID-19 spreaders and a lower risk of contamination
that can potentially lead to a reduced mortality rate.

Discussion
In this research, we build on the tradition of using network
structures to explain human behavior in socioeconomic settings
by examining the complex relationship between human mobility,
demographic attributes, and socioeconomic outcomes within the
context of the COVID-19 pandemic. In particular, we take a
network analysis approach to understanding the impact of the
COVID-19 pandemic and its associated NPIs on the mobility
patterns of NYC residents across its five boroughs, covering 6,493
census block groups (CBGs), throughout the year 2020. The
network nodes represent CBGs, and the links correspond to visits
between pairs of CBGs using visits to POIs by residents. We
investigate node-specific and ego-network-based structural fea-
tures to compute dissimilarity scores between weekly networks
year-on-year for 2019 and 2020 to quantify the magnitude of
change in the network structure.

In addition, we analyze the temporal changes in node and
degree centrality measurements across different socioeconomic
groups. Our findings reveal that while the COVID-19 response
measures resulted in substantial changes in the mobility network
structure, the CBGs that changed their ego-network structure the
least had higher COVID-19 infection rates. The majority of such
nodes are from low-income and low-education level neighbor-
hoods with higher rates of front-line workers (e.g., workers in
healthcare, grocery, convenience and drug stores, child care, food
and family services, public transport, trucking, warehouse, and
postal services) who could not reduce their mobility by as much
(Office of the New York City Comptroller). Arguably this is
because of their job type that requires working outside their home
and keep commuting frequently.

The results of our CBG-level ego-network dissimilarity analysis
suggest a clear demographic distinction of residents who live in
CBGs with top-dissimilarity scores that appeared in >60% of the
weekly patterns we analyzed: high-income, higher education level,
and mostly white population. We contend that these are residents

Fig. 5 Relative change in mobility trends for the workplace by borough. The x-axis displays the months-years of the focused time span while the y-axis
shows the relative change in the borough-level mobility to workplaces.

Table 1 Number of grocery stores per 1,000 (1K) residents
and the median distance traveled from home to grocery
stores from March 22nd to June 8th, 2020, by residents of
NYC boroughs.

Borough name Grocery stores per
1K residents

Median distance
traveled (in km)

Manhattan 0.582 0.90
Brooklyn 0.470 1.35
Bronx 0.435 1.26
Queens 0.414 1.71
Staten Island 0.332 2.66
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whose job types can most suitably respond to the shelter-in-place
and physical/social distancing orders through remote work,
unlike the residents in neighborhoods with other job types.
Hence, in alignment with other studies (Chang et al. 2021, Chetty
et al. 2020, Hunter et al. 2021), our findings indicate that the
residents of CBGs with top dissimilarity scores, demonstrate
greater resilience during pandemics like COVID-19. They are
better equipped to adapt to NPIs that necessitate restricted
mobility.

Two-sides of the same city. Using a network perspective, we
extend the previous work by finding that the adaptability of
mobility patterns varies significantly among communities not
only by their socioeconomic and demographic features but also
by geographical attributes of their neighborhoods. Quantifying
the year-on-year weekly ego-network dissimilarities, we show that
the less affluent and less educated neighborhoods demonstrated
less adaptability to policy interventions aimed at reducing their
mobility level. In addition, as a major contribution of this study,
we show that the residents of neighborhoods with higher income
and higher education levels can demonstrate similar behavior to
less affluent and less educated neighborhoods if they have rela-
tively limited access to public transport, workplaces, shops, and a
set of other diverse amenities, as is the case with Staten Island.

Despite the limited physical connections between Staten Island
and other boroughs of NYC and New Jersey, which might suggest
a breakdown of the existing mobility network in the face of an
extreme exogenous shock, our findings reveal a contrasting
scenario. Contrary to expectations, the changes observed in the
network structure were surprisingly minimal. Therefore, Staten
Island was relatively fragile to the COVID-19 pandemic in terms
of infections. Exploring similar neighborhoods or isolated
geographical blocks in other urban areas could be the subject of
future research to help policy-makers develop effective policies to
alleviate the burden of a pandemic in such areas and increase
their resilience and adaptability to public health interventions that
necessitate reduced mobility.

Opportunities for urban planning. Our study provides valuable
insights for urban planning and offers significant contributions to
policy development. It underscores the importance of integrating
both socioeconomic and geographic dimensions and character-
istics of neighborhoods, including their physical structures, in
efforts to enhance resilience against future external shocks. Spe-
cifically, this involves enhancing the adaptability of neighbor-
hoods to potential interventions proposed by experts and
authorities. Our findings highlight the necessity of a holistic
approach to urban development, one that recognizes and
addresses the diverse attributes of communities for more effective
and sustainable resilience-building strategies.

With regards to the latter and based on our simulation results,
convenient access to POIs that provide daily essential needs (e.g.,
grocery stores), workplaces, and centers of attraction that offer a
variety of amenities through a diverse set of POIs would be
expected to reduce the need for traveling long distances. Using a
Huff Gravity Model we performed a hypothetical scenario
analysis to estimate the number of visits to COVID-19 hotspot
CBGs with hypothetically added grocery stores for each CBG in
Staten Island. Although we only consider customer-store distance
and POI floor area in our model, the results yield valuable
insights regarding simulated mobility. Our findings indicate that
as a result of the increase in access to essential POIs, residents are
less exposed to the COVID-19 hotspot CBGs and are able to
satisfy their needs without traveling further distances. In cases
like the COVID-19 pandemic, an increased level of access to

POIs, could potentially decrease the level of infections and save
more lives.

As the continued pandemic conditions reveal, these factors
might be a major influence on future work habits and trends, and
resilient communities organized and structured along these lines
might be the preferred choice for many members of the
population. As a future research direction, we aim to extend
our simulation analysis by incorporating more POI categories
with additional POI attractiveness features and other relevant
attributes such as a neighborhood’s physical characteristics into
the model to evaluate the results within different settings.
Furthermore, we are also planning to extend our current mobility
analysis by illustrating the effects of hypothetical grocery stores
using flow graphs between urban areas such as boroughs.

Limitations. Our study encounters certain constraints primarily
due to the nature of the datasets used. The mobility trends and
visits to POIs are aggregated on a time-based (e.g., weekly) and
neighborhood-level (e.g., CBGs) framework. While this approach
effectively safeguards the privacy of smartphone users (Bahrami,
2023), it consequently limits our ability to capture the specific
motivations behind users’ trips to various destination CBGs (e.g.,
for work, shopping, entertainment, or other purposes). This
additional level of detail would allow us to distinguish between
essential and non-essential trips made by residents and match
them with the socioeconomic characteristics of neighborhoods.

Originating from the same limitation, we are only able to see
which neighborhoods are connected to one another in the form of
visits and with what frequency, but not how (i.e., mode of
transportation) they are connected. Although it may be possible
to infer the predominant transportation modes and routes
between CBGs using alternative and additional datasets, the
resolution of our data is insufficient for correlating these with
individual trips. Consequently, this precludes further examination
into the proportion of trips conducted via various modes of
transportation, and how these relate to virus transmission and
community resilience.

Furthermore, the POI dataset we use in our study mostly
includes places where financial transactions take place (e.g.,
supermarkets, dentist offices, restaurants) and has a low coverage
of workplaces and offices (e.g., corporate buildings, co-work
spaces). The latter could help us identify additional types of
essential travels (e.g., workplace commutes) and better fit the
gravity model for simulation purposes. We tried to address this
limitation partially by using complementary datasets such as
Google’s mobility report and the mobility survey results
published by NYC city officials.

The findings derived from the hypothetical scenario analysis
indicate that increased accessibility to essential amenities plays a
significant role in reducing infection rates. However, such a
scenario relies on private developers to provide essential services
and POIs like grocery stores, workplaces, and attractive amenities
in potentially economically disadvantaged neighborhoods. There-
fore, a limitation can arise from the utopian recommendation of
opening additional and in some cases excessive essential
businesses in the areas that are not financially attractive for the
private sector. To address this issue, there are several approaches,
including government policies like tax exemption zones designed
to encourage private sector involvement in commercial activities.
Nonetheless, the primary objective of our study is to straightfor-
wardly assess various hypothetical scenarios, with a particular
emphasis on estimating the scale of their impact on the mobility
patterns of residents.

Finally, despite all the limitations, our study makes at least two
major contributions. First, our study results contribute
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substantive insights into the heterogeneity of mobility patterns
among different neighborhoods during the COVID-19 pandemic
through leveraging network science approaches and quantitative
scenario analysis. Second, our study illuminates the factors
associated with a neighborhood’s resilience and fragility. Under-
standing the factors associated with a neighborhood’s resilience
and fragility can help urban planners and authorities recommend
sustainable policies, make better intervention decisions, and be
prepared to react more effectively to future exogenous shocks like
the COVID-19 pandemic and save more lives.

Data availability
All the datasets and scripts used for this study are available for
further research and replication purposes. The Safegraph mobility
dataset is available for academic research purposes through
request at: https://www.safegraph.com/. The Google COVID-19
Community Mobility Reports data is available at: https://www.
google.com/covid19/mobility/. All scripts are available at the
project GitHub repository: https://github.com/hasanalpboz/
safegraph-covid19-mobility
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