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Risk spillovers in Chinese production network: A
supply-side shock perspective
Yuxue Chi1, Zhongbo Jing1✉, Zhidong Liu1 & Xinge Zhou1

Highly interconnected production network exists in one economy, and it is crucial to inves-

tigate how and why supply-side shocks spread across industries via the production network

and cause systemic risks in the real sector. Based on input-output framework, this paper

designed a model to simulate the propagation of risk spillovers along the production network

given supply-side shocks. This paper defined the systemically important industries (SIIs) and

systemically vulnerable industries (SVIs) according to the degree and direction of risk spil-

lovers. Simulation results show that risk spillovers spread among industries via the produc-

tion network, leading to systemic risk in the real sector. This paper also classified the

important risk spillover paths “SVIs → SIIs → SVIs” in the model for risk regulation and

prevention and identified 75 risk spillover paths and 9 closed-loop paths in 2018. Further-

more, key factors of systemic importance (vulnerability) included input-output relationships

and production network centrality. This paper provides a scientific basis to strengthen the risk

supervision of the real sector based on the supply chain.
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Introduction

The risk of global industrial chain breaking is continuously
rising, posing a serious challenge to all countries. The 2011
earthquake in Japan, for example, disrupted local pro-

duction network and even transnational supply chains. In mod-
ern economic patterns, industries are highly interconnected, and
the shock from one industry can quickly spread to other indus-
tries and even lead to macroeconomic fluctuations (Acemoglu
et al. 2016). Different from other countries, China has the most
complete national industrial chain in the world and the output of
more than 220 industrial products ranks first in the world, which
features a complex system among chains in different industries.
In this vein, each industry that suffers from a shock can affect
another. Considering the advantages of the network model in
portraying complex systems, compared to theoretical analysis
(Acemoglu and Azar, 2020; Acemoglu et al. 2012; Carvalho, 2014;
Elliott et al. 2022), a network model is crucial to simultaneously
identify risk spillover paths from industrial chains and key
industries that can enhance the resilience of China’s industrial
chains.

Current research extensively covers risk spillover in financial
markets (Cao, 2022; Du and He, 2015; Wang and Xiao, 2023) and
supply chain network (Inoue and Todo, 2019; Li and Zobel, 2020;
Li et al. 2020). However, research on industry-level risk spillover
based on production network is relatively lacking. Existing studies
either analyse structural characteristics in production networks
(Liu et al. 2020) or employ network cascade failure model (Wang
and Zhang, 2018; Zeng and Xiao, 2014). The literature overlooks
the crucial role of production network in the risk spillover and the
indirect impact of supply-side effects on downstream industries,
leading to an underestimated risk level in the real sector.
Therefore, our goal is to fill this gap and construct a production
network using input-output framework for a quantitative analysis
of industry-level risk spillover.

This paper focuses on the shock from the supply side, which is
a crucial part of the supply chain (Tang et al. 2020). If upstream
industries face difficulties, they would be unable to fulfil supply
contracts, leading to supply-side shocks for downstream indus-
tries and even further to the consumer industry. Consequently,
these shocks can persistently propagate throughout the produc-
tion network (Acemoglu et al. 2016; Acemoglu et al. 2012; Aobdia
et al. 2014; Carvalho, 2014; Nguyen et al. 2020; Yang et al. 2023).
This paper applies the Cobb-Douglas production function to
explore how and why supply-side shocks can transmit widely to
other industries within the production network, resulting in
systemic risk to the real sector.

This paper constructs a directed production network based on
the input-output framework and quantitatively analyses the risk
spillovers of supply-side shocks in multiple rounds along this
production network. First, this paper defines the round of risk
spillover as the number of intermediate industries through which
the risk spills from one industry to another industry. If the risk
does not pass through the intermediate industry, it is one round
of risk spillover; if it passes through an intermediate industry, it
becomes two rounds of risk spillover, and so on. Second, this
paper divides the spillovers of multiple rounds into two parts:
direct and indirect spillovers. The former encompasses one round
of risk spillover, while the latter is the sum of risk spillover via
two or more rounds. This paper finds that, given the shock of a
10% loss to output, there is a maximum total reduction of
approximately 6% in the output of one downstream industry, and
the total reduction may be approximately 20% across the net-
work. In addition, indirect spillovers are significant. The pro-
portion of indirect spillover effects ranges from 30% to 50% in
approximately one-third of the simulation cases. Therefore, there
is a risk amplification effect within the production network.

Furthermore, this paper divides indirect spillovers into effects
on direct downstream industries and indirect downstream
industries. The former are the two or more rounds of effects on
the industries directly connected to the initially shocked industry,
and the latter are the two or more rounds of effects on the
indirectly related industries. In most cases, the indirect effect on
direct downstream industries accounts for over 20% of the total
spillover effects, indicating the importance of focusing on not
only the direct spillovers but also the risk amplification effects
brought by the production network. Otherwise, systemic risk in
the real sector may be underestimated.

Next, this paper investigates the spillover channel in the pro-
duction network, which is defined as a chain comprised of
“systemically vulnerable industries (SVIs) - systemically impor-
tant industries (SIIs) - systemically vulnerable industries (SVIs)”.
The systemic vulnerability of one industry refers to the extent of
risk spillover to this industry given a shock to other industries.
The higher the degree of risk spillover is, the greater the industry’s
systemic vulnerability. The systemic importance of an industry
refers to the extent of risk spillover to other industries given a
shock to itself. The higher the degree of risk spillovers is, the
greater the industry’s systemic importance. The logic of this
channel is that SVIs are vulnerable industries and are easily
affected by external shocks, so this paper starts the chain using
SVIs. Next, when SVIs suffered from negative shocks, risks spread
to SIIs and then to the entire production network, ultimately
increasing the risks for both SVIs and the real sector.

This paper identifies 75 risk spillover paths and 9 closed-loop
paths during 2018. Taking the paths with higher risk as an
example, this paper finds that risks in the three SVIs of “mining
support service activities”, “coke and refined petroleum pro-
ducts”, and “other transport equipment” spread through multiple
pathways to SIIs of “chemical and chemical products”, “basic
metals” and “wholesale and retail trade; repair of motor vehicles”,
triggering systemic risks in the enterprise sector. Moreover, there
is a risk loop among the industries of “mining support service
activities”, “coke and refined petroleum products”, and “water
transport”, etc., leading to risk amplification.

This conclusion indicates that upstream industries are critical,
systemically important sectors. These industries are highly prone
to triggering risk spillovers across other sectors within the pro-
duction network. Other industries are heavily influenced by the
performance of upstream industries. This phenomenon is also
why this paper investigates risk spillovers from the perspective of
supply-side shocks.

Finally, this paper empirically analyses the factors of SIIs and
SVIs using data from Chinese A-share listed companies and the
OECD input-output tables for the 2006–2018 period. The results
reveal that the key factors for SVIs and SIIs include input-output
relationships and network centrality. Specifically, industries
offering more intermediate input exhibit greater systemic
importance, while industries receiving more intermediate input
have higher systemic vulnerability. Additionally, industries with
higher degree (or out-degree) centrality and betweenness cen-
trality exhibit greater systemic importance, while industries with
higher degree (or in-degree) centrality, betweenness centrality,
eigenvector centrality, and closeness centrality display higher
systemic vulnerability.

The marginal contributions of this paper may include the
following three points. First, this paper extends the literature in
the field of risk spillovers among supply chains. The literature
mostly focuses on firm-level supply chain networks (Barrot and
Sauvagnat, 2016; Diem et al. 2022; Elliott et al. 2022), given
negative shocks such as natural disaster risk (Barrot and
Sauvagnat, 2016; Boehm et al. 2019; Carvalho et al. 2021), import
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tariff risk (Demir et al. 2022), network attack (Crosignani et al.
2023), tail risk (Yang et al. 2023), or zombie risk (Dai et al. 2021).
However, not all listed companies reveal their suppliers or cus-
tomers, so there may be a problem of selection bias.

Several papers primarily analyse the structural characteristics
of the production network and industry-specific risk spillovers,
such as the real estate industry chain (Chen et al. 2023) or cas-
cading failure models in a network (Wang and Zhang, 2018; Zeng
and Xiao, 2014). However, existing studies overlook the risk
spillover between industries in the supply network over multiple
rounds, which may result in an underestimation of the degree of
risk spillover. In fact, indirect risk spillover analysis is more
common in research on the financial sector (Duarte and
Eisenbach, 2021). To fill this gap, this paper studies risk spillovers
using the production network, which can avoid selection bias, and
investigates the spillovers over multiple rounds, which can obtain
a more precise measure of the risks in the industrial chain.

Second, this paper quantitatively identifies risk spillover paths
through the transmission of shocks in the industrial chain.
Theoretically, production networks can provide a reliable net-
work foundation for studying the key transmission paths of risk
spillover through input-output linkages (Liu et al. 2020). How-
ever, Liu et al. (2020) only predicts the possible paths of epidemic
shock transmission, such as path centrality. Different from the
paper above, this paper simulates the occurrence of risk spillover
in the industrial chain, depicting the complete risk spillover path
of “SVIs→SIIs→SVIs”, which can show more information about
risk spillovers in the production network. This paper could pro-
vide policy recommendations for relevant regulatory agencies to
formulate risk monitoring and early warning measures focusing
on key paths, enabling timely intervention and assistance at the
next industry of the risk spillover path when shocks occur.

Finally, this paper identified key factors of critical industries.
The literature has mostly focused on systemically important and
systemically vulnerable financial institutions (Bao et al. 2020;
Brownlees and Engle, 2017), with less emphasis on SIIs and SVIs
in the real economy. Zhai (2019) identified SIIs and SVIs through
the risk spillover relationship between the banking industry and
the real sector. Bu and Liu (2021), Li et al. (2019) and Song et al.
(2022) identify them using the TENET and LOO.

However, these studies did not consider the role of input-
output linkages between industries. To fill this gap, this paper
chooses several key factors based on the Cobb-Douglas produc-
tion function and empirically investigates the driving factors of
SIIs and SVIs. This paper finds that systemic importance and
systemic vulnerability are essentially determined by input-output
relationships and network centrality. Therefore, this finding could
help deepen the understanding of the formation of SIIs and SVIs
in China and provide empirical evidence for relevant regulatory
agencies to focus on weak and important links in risk spillover.

The remaining structure of this paper is as follows. Section 2
constructs a risk spillover model based on a production network
and uses a three-layer production network as an example to show
the intuitive analysis of risk spillover from upstream industries to
downstream industries. Section 3 introduces the data sample and
parameter settings and analyses the simulation results, including
the basic analysis, the identification and decomposition of SIIs and
SVIs, the portrayal of risk spillover paths, and robustness tests.
Section 4 analyses the formation of systemic importance and
systemic vulnerability and provides robustness analysis. Section 5
and Section 6 presents economic implications and conclusions.

Production network and risk spillover model
When a certain industry faces a shock that disrupts its normal
transactions, it can have a cascading impact on industries

downstream, leading to a reduction in their production activities.
This section constructs a directed and weighted production net-
work to illustrate this spillover effect. In addition, we use a three-
layer production network as an example to provide an intuitive
analysis of how upstream industries generate risk spillover to
downstream industries.

Production network. We consider an economic system consist-
ing of N industries, and the production of each industry j follows
a Cobb-Douglas production function.

yj ¼ ezj l
αj
j

Y
i
x
βij
ij : ð1Þ

where j represents the downstream industry and i represents the
upstream industry. zj denotes the total factor productivity, lj
represents the labor input, and xij represents the intermediate
input provided by upstream industry i to downstream industry j.
αj represents the output elasticity of labor, and βij represents the
output elasticity of intermediate input, indicating the share of
intermediate input upstream in downstream output in the equi-
librium state of the economy (Acemoglu et al. 2016).

Then, this paper constructs a production network G ¼ V ; Eð Þ
among industries. Here, V ¼ v1; v2; � � � ; vn

� �
represents the set

of n nodes, and E ¼ e1; e2; � � � ; em
� �

represents the set of m
directed edges. Nodes represent various industries in the
economic system, and directed edges represent intermediate
input from one industry i to another industry j. The n × n
adjacency matrix B of G is defined as [βij], where βij represents
the share of upstream industry i’s intermediate input in
downstream industry j’s output (Acemoglu et al. 2016), serving
as the weight of the directed edge. βij is as follows:

βij ¼
IOij

Outputj
i≠ j

0 i ¼ j

(
: ð2Þ

In the input-output table (see Supplementary Table S1 online),
IOij represents the direct consumption of output from upstream
industry i by downstream industry j. Outputj represents the
output of downstream industry j. βij measures the proportion of
direct consumption of output from upstream industry i by
downstream industry j relative to the output of downstream
industry j, reflecting the intermediate input link between
upstream industry i and downstream industry j.

Risk spillover path analysis based on a three-layer production
network. This section uses a three-layer production network as
an example to illustrate the risk spillover paths. In Fig. 1, there
might be multiple production networks, including but not limited
to Networks (a)-(c), each with its unique risk spillover path. We
will then describe three representative scenarios in detail. In
addition, different from traditional literature which uses volatility
to measure risk, production losses are regarded as a proxy vari-
able for risk referring to Inoue and Todo (2019) and Duarte and
Eisenbach (2021). The greater the prosduction losses, the higher
the risk for the industry.

Risk spillover in a single path. In subfigure (a), industry A is the
sole upstream industry for industry B and industry C, while
industry B is the sole upstream industry for industry D. Industry
A provides intermediate inputs as proportions to industries B and
C, denoted as xAB=yA and xAC=yA; respectively, and these ratios
remain unchanged throughout the risk spillover process. The
Cobb-Douglas production function for industries B to D is
represented by Eq. (3).

yB ¼ ezB lαBB xβABAB ; yC ¼ ezC lαCC xβACAC ; yD ¼ ezD lαDD xβBDBD : ð3Þ
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where z represents total factor productivity, l represents labor
input, and x represents intermediate input. α represents the
output elasticity of labor, and β represents the output elasticity of
intermediate input.

The transmission process of risk shown in Fig. 1 is as follows:
(1) In stage t= 0, industry A experiences an initial shock
ρð0≤ ρ<1�, leading to a reduction in its output to ρyA. (2) In stage
t= 1, the risk is transmitted to the midstream industries through
paths “A→ B” and “A→ C”. Assuming that industry A reduces
its intermediate input to industries B and C by ρxAB and ρxAC , the
outputs of industries B and C will decrease to eyB ¼ ρβAByB and
eyC ¼ ρβACyC , respectively. (3) In stage t= 2, the risk propagates
along the “B→D” path to industry D, causing the output of
industry D to change to fyD ¼ ρβABβBDyD.

In subfigure (a), the risk spillover exhibits a single path of
“A→ B→D”. We refer to Inoue and Todo (2019) and use the
proportional change in output before and after the shock to
indicate the risk level of a certain industry. The higher the
proportion of output changes, the greater the risk for the
industry. The risk levels for industries B, C, and D are obtained as
follows:

RiskB ¼ yB � eyB
� �

=yB ¼ 1� ρβAB : ð4Þ

RiskC ¼ yC � eyC
� �

=yC ¼ 1� ρβAC : ð5Þ

RiskD ¼ yD �fyD
� �

=yD ¼ 1� ρβABβBD : ð6Þ
Risk spillover in a dual path. In subfigure (b), industries B and C
are both upstream industries for industry D. The Cobb-Douglas
production function for the B-D industries is represented by
Eq. (7).

yB ¼ ezB lαBB xβABAB ; yC ¼ ezC lαCC xβACAC ; yD ¼ ezD lαDD xβBDBD x
βCD
CD : ð7Þ

In subfigure (b), the spillover of risk in stages t= 0 and t= 1 is
consistent with that in subfigure (a). However, in stage t= 2, both
industries B and C will impact industry D, and the risk
propagates along two pathways, “B→D” and “C→D”. As a
result, the output of industry D changes to fyD ¼ ρβABβBDþβACβCDyD.

Therefore, the risk spillover exhibits a dual pathway of
“A→ B→D” and “A→ C→D”. The risk levels for industries
B, C, and D are shown below:

RiskB ¼ yB � eyB
� �

=yB ¼ 1� ρβAB : ð8Þ

RiskC ¼ yC � eyC
� �

=yC ¼ 1� ρβAC : ð9Þ

RiskD ¼ yD �fyD
� �

=yD ¼ 1� ρβABβBDþβACβCD : ð10Þ
Risk spillover in a triple path. In subfigure (c), both industries A
and B serve as upstream industries for industry C. The Cobb-
Douglas production function for industries B-D is given by

Eq. (11).

yB ¼ ezB lαBB xβABAB ; yC ¼ ACl
αC
C xβACAC x

βBC
BC ; yD ¼ ADl

αD
D xβBDBD x

βCD
CD : ð11Þ

In this case, the process of risk spillover at stages t= 0 and
t= 1 is consistent with subfigure (a), but the difference lies in the
following aspects: (1) At t= 2, the risk propagates along three
paths: “B→D”, “C→D”, and “B→ C”. As a result, the output of
industry C decreases to eyC ¼ ρβACþβABβBCyC , and the output of
industry D decreases to fyD ¼ ρβABβBDþβACβCDyD. (2) At t= 3, the
risk further propagates along the “C→D” path, causing the
output of industry D to decrease to
fyD ¼ ρβABβBDþβACβCDþβABβBCβCDyD.
In subfigure (c), the risk spillover presents a triple path of

“A→ B→D”, “A→ C→D”, and “A→ B→ C→D”. The risk
levels of industries B, C, and D are as follows:

RiskB ¼ yB � eyB
� �

=yB ¼ 1� ρβAB : ð12Þ

RiskC ¼ yC � eyC
� �

=yC ¼ 1� ρβACþβABβBC : ð13Þ

RiskD ¼ yD �fyD
� �

=yD ¼ 1� ρβABβBDþβACβCDþβABβBCβCD : ð14Þ
Risk spillover model based on the production network. Real-
world production networks are more complex than the scenarios
described above. Therefore, we conduct systematic simulations of
risk spillover in the production network based on the
following rules:

1. Build production network. Based on IO data, we construct
an interindustry production network G ¼ V; Eð Þ, with the initial
output of each industry as yi i ¼ 1; 2; 3; ¼ ; nð Þ.

2. Set initial shock. Initially, industry k in the production
network experiences a negative shock ρ(1 > ρ ≥ 0), causing its
output to decrease to ρyk and affecting its downstream industries.
This constitutes the first round of risk spillover.

3. Simulate shock propagation. We traverse the network and
identify the set of industries IS that received negative shocks in
the previous round, and calculate the shock ρi for each industry i.
Then, we identify the downstream industry DS of each industry
in the set IS, confirm the input-output linkage β between the
upstream and downstream, measure the impact of changes in
intermediate inputs on the downstream output according to the
Cobb-Douglas production function in Eq. (1), and update
the output of the downstream industry yi

0. This constitutes the
second round of risk spillover.

4. Set cycle termination conditions. We check whether the
difference between the total output value of all industries in
the previous round and the total output value of all industries in
the current round is less than the threshold ε or whether the cycle
round t has reached the upper limit T, i.e., ρyk þ∑i≠kyi�

��
∑iyi

0j≤ ε or t≤T . If either condition is satisfied, the cycle is

Fig. 1 Three-layer production network. When industry A is subjected to a certain degree of external shock, the risk spills over to industry D, showing
single, double and triple spillover paths in the three different production network structures in a, b and c, respectively. In subfigure a, the red path
represents the “A→ B→D” single risk spillover path. In subfigure b, the red and blue paths represent the two “A→ B→D” and “A→ C→D” risk spillover
paths. In subfigure c, the red path, blue path and green path represent the three “A→ B→D”, “A→ C→D” and “A→ B→ C→D” risk spillover paths.
Three-layer production network is used as an example to provide an intuitive analysis, the simulation model in this paper is based on the production
network of the whole industry in the economy, for example, Supplementary Fig. S1.
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terminated, and the current round t is the last round of the cycle;
otherwise, we repeat step 3.

5. Export risk spillover results. We calculate the impact of risk
spillover. Output yk

0 � yk
� �

=yk � 1� ρ
� �

is the spillover extent
of the initial shocked industry k, excluding the specific shock ρ.
Output yi

0 � yi
� �

=yi ði≠ kÞ is the spillover extent of other
industries.

Sample, parameters, and simulation results analysis
In this section, we first present the sample selection and para-
meter settings, followed by an analysis of the simulation results.

Sample selection and parameter settings. The sample selection
and parameter settings involve the process of choosing the data
sample and determining the values of various parameters used in
the simulation.

Sample selection. This paper analyses data from the OECD Input-
Output Tables for China for the years 2006 to 2018. The 2021
version of the OECD Input-Output Tables provides input-output
matrices for 45 industries (classified according to ISIC Rev.4)
across 67 economies for the years 1995 to 2018. This dataset
offers the advantage of temporal continuity and strong timeliness.
Subsequently, this paper manually matched the Chinese National
Economic Industry Classification with the OECD International
Industry Classification (the detailed processing steps are outlined
in Supplementary Discussion 1 online), resulting in a final set of
44 industries. Supplementary Table S2 presents the industry
codes and names used in this paper.

Parameters. The initial parameters include the number of
industries in the network, the number of edges, edge weights, and
shock level. Leveraging the OECD Input-Output Tables data, this
paper establishes the number of industries, denoted as n, and the
number of edges, denoted as m, as outlined in Supplementary
Table S3 online. The edge weights, represented by β, are com-
puted according to Eq. (2). As indicated in Supplementary Table
S3, the production network in this paper is essentially a fully
connected network.

Supplementary Fig. S1 illustrates the production network based
on the data from 2018. In the diagram, the industry labels
represent industry numbers, and the thickness of the edges
represents the magnitude of their weights. Thicker directed edges
indicate a higher degree of input-output relationship between
industries. To simplify the model, this paper uniformly sets the
shock level as ρ= 0.9, indicating that the output of the industry
affected by the initial shock will decrease to 0.9 times its
original value.

Simulation results analysis. This paper conducts risk spillover
model simulations using Python to ultimately derive the risk level
caused by supply-side shocks from a specific industry within the
production network. Given the assumption that each industry
experiences one exogenous shock, this section conducts a total of
44 simulation experiments. In each experiment, the spillover
situation for all 44 industries is obtained, leading to a total of 1936
risk spillover results for each year.

Baseline results. 1. Maximum spillover degree and single-industry
spillover proportion

Firstly, two indicators are constructed: max spilli and
spill to singleij. The former measures the maximum extent to
which shocks from a specific industry spill over to other
industries, while the latter gauges the ratio of spillover to a
specific industry compared to all industries. The calculation

formulas are as follows:

max spilli ¼ max
j

spilloveri!j ð15Þ

spill to singleij ¼
spilloveri!j

∑kspilloveri!k

ð16Þ

where i represents the initially shocked industry and j represents
the affected industry. spilloveri→j represents the extent of risk
spillover from the initial shocked industry to the affected
industry.

Table 1 presents 17 spillover results in 2018 where the risk level
exceeds 1.5%1. In Table 1, initial shock industry i is initially
shocked based on the model settings. Affected industry j is the
industry affected by initial shock industry i. spilloveri→j represents
the extent to which risks spill over from industry i to industry j,
specifically, the proportional change in output in industry j under
the supply shock of industry i. spill to singleij represents the ratio
of industry i’s risk spill over to industry j compared to all
industries.

Taking the first row as an example, the first column represents
the initially shocked industry as “mining and quarrying, energy
producing products”, the second column represents the affected
industry subject to risk spillover as “coke and refined petroleum
products”, and the third column signifies that the latter is the
industry most affected by the shock in the former, with a risk level
of 0.0606. This conclusion indicates that if the “mining and
quarrying, energy producing products” industry experiences a
10% output shock, it will lead to a 6% decrease in output for the
“coke and refined petroleum products”, highlighting the strong
reliance on coke and refined petroleum product manufacturing
on the extraction of crude oil, coal, and natural gas resources.

The fourth column represents the spillover level from the
“mining and quarrying, energy producing products” industry to
the “coke and refined petroleum products” industry, accounting
for approximately one-fourth of the total spillover level to the 44
industries. In other words, the mining industry’s shock will lead
to systemic effects across all industries in the economic system
through the production network, resulting in an amplified risk
level of 21.7%. This paper finds that the ratio of spillover to a
specific industry compared to all industries is below 20%,

Table 1 Risk spillover results for 2018 (partial).

Initial shock
industry i

Affected
industry j

spilloveri!j spill to singleij

TTL_05T06 TTL_19 0.0606 27.90%
TTL_01T02 TTL_10T12 0.0367 19.84%
TTL_20 TTL_22 0.0326 17.04%
TTL_24 TTL_25 0.0291 16.22%
TTL_10T12 TTL_55T56 0.0284 19.96%
TTL_19 TTL_50 0.0283 16.65%
TTL_05T06 TTL_35 0.0242 11.14%
TTL_21 TTL_86T88 0.0234 75.40%
TTL_01T02 TTL_16 0.0232 12.52%
TTL_24 TTL_27 0.0231 12.86%
TTL_23 TTL_41T43 0.0203 37.92%
TTL_24 TTL_28 0.0182 10.16%
TTL_01T02 TTL_55T56 0.0179 9.67%
TTL_19 TTL_52 0.0178 10.49%
TTL_19 TTL_51 0.0168 9.87%
TTL_05T06 TTL_50 0.0164 7.54%
TTL_24 TTL_30 0.0158 8.82%

The first two columns in Table 1 show the industry code. Please refer to Table S2 for the code
and name comparison table.
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confirming the significance of researching the systemic risks of
entity sectors based on production networks.

Indirect spillover ratio
Secondly, this paper distinguishes direct and indirect spillovers
and calculates indirect spillij. The specific construction process is:
(1) We define industries directly connected to the initially
shocked industry as direct downstream industries, while other
industries without direct connections are regarded as indirect
downstream industries. (2) We define the round of risk spillover
as the number of intermediate industries through which the risk
spills from one industry to another industry. If the risk does not
pass through the intermediate industry, it is one round of risk
spillover; if it passes through an intermediate industry, it becomes
two rounds of risk spillover, and so on. (3) We divide the spil-
lovers of multiple rounds into two parts: direct and indirect
spillovers. The former is one round of risk spillover, and the latter
are the sum of two or more rounds of risk spillover. Thus,
indirectspillij represents the ratio of total spillovers from one
industry to another minus direct spillovers to total spillovers,
emphasizing the significance of indirect spillover within the
production network. The calculation formulas are as follows:

indirect spillij ¼
spilloveri!j � spilloveri!j directð Þ

spilloveri!j
ð17Þ

where spilloveri!j directð Þ represents the direct spillover degree to
industry j when it is a direct downstream industry of industry i.

For instance, in Fig. 1(c), A is the initially shocked industry, and
C is both a direct downstream industry and an indirect downstream
industry of A. “A→C” indicates direct spillover, and “A→ B→C”
indicates indirect spillover. Now we can calculate indirect spillAC ¼
spilloverA!B!C= spilloverA!B!C þ spilloverA!C

� �
.

Figure 2 presents the frequency distribution of the indir-
ect_spillij based on the simulation results of 2018. It is evident that
the majority of samples have a proportion of indirect spillover
between 30% and 50%, with 13.58% of samples exceeding 90%

and only 6.45% of samples falling below 10%. In other words, in
most cases, 30%–50% of the risk does not originate directly from
the initially shocked industry but results from the spillovers
among other industries in the production network over multiple
rounds. It emphasizes that indirect spillover is a significant aspect
of systemic risk in entity sectors and underscores the importance
of this paper’s approach through production networks for
investigating systemic risks. To gain a deeper understanding of
indirect spillovers, we distinguish between the indirect spillovers
to direct downstream and indirect downstream industries in the
next section, providing further insights into the risk amplification
effects within the production network.

SIIs and SVIs. Referencing Duarte and Eisenbach (2021), the
systemic importance of an industry refers to the extent to which it
transmits risks to other industries after being affected by shocks.
The greater the extent of transmitting risk spillover is, the higher
the systemic importance of that industry. The systemic vulner-
ability of an industry refers to the extent to which it is affected by
risks from other industries after they are affected by shocks. The
greater the extent of receiving risk spillover is, the higher the
systemic vulnerability of that industry.

This paper calculates the systemic importance and systemic
vulnerability of industries using the following method. Based on
the simulation model, negative shocks with a magnitude of
ρ= 0.9 are sequentially applied to the n= 44 industries. First,
concerning the initially shocked industry, the summation of the
changes in output proportionally influenced across all industries
represents the systemic importance of the initially shocked
industry. Second, for the industries affected by the spillover, the
changes in output proportionally influenced by each of the 44
industry shock scenarios are sequentially summed, signifying the
systemic vulnerability of each respective industry. Finally, this
paper individually ranks the industries based on their systemic
importance and systemic vulnerability, ordering them from
highest to lowest. The top ten industries in each ranking are
designated SIIs and SVIs, respectively.

Fig. 2 Frequency distribution of the indirect spillover ratio. The indirect spillover ratio is calculated based on the simulation results of 2018. The majority
of industries have a proportion of indirect spillover between 30% and 50%, with 13.58% of samples exceeding 90% and only 6.45% of samples falling
below 10%. In other words, in most cases, 30–50% of the risk does not originate directly from the initially impacted industry but results from the mutual
spillover among other industries in the production network.
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Supplementary Table S4 presents the top five industries ranked
by systemic importance during the period from 2006 to 2018.
Throughout the sample period, SIIs in China remain relatively
stable. Notably, four out of the top five industries are upstream
industries that provide raw materials and engage in component
manufacturing and production (“agriculture, hunting, forestry”,
“mining and quarrying, energy producing products”, “basic
metals”, and “chemical and chemical products”). This observation
underscores that upstream industries in the supply chain serve as
the origin and starting point, determining the development
potential of other industries. It also highlights the rationale for
this paper’s approach of investigating industrial chain risk
spillover from the supply side.

Figure 3 shows the trend of SIIs from 2006 to 2018. Six
industries show a fluctuating upwards trend: “wholesale and retail
trade; repair of motor vehicles”, “agriculture, hunting, forestry”,
“financial and insurance activities”, “food products, beverages and
tobacco”, “administrative and support services”, and “land
transport and transport via pipelines”. The majority of these
industries are characterized by essential demand, contributing to
their sustained high systemic importance. The finance industry,
on the other hand, is a significant service sector that also plays a
crucial role in influencing the development of the real economy.

Four industries exhibit a fluctuating downwards trend:
“chemical and chemical products”, “basic metals”, “mining and
quarrying, energy producing products”, and “coke and refined
petroleum products”. Considering the context, it is evident that
the worsening global climate crisis has had a significant impact on
the economic development of various countries, including China.
In recent years, the Chinese government has been actively
promoting low-carbon transformation, leading to a gradual
decline in the importance of the aforementioned four industries.

Supplementary Table S5 presents the top five industries in
terms of systemic vulnerability from 2006 to 2018. In comparison
to SIIs, SVIs exhibit more significant fluctuations. Among them,
“coke and refined petroleum products”, “electrical equipment”,
“manufacturing nec; repair and installation of machinery and
equipment” and “construction” industries have consistently been
identified as China’s SVIs. Notably, the “coke and refined
petroleum products” industry is both an SII and an SVI,
highlighting the need for attention and oversight from relevant
regulatory authorities.

Figure 4 illustrates the changing trends in SVIs from 2006 to
2018. “Manufacturing nec; repair and installation of machinery
and equipment” and “construction” industries have consistently
demonstrated elevated levels of systemic vulnerability. The

“mining and quarrying, nonenergy producing products”, “mining
support service activities”, and “other transport equipment”
industries have all experienced substantial fluctuations, and the
systemic vulnerability of the first two industries shows a
fluctuating upwards trend over time.

Comparative analysis of direct and indirect spillovers in key
industries. In this section, the indicators of SIIs and SVIs are
broken down to provide a deeper analysis of direct and indirect
spillovers, investigating the risk amplification effects of indirect
spillovers in production network. We can divide the SIIs and SVIs
into three parts according to the spillover round and whether the
spillover industry is directly related to the industry. First,
according to Fig. 5(a), the systemic importance of industry A can
be decomposed into three components: (1) Direct_on_direct: The
direct impact on its direct downstream industries is reflected as
“Industry itself→Direct Downstream” (A→ B, A→ C). (2)
Indirect_on_direct: The indirect impact on its direct downstream
industries is reflected as “Industry itself→Other Indus-
tries→Direct Downstream” (A→ B→C). (3) Indirect_on_other:
Other indirect impacts (including impacts on indirect down-
stream industries and impacts on itself) are reflected as “Industry
itself→Direct Downstream→Indirect Downstream” (A→ B→
D, A→ C→D, A→ B→ C→D) and “Industry itself→Direct
Downstream (→ Indirect Downstream)→Industry itself” (A→
B→A, A→ B→D→ B→A, A→ B→ C→D→ B→A,
A→ C→D→ B→A).

Based on Fig. 5b, the systemic vulnerability of industry D can
be decomposed into three components. (1) Direct_from_direct:
The direct impact from its direct upstream industries is reflected
as “Direct Upstream→Industry Itself” (B→D, C→D). (2)
Indirect_from_direct: The indirect impact from its direct
upstream industries is reflected as “Direct Upstream→Other
Industries→Industry Itself” (B→C→D). (3) Indirect_fro-
m_other: Other indirect impacts (including impacts from indirect
upstream industries and impacts from itself) are reflected as
“Indirect Upstream→Direct Upstream→Industry Itself” (A→
B→D, A→C→D, A→ B→ C→D) and “Industry Itself
(→ Indirect Upstream)→Direct Upstream→Industry Itself”
(D→ B→D, D→ B→ C→D, D→ B→A→ C→D, D→
B→A→ B→D, D→ B→A→ B→ C→D).
Based on the simulation results, we calculate the decomposi-

tion results for systemic importance and systemic vulnerability in
2018, and the decomposition ratios are shown in Figs. 6 and 72

(see Supplementary Tables S6 and S7 for decomposition results of

Fig. 3 Trend of SIIs. The graph shows the trend of SIIs from 2006 to 2018. Six industries show a fluctuating upwards trend. Four industries exhibit a
fluctuating downwards trend.
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all industries). Figure 6 shows that the proportion of direct
impact from SIIs to their direct downstream industries is
approximately 60% or more, the proportion of indirect impact
to their direct downstream industries is above 25%, and other
indirect impacts are below 2%. Only “mining and quarrying,
energy producing products” has roughly equal proportions of
direct and indirect impacts on their direct downstream industries.
Therefore, while most industries have lower indirect impacts than
direct impacts on their direct downstream industries, these
indirect impacts still hold a significant share.

Figure 7 shows that the proportion of direct impact from the
direct upstream industries for SVIs ranges between 65% and 75%,
while the proportion of indirect impact from direct upstream
industries is over 30%. This conclusion indicates that the

proportion of the decomposed results for systemic vulnerability
is relatively stable. Among these factors, the most significant is the
direct impact from the direct upstream industries, followed by the
indirect impact from the direct upstream industries generated
through other industries, and finally, the other indirect impacts.
Combining Figs. 6 and 7, it is evident that the production
network exhibits risk amplification effects. Industries not only
directly generate contagious risks but also transmit risks
indirectly through other industries in the production network,
and this proportion is non-negligible.

Spillover channel analysis. Next, this section examines the key
channels of risk spillover between industries, namely, the

Fig. 5 Decomposition of SIIs and SVIs. Considering the bidirectional input-output relationship between industries in real economy, we add the
bidirectional spillover relationship of “A↔ B” and “B↔D” on the basis of Fig. 1. Subfigure a represents the decomposition path of systemic importance, and
subfigure b represents the decomposition path of systemic vulnerability. In subfigure a, the red path represents the direct impact of industry A on the direct
downstream industries, the blue path represents the indirect impact of industry A on the direct downstream industries, the yellow path represents the
impact of industry A on the indirect downstream industries, and the green path represents the impact of industry A on itself. In subfigure b, the red path
represents the direct impact of industry D from the direct downstream industries, the blue path represents the indirect impact of industry D from the direct
downstream industries, the yellow path represents the impact of industry D from the indirect downstream industries, and the green path represents the
impact of industry D itself.

Fig. 4 Trend of SVIs. The graph illustrates the changing trends in SVIs from 2006 to 2018. “Manufacturing nec; repair and installation of machinery and
equipment” and “construction” industries have consistently demonstrated elevated levels of systemic vulnerability.
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Fig. 7 Systemic vulnerability decomposition. Direct_from_direct represents the direct impact from its direct upstream industries. Indirect_from_direct
represents the indirect impact from its direct upstream industries. Indirect_from_other represents other indirect impacts (including impacts from indirect
upstream industries and impacts from itself). The proportion of direct impact from the direct upstream industries for SVIs ranges between 65% and 75%,
while the proportion of indirect impact from direct upstream industries is over 30%.

Fig. 6 Systemic importance decomposition. Direct_on_direct represents the direct impact on its direct downstream industries. Indirect_on_direct
represents the indirect impact on its direct downstream industries. Indirect_on_other represents other indirect impacts (including impacts on indirect
downstream industries and impacts on itself). The proportion of direct impact from SIIs to their direct downstream industries is approximately 60% or
more, the proportion of indirect impact to their direct downstream industries is above 25%, and other indirect impacts are below 2%.
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“SVIs→SIIs→SVIs” risk spillover path. Analysing this pathway is
fundamental to understanding the genesis of systemic risk.

We take the top ten SVIs each year as the origin of risk
contagion. SIIs, which rank in the top ten for the magnitude of
spillover they receive from SVIs, are considered the key
intermediary sectors that amplify systemic risk in the real sector.
The SVIs that rank in the top ten for the degree of risk spillover
they receive from the SIIs are regarded as the ultimate industries.
This method aims to depict and analyse the essential spillover
pathways. The specific steps are as follows.

1. We characterize the pathway from SVIs to SIIs. (1) We
designate SVIs as the source of risk spillover. (2) We rank the
degree of risk spillover from each SVI to other industries and
select the top ten industries with the highest spillover degrees. (3)
We verify whether these ten industries are SIIs that serve as the
second industry in the risk spillover pathway.

2. We characterize the pathway from SIIs to SVIs. (1) We
designate SIIs as the risk amplification industries. (2) We rank the
degree of risk spillover from each SII to other industries and
select the top ten industries with the highest spillover degrees. (3)
We verify whether these ten industries are SVIs that serve as the
final industry in the risk spillover pathway.

Figure 8 illustrates the key pathways using the 2018 input-
output relationships as an example. In the diagram, green-
coloured industries represent SVIs, while red-coloured industries
represent SIIs. The edges indicate the paths of risk spillover. In
2018, a total of 75 complete risk spillover pathways were
identified. Among them were 17 pathways originating from
“mining support service activities”, 14 pathways from “coke and
refined petroleum products”, and 11 pathways from “other
transport equipment”. These pathways passed through SIIs such
as “chemical and chemical products”, “basic metals”, “wholesale
and retail trade; repair of motor vehicles” and “land transport and
transport via pipelines” with 15, 15, 10, and 24 pathways,

respectively. Hence, it is essential to closely monitor the risks in
these industries, achieving precise risk alerts and prevention.

This paper employs an alternative approach to construct risk
spillover paths and finds consistent results. We search for the
“SVIs→SIIs→SVIs” risk spillover paths among the risk spillover
results with output changes exceeding 0.5%. In Supplementary
Table S8, a total of 16 paths are identified. Except for the 9th and
10th paths, all other paths coincide with the paths found using the
previous method, demonstrating the robustness of the previous
approach. Taking paths 1–5 as an example, once “mining and
quarrying, nonenergy producing products” experiences a shock, it
spills risks over to “basic metals”, resulting in a 1.19% decrease in
output. Subsequently, “basic metals” poses further risks to various
industries, such as “mining support service activities” (1.22%),
“electrical equipment” (2.31%), “other transport equipment”
(1.58%), “manufacturing nec; repair and installation of machinery
and equipment” (0.73%), and “construction” (1.47%).

Next, we select 9 closed-loop paths for analysis (see
Supplementary Table S9). Specifically, when the “mining support
service activities” industry experiences a shock, it is highly likely
to spill risks to multiple SIIs. Subsequently, it affects itself through
these SIIs, creating multiple impacts and forming a risk feedback
loop. Therefore, special attention should be given to preventing
and mitigating risks within this loop. In addition, “coke and
refined petroleum products”, “water transport”, “other transport
equipment”, “mining and quarrying, nonenergy producing
products”, and “accommodation and food service activities” are
also part of the risk feedback loop, highlighting the need for their
careful consideration and management.

Robustness tests. Considering the potential bias in our model’s
simulation results due to external shock intensity and year-to-year
input-output table differences, this paper conducts model-based

Fig. 8 Risk spillover pathway. Green-coloured industries represent SVIs, while red-coloured industries represent SIIs. The edges indicate the paths of risk
spillover. In 2018, a total of 75 complete risk spillover pathways were identified.
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robustness tests in above two aspects, specifically analysing: (1)
baseline results, (2) SIIs and SVIs, and (3) spillover channels.

Firstly, as the external shock parameter significantly influences
the results, we conduct robustness tests by varying the external
shock parameter ρ to 0.8, 0.85, and 0.95, respectively. We observe
a consistent order in the risk spillover degree among industries,
indicating that the structural pattern of risk spillover remains
unchanged while the magnitudes vary. Results such as the
indirect spillover ratio, SVIs and SIIs, and the spillover channel
exhibit consistency. Supplementary Table S13 illustrates the
maximum spillover degree under four external shocks based on
the simulation results from 2018. In terms of the degree of risk
spillover, we note that a 5% increase in the external shock level
corresponds to an approximately 3% increase in the maximum
spillover.

Secondly, we have analysed the risk spillover using input-
output tables from 2006 to 2018. In this section, we verify the
results for the year 2018 by examining data from years 2016 and
2017. We identify the indirect spillover ratio (see Supplementary
Fig. S2) and risk spillover pathways (see Supplementary Fig. S3)
for 2016 and 2017, and find that the results are not significantly
different from Figs. 2 and 8.

Factors driving risk spillovers
In this section, based on the Cobb-Douglas production function,
we choose key factors and apply an empirical model to examine
the mechanisms behind the formation of SIIs and SVIs.

Model design. Taking the logarithm of both sides of the Cobb-
Douglas production function, we obtain Eq. (18).

lnyj ¼ zj þ αjlnlj þ∑
i
βijlnxij ð18Þ

This paper builds an empirical model based on Eq. (18) to
further analyse the factors influencing the systemic importance
and systemic vulnerability of industries.

y importancei;t ¼ α0 þ α1TFPi;t þ α2Labori;t þ α3Usei;t þ λi þ μt þ εi;t

ð19Þ

y vulnerabilityi;t ¼ β0 þ β1TFPi;t þ β2Labori;t þ β3Inputi;t þ λi þ μt þ εi;t

ð20Þ
In the model, the subscript i represents the industry, and the

subscript t represents the year. The dependent variables,
y importancei;t and y vulnerabilityi;t , represent the systemic
importance and systemic vulnerability of industry i in year t,
respectively. Inputi,t represents the natural logarithm of the total
intermediate inputs received by industry i from all its upstream
industries in year t, i.e., Inputi,t = ln ð∑jIOjiÞ, and it is related to
the industry’s systemic vulnerability. Usei;t represents the natural
logarithm of the total intermediate inputs provided by industry i
to all its downstream industries in year t, i.e., Usei,t = ln ð∑jIOijÞ,
and it is related to the industry’s systemic importance.

TFPi;t represents the total factor productivity of industry i in
year t, calculated using the LP method. This paper employs firm-
level measures of total revenue, number of employees, net fixed
assets, and cash payments for goods and services received as
proxies for output, labor, capital, and intermediate inputs,
respectively. The residuals of the estimated equations using the
LP method at the firm level are considered the firm-level TFP,
and the industry-level TFP is obtained by weighting these
residuals by the total revenue of firms. Labori,t represents the
number of employees in industry i in year t, and it is obtained by
weighting the firm-level number of employees by the total
revenue of firms. λi and μt represent industry fixed effects and

year fixed effects, respectively. εi,t is the error term. This paper
applies industry-level clustered standard errors.

Baseline results. This paper selects data from A-share listed
companies and the OECD China input-output table for the
period 2006 to 2018. Due to the particularities of accounting
standards in the financial and real estate industries, as well as the
social and nonprofit nature of the public administration and
defence industries, this paper excludes ST enterprises and the
financial, real estate, and public administration and defence
industries. The analysis focuses on 41 industries, resulting in 533
observations for these 41 industries over the 13-year period.

The descriptive statistics are presented in Supplementary Table
S10. The mean value of industry systemic importance is 6.66%,
with a minimum value of 0.117% and a maximum value of
24.428%. On the other hand, the mean value of industry systemic
vulnerability is 2.01%, ranging from a minimum of 2.3% to a
maximum of 11.892%. This indicates that the variability of the
systemic importance indicator is greater than that of the systemic
vulnerability indicator. The average value of intermediate input is
12.05, and the average value of intermediate usage is 11.95,
suggesting that, on average, industries receive more intermediate
inputs than they provide.

The baseline regression results are presented in Table 2.
Columns (1) and (2) show the results of the systemic importance
regression, while Columns (3) and (4) display the systemic
vulnerability regression. Columns (1) and (3) do not include the
variables of total factor productivity (TFP) and labor input, while
Columns (2) and (4) incorporate these variables.

The coefficient for intermediate usage in Column (2) is 2.973,
which is significant at the 99% confidence level. This conclusion
indicates that if an industry increases its supply of intermediate
input to its downstream sectors by one unit, its systemically
important role would increase by 2.973%. The coefficient for
intermediate input received from upstream industries in Column
(4) is 3.371, which is significant at the 99% confidence level. This
finding suggests that if an industry receives an increase of one unit
in intermediate input from its upstream sectors, its systemic
vulnerability would increase by 3.371%. Thus, it is evident that the
input-output relationship plays a significant role in determining
both the systemic importance and systemic vulnerability of an
industry. The more intermediate input is provided to downstream
industries, the greater the industry’s systemic importance;
similarly, the more intermediate input is received from upstream
industries, the greater the industry’s systemic vulnerability.

Next, this paper focuses on SIIs and utilizes direct and indirect
impacts on direct downstream industries, as well as other indirect
effects, as the dependent variables to analyse the influence of
intermediate usage. The results of the decomposition of SIIs are
presented in Panel A of Supplementary Table S11. It can be
observed that intermediate usage has a significant impact on all
three subindicators of systemic importance.

Subsequently, this paper shifts its focus to SVIs, utilizing direct
and indirect impacts from direct upstream industries, along with
other indirect effects, as the dependent variables for regression
analysis. The results of the decomposition of SVIs are presented
in Panel B of Supplementary Table S11. It can be observed that
intermediate input has a significant impact on all three
subindicators of systemic vulnerability. Comparing these results
to the first column, the coefficients in Columns (2) to (4) are
relatively smaller. This is due to the decomposition of both
systemic importance and systemic vulnerability into three parts
while maintaining the significance of the explanatory variables.
These conclusions further validate the importance of input-
output relationships in risk spillover.
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Analysis of network centrality. To analyse the mechanism of
how the production network structure drives industry’s systemic
importance and systemic vulnerability, this paper incorporates
network centrality in the baseline regression to explore the role of
the centrality characteristics of the production network.

y importancei;t ¼ α0 þ α1TFPi;t þ α2Labori;t þ α3Usei;t
þ α4Centralityi;t þ λi þ μt þ εi;t

ð21Þ

y vulnerabilityi;t ¼ β0 þ β1TFPi;t þ β2Labori;t þ β3Inputi;t
þ β4Centralityi;t þ λi þ μt þ εi;t

ð22Þ
where Centralityi;t represents the centrality of industry i in year t
in the network, including degree centrality, betweenness cen-
trality, eigenvector centrality, and closeness centrality. The cal-
culation formulas are as follows:

Cd ið Þ ¼ d ið Þ
N � 1

ð23Þ

where Cd ið Þ represents the degree centrality of node i, d ið Þ sig-
nifies the degree or number of connections of node i, and N
stands for the total number of nodes in the network to which
node i belongs. In the context of the production network, degree
centrality refers to the number of other industries directly con-
nected to an industry in the network. The higher the number of
connected industries, the higher the degree centrality.

Cb ið Þ ¼ ∑s≠i≠t
σst ið Þ
σst

ð24Þ

where Cb ið Þ represents the betweenness centrality of node i, σst
stands for the number of shortest paths from node s to node t,
and σst ið Þ represents the number of shortest paths that pass
through node i. In the context of the production network,
betweenness centrality measures the proportion of shortest
paths that pass through a specific industry, indicating its role as
a bridge in the network. The higher the number of shortest paths
passing through an industry, the higher its betweenness
centrality.

Ce ið Þ ¼
1
λ
∑u2N ið ÞCe uð Þ ð25Þ

where Ce ið Þ represents the eigenvector centrality of node i, λ
denotes the largest eigenvalue, and N(i) indicates the set of
nodes directly connected to node i. In the context of the

production network, eigenvector centrality measures the col-
lective centrality of industries connected to a particular industry,
reflecting the centrality of its cooperative partners. The higher
the centrality of an industry’s cooperative partners, the higher its
eigenvector centrality.

Cc ið Þ ¼
n� 1

∑u≠id u; ið Þ ð26Þ

where Cc ið Þ represents the closeness centrality of node i, n sig-
nifies the number of nodes connected to node i in the network,
and d u; ið Þ stands for the shortest path length from node u to
node i. In the context of the production network, closeness
centrality refers to the reciprocal of the average shortest distance
from a specific industry to all other industries. It reflects the
degree of closeness between an industry and other industries in
the network. If an industry has short distances to other indus-
tries, its closeness centrality is higher.

Since the directed weighted network in this paper is
approximately fully connected, it is not feasible to directly
measure its network centrality. Therefore, this study employs a
threshold method. Considering both network density and
average degree before and after setting the threshold, we choose
0.005 as the threshold of edge weight, retaining only edges with
weights greater than 0.005 in the production network, and then
calculates the above four network centrality indicators. The
specific reasons for the threshold selection are shown in the
Supplementary Discussion 2.

Panel A of Table 3 presents the regression results of systemic
importance with network centrality. The coefficients of degree
centrality and betweenness centrality are significant at the 99%
confidence level, and they are positive. This indicates that
industries with higher betweenness centrality and degree
centrality have stronger systemic importance. In other words, if
an industry is connected to many industries in the network or
occupies a key position in interindustry relationships, it is more
likely to cause risk spillover to other industries and thus has
stronger systemic importance.

The coefficients of eigenvector centrality and closeness
centrality are negative and not significant, which might be due
to the construction of the indicators. Eigenvector centrality
measures the systemic importance of an industry’s partners.
When an industry has higher eigenvector centrality, it means that
its partners have stronger systemic importance, and therefore, the
systemic importance of this industry may be relatively weaker.
Closeness centrality represents the reciprocal of the average

Table 2 Baseline regression results.

Variables (1) (2) (3) (4)

y_importance y_importance y_vulnerability y_vulnerability

Use 2.933*** 2.973***
(3.395) (3.542)

Input 3.380*** 3.371***
(6.440) (6.492)

TFP −0.073 −0.038
(−1.143) (−0.677)

Labor 0.185 −0.034
(1.646) (−0.423)

Constant −27.669** −28.987*** −33.133*** −32.540***
(−2.681) (−2.869) (−5.238) (−5.229)

Year fixed effects Yes Yes Yes Yes
Industry fixed effects Yes Yes Yes Yes
Observations 533 533 533 533
Adjusted R2 0.982 0.982 0.894 0.894

*, **, *** indicate that the estimates are significant at the 10%, 5% and 1% levels, respectively; t statistics for regression coefficients are in parentheses.
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distance from an industry to all other industries, and the
averaging process might lead to an inaccurate measurement of an
industry’s position in the network, which might not align with the
measurement of systemic importance in this paper. Additionally,
since the metric here refers to in-closeness centrality, which
represents the average reciprocal of the shortest paths from other
nodes to a given node, this measures the influence of other
industries on that specific industry. However, it does not capture
the systemic importance of that industry. In addition, we calculate
out-closeness centrality, which represents the average reciprocal
of the shortest paths from a given node to other nodes, and
confirm its positive effect on systemic importance (see Supple-
mentary Table S12).

Panel B of Table 3 presents the regression results of systemic
vulnerability. The coefficients of betweenness centrality, eigen-
vector centrality, degree centrality, and closeness centrality are all
significantly positive, indicating that higher betweenness

centrality, eigenvector centrality, degree centrality, and closeness
centrality are associated with greater systemic vulnerability. In
other words, when a particular industry has more connections
with other industries in the network, when it occupies a critical
position in interindustry relationships, when its partners have
higher centrality, or when it is closer to other industries, it is more
likely to be sensitive to shocks from other industries and more
susceptible to risk spillovers.

To further investigate this, we split the degree centrality into
in-degree centrality and out-degree centrality and include them in
the baseline model for empirical analysis. Table 4 presents the
regression results. We find that industries with higher out-degree
centrality are more likely to cause risk spillovers to other
industries, indicating stronger systemic importance. On the other
hand, industries with higher in-degree centrality are more
susceptible to risk spillovers from other industries, indicating
higher systemic vulnerability.

Table 3 Regression results of systemic importance and vulnerability with network centrality.

(1) (2) (3) (4)

Panel A: The Impact of Network Centrality on Systemic Importance

Variables y_importance y_importance y_importance y_importance

Use 2.810*** 3.056*** 2.196*** 3.050***
(3.457) (3.846) (2.795) (3.843)

Cb 22.845***
(2.761)

Ce −4.999
(−1.270)

Cd 4.922***
(3.550)

Cc −3.993
(−1.369)

TFP −0.059 −0.076 −0.029 −0.073
(−1.018) (−1.170) (−0.508) (−1.137)

Labor 0.181 0.177 0.147 0.173
(1.672) (1.598) (1.428) (1.594)

Constant −27.422*** −29.173*** −23.343** −27.679***
(−2.801) (−3.001) (−2.525) (−2.769)

Observations 533 533 533 533
Adjusted R2 0.982 0.982 0.984 0.982

Panel B: The Impact of Network Centrality on Systemic Vulnerability

Variables y_vulnerability y_vulnerability y_vulnerability y_vulnerability

Input 3.210*** 2.463*** 2.971*** 2.670***
(6.345) (6.703) (6.224) (6.511)

Cb 13.723*
(1.755)

Ce 19.394***
(6.057)

Cd 2.137**
(2.215)

Cc 14.284***
(5.601)

TFP −0.028 −0.012 −0.013 −0.026
(−0.476) (−0.276) (−0.241) (−0.523)

Labor −0.039 −0.021 −0.056 −0.004
(−0.479) (−0.314) (−0.712) (−0.064)

Constant −30.839*** −24.697*** −29.311*** −32.040***
(−5.035) (−5.470) (−4.968) (−6.322)

Observations 533 533 533 533
Adjusted R2 0.897 0.922 0.899 0.917
Year fixed effects Yes Yes Yes Yes
Industry fixed effects Yes Yes Yes Yes

*, **, *** indicate that the estimates are significant at the 10%, 5% and 1% levels, respectively; t statistics for regression coefficients are in parentheses.
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Robustness tests. To alleviate endogenous problems including
measurement errors and reverse causality, we conduct empirical-
based robustness tests.

Firstly, we reduce the measurement error problem from two
aspects. On one hand, we employ measures of systemic
importance and systemic vulnerability at different shock levels
as dependent variables, as shown in Supplementary Tables
S14 and S15. The results align with those of our main analysis,
revealing no significant differences. Additionally, we find that the
stronger the external shock, the greater the impact of inter-
mediate input and intermediate use on systemic importance and
systemic vulnerability.

On the other hand, we compute the centrality indicators using
thresholds of 0.01, 0.015, and 0.02 for robustness tests. The
regression results are presented in Supplementary Tables
S16–S18. The conclusions are basically consistent with this paper.
An exception is observed in the case of betweenness centrality,
which shows non-significance in influencing systemic importance
and vulnerability. This may be attributed to the high dependence
of betweenness centrality on the path, and as the threshold
increases, the number of deleted paths rises, making it challenging
to accurately depict the role of betweenness centrality. Addition-
ally, degree centrality is not significant in impacting systemic
vulnerability, potentially due to the increasing network density,
where the remaining industries are those with high centrality,
affecting the vulnerability estimate.

Secondly, we attenuate the reverse causality problem by
delaying the core independent variable by one stage. The
regression results are presented in Supplementary Table S19.
The results in Table S19 show no significant differences compared
to the baseline results, confirming the robustness of the findings
in this study.

Economic implications
Based on the above analysis, this paper summarizes three
important economic implications shown as follows.

First, the input-output network exhibits risk amplification
effects, government should pay close attention to this network to
prevent systemic risk in the real sector. When an industry
experiences a 10% shock, its risk spillover effect on all down-
stream industries could reach up to about 20%. The proportion of

indirect spillover to all spillover effects ranges from 30% to 50%
in most scenarios, indicating that indirect spillover is also the
main driver of systemic risk. Based on these findings, we conclude
that production networks can amplify risk. Therefore, how to
prevent risk spillover in the production network is an important
issue that needs to be studied.

Second, we should focus on several key nodes and key paths to
prevent risk spillovers in the production network. With the highly
increasing economic interdependence and deepening of social
specialization, the production network can also enhance the
production efficiency in the modern economy, thus we cannot
prevent risk spillovers or systemic risk by reducing the linkages
among industries. In this vein, we should focus on critical nodes
and pathways in the production network, especially within
closed-loop structures. In this paper, we identify SIIs and SVIs by
risk spillover magnitude and direction, and we also find out the
risk spillover paths of “SVIs→SIIs→SVIs”. Therefore, we just
need to pay attention to these key industries and critical path-
ways, especially the closed-loop structures in industries such as
“mining support service activities”, “coke and refined petroleum
products”, “water transport”, etc. Governments can manage sys-
temic risk effectively by regulating SIIs and SVIs and promptly
cut off the linkages among these key nodes.

Finally, governments can further develop a risk warning system
for the real economy sector by investigating the driving factors of
key industries. In the final part, this study explores the factors of
critical nodes, revealing that input-output relationships and net-
work centrality contribute to the formation of SIIs and SVIs. For
example, if an industry provides more intermediate inputs to other
industries or occupies a central position in the production network,
it is more likely to become an SII. Take another instance, if an
industry receives more intermediate inputs from other industries
or holds a central position in the production network, it is more
likely to become an SVI. Subsequently, we can use these key factors
to construct a risk warning system for the real economy. This
system should enable proactive risk monitoring and predict
uncertainties in the future, and take effective measures to control
risks for key industries and pathways, ensuring the maximization
of social welfare and economic stability.

Based on the above implications, we suggest that regulatory
authorities should pay attention to the risk amplification function

Table 4 Regression results of in-degree centrality and out-degree centrality.

Variables (1) (2) (3) (4)

y_importance y_importance y_vulnerability y_vulnerability

Use 1.897*** 1.935***
(2.986) (3.061)

Input 2.483*** 2.481***
(6.332) (6.371)

Cd_out 8.510*** 8.390***
(6.174) (6.235)

Cd_in 8.596*** 8.556***
(6.140) (6.079)

TFP −0.013 −0.010
(−0.247) (−0.226)

Labor 0.088 −0.018
(0.988) (−0.280)

Constant −18.385** −19.328** −25.556*** −25.325***
(−2.464) (−2.559) (−5.403) (−5.433)

Year fixed effects Yes Yes Yes Yes
Industry fixed effects Yes Yes Yes Yes
Observations 533 533 533 533
Adjusted R2 0.987 0.987 0.922 0.922

*, **, *** indicate that the estimates are significant at the 10%, 5% and 1% levels, respectively; t statistics for regression coefficients are in parentheses.
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of the production network. Focus on high-network centrality
industries and close input-output linkage in the production net-
work, and prevent and resolve the systemic risks of the real sector
caused by the risk spillover from the production network. Spe-
cifically, the government should implement targeted risk mon-
itoring and management for SVIs and SVIs, and the “SVIs →
SIIs → SVIs” risk spillover path must be promptly severed.
Finally, it is necessary to implement forward-looking risk mon-
itoring for SVIs and SIIs based on their key drivers.

Conclusions
In modern economic systems, highly interconnected production
networks can lead to the transmission and escalation of supply-
side shocks throughout the industry chain, even causing macro-
economic fluctuations. Therefore, focusing on the supply-side
shocks and studying the risk spillover mechanism of the indus-
trial chain have theoretical significance. This paper constructs a
production network risk contagion model and empirically ana-
lyses the process of supply-side shocks propagating through the
network over multiple rounds using industry data from China.
The conclusions of this paper are as follows.

The generation of systemic risk in the real sector originates
from two main aspects. First, it arises from the initial shock to
specific industries, and second, it results from the interindustry
risk contagion effect. When an industry experiences a shock, its
maximum spillover effect on a single downstream industry is 6%,
meaning that it can reduce the output of a single downstream
industry by 6%. However, its risk spillover effect on all down-
stream industries could reach up to 20%, indicating that the
production network plays a significant role in amplifying risks,
and the interindustry risk spillover transmitted through other
industries in the production network constitutes 30%-50% of the
overall network spillover level. This conclusion emphasizes the
pivotal role of interindustry risk contagion in driving the rise of
systemic risk in the real sector.

During the spillover process, upstream industries in the
industry chain play a crucial role as SIIs. These industries are
highly likely to transmit risks to other industries in the produc-
tion network, highlighting their fundamental driving function in
the industrial chain production process. If these industries are
weak in the industrial chain, there is a high risk of damage across
the production network when they are exposed to external
shocks.

Based on the spillover round and whether the industry
receiving risk spillovers is directly related to the industry pro-
pagating them, this paper further decomposes SIIs (SVIs) into
three parts: direct impact on direct downstream industries
(affected by direct upstream industries), indirect impact on direct
downstream industries (affected by risk originating from the
direct upstream industry and spread via other industries), and
other indirect impacts. The findings reveal that while the direct
spillover effect on direct downstream industries is the most
substantial within the systemic importance indicator, a significant
portion of industries still propagate more than 20% of their
spillover effects indirectly on direct downstream industries
through their connections with other industries. This finding is
similarly valid for the systemic vulnerability indicator. Hence, the
investigation of systemic risk requires a focus on the risk con-
tagion and amplification mechanisms within the production
network.

In terms of the spillover paths, “mining support service
activities”, “coke and refined petroleum products”, and “other
transport equipment”, which are three SVIs, are the main sources
of risk under supply-side shocks. Risk can propagate through
multiple spillover paths to “chemical and chemical products”,

“basic metals”, and “land transport and transport via pipelines”,
which are three SIIs, leading to an increase in systemic risk in the
enterprise sector. Notably, “mining support service activities”,
“coke and refined petroleum products”, “water transport”, “other
transport equipment”, “mining and quarrying, nonenergy pro-
ducing products”, and “accommodation and food service activ-
ities” are prone to forming risk feedback loops, resulting in risk
accumulation and amplification.

Finally, the pivotal driving factors for systemic importance and
systemic vulnerability include input-output relationships and
network centrality. When industries have stronger interindustry
input-output connections or when the network centrality of
industries affected by shocks is higher, the spillover and spread of
risks are more likely to occur.

Although this paper simulates the process of risk spillover in
the industrial chain, it may have the following limitations. First,
when the upstream industry is shocked, the downstream industry
may also mitigate the impact by switching suppliers or using
other methods. Second, the upstream industry may assume the
priority of reducing the intermediate input to customers that are
not too important; that is, risk spillover is not well-proportioned.
Third, all industries are homogeneous nodes in the production
network modelled here, which may cause some errors in the
identification of spillover degree. These deficiencies are future
research directions.

Data availability
All data generated or analysed during this study are included in
this published article and its supplementary information files.
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Notes
1 The entire simulation results for 2006–2018 are available on request.
2 In the 2018 production network, which is a nearly fully connected network with 1891
directed edges, only “fishing and aquaculture” serves as an indirect upstream industry
for “mining support service activities”, while the remaining industries have direct
upstream and downstream relationships with each other. Therefore, in Supplementary
Tables S6 and S7, the “Indirect_on_other” effect for “fishing and aquaculture” includes
the impact on indirect downstream industries as well as on itself, while others only
include the impact on itself. The “Indirect_from_other” effect for the “mining support
service activities” industry includes the impact from indirect upstream industries as
well as from itself, while others only include the impact from itself.
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