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A dynamic linkage between greenhouse gas (GHG)
emissions and agricultural productivity: evidence
from Ethiopia
Asmamaw Mulusew 1 & Mingyong Hong1✉

The consequences of greenhouse gas emissions are a global problem and are felt most

clearly in poor countries. Every sector in Ethiopia is affected by greenhouse gas emissions,

but the productivity of the agricultural sector is particularly at risk. Although climate change

is a long-term phenomenon, no in-depth macro-level studies have been conducted to guide

discussion in this area. Therefore, the study fills this gap and carefully examines these

impacts over time from 2019 to 2022 using the Vector Auto Regressive Model. Our results

show that a 1% increase in fertilizer consumption, agricultural land, nitrous oxide (N2O)

emissions, rural population, and area devoted to grain production results in a 0.28, 2.09,

15.92, 5.33, and 1.31 percent increase in agricultural yield in the long-run, respectively. A negative

relationship was found between agricultural employment, agricultural methane emissions

(CH4), carbon dioxide emissions (CO2), and agricultural productivity with a significance level

of 5%. This means that under a black box condition, a one percent increase in agricultural

employment, CH4, and CO2 emissions in the country in the long run will lead to a decrease in

agricultural productivity by 5.82, 17.11, and 2.75 percent respectively, as we also found that all

regressors except technology adoption had an elastic relationship with agricultural pro-

ductivity. The short-term error correction estimates show that the coefficient of the “speed of

adjustment” term for the expected productivity equation is both statistically significant and

negative. The value of the coefficient term of −0.744 shows that an adjustment of 74.4% is

made each year to converge the long-run equilibrium level. Therefore, Ethiopia needs to take

measures that keep the economy away from sectors that produce a lot of carbon. These must

be coordinated at a global level to achieve social change towards a fair and environmentally

sustainable future and to increase agricultural productivity.
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Introduction

According to climate prediction models, climate change is
expected to have a significant impact on agricultural
productivity in the future. Global food security is seriously

threatened by the expected increase in average temperature
caused by increased emissions of greenhouse gases (GHGs) into
the atmosphere, as well as increasing depletion of water resources
and increased climate variability (Neupane et al. 2022). Over the
coming 50 years, global food demand is forecast to double.
Maintaining high agricultural productivity1 is a key part of food
security. As opposed to that, the area of fertile and arable land
needed to grow these crops has been dramatically declining. The
earth is currently becoming increasingly hotter as a result of
increased greenhouse gas emissions brought on by human
activities. As stated in the Paris Agreement, the world is quite far
from achieving a global temperature rise of <2 °C. Compared to
the baseline year of 1990, some countries are polluting more,
some are emitting the same amount, and others are emitting less
(UNEP, 2021). Carbon dioxide, nitrous oxide, and methane are
the main greenhouse gases. More than 70% of the global rise in
greenhouse impacts is attributable to them (FAO, 2021). Africa is
one of the continents most affected by the effects of climate
change, despite having the lowest greenhouse gas emissions per
capita in the world. In Africa, greenhouse gas emissions related to
land use and farmgate increased by 38 percent and 20 percent,
respectively, between 2000 and 2018 (FAO, 2021). When we
consider all agricultural products, our food systems are respon-
sible for about 25 to 30% of world emissions, or about one-third
(Hannah et al. 2020). Harvesting plant and animal products
removes carbon from the agricultural system, primarily through
the use of chemical pesticides, fertilizers, and animal waste.
According to FAO estimates for 2018, agriculture contributed 9.3
billion tonnes of CO2 equivalent (CO2eq) to global emissions
(including farm gate emissions and land use change). According
to research by Parry et al. (2004) food yields, productivity and the
risk of hunger would all experience different impacts from cli-
mate change, with losses of up to 30% predicted in poor coun-
tries, particularly in Africa and some regions of Asia.

Although greenhouse gas emissions can accelerate plant
growth, they are also responsible for climate change, ozone layer
depletion, and water and nutrient shortages. Extreme rainfall and
heat can stunt plant growth and reduce yields. Warmer, wetter,
and higher CO2 levels promote the growth of many weeds, pests,
and fungi. For example, increasing CO2 emissions can impact
crop yields and also reduce the nutritional value of food crops.
Therefore, the relationship between greenhouse gas emissions and
agricultural productivity is complex and it is uncertain how these
predictors dynamically interact over time. In recent years, climate
change has been one of the greatest challenges, requiring inno-
vative strategies to address its impacts on agricultural pro-
ductivity and energy supplies (Bevan and Waugh, 2007); Hendre
et al. 2019; Zenda et al., 2021; Mabhaudhi et al. (2019).

The majority of Ethiopians, 80 to 85%, make a living from
agriculture and pastoralism. Agriculture contributes 88.8 percent
of export revenue and 36.7 percent of the country’s gross
domestic product (World Bank, 2022). Agriculture is the main
source of greenhouse gas emissions in Ethiopia, accounting for
80% of all emissions (World Bank, 2022). It contributes <0.1
percent of global emissions but is already feeling the effects of
climate change. Agriculture and deforestation are responsible for
>85% of emissions, with the energy, transportation, industrial,
and construction sectors each contributing 3%. The trend in
greenhouse gas emissions for the country’s agricultural sector is
that net emissions have increased from 19,586.06 Gg CO2e in
1994 to 226,157.6 Gg CO2e in 2022. Land-based CO2 emissions
accounted for the majority of total emissions, with CH4 produced

by enteric fermentation emissions ranking second in the livestock
category. The majority of greenhouse gas emissions from the
energy sector come from burning liquid and solid fuels (World
Bank, 2022). Climate change is expected to have a significant
impact on Ethiopia’s agricultural production, with projected
reductions of 5–10% compared to baseline without climate
change. The impacts will vary in different agroecological zones,
with small changes in temperature affecting the net yield of the
crop per hectare (Deressa and Hassan, 2009; Robinson et al.
2012). Deressa (2007) discovered that Ethiopian agricultural
productivity is negatively affected by both increasing tempera-
tures and decreasing rainfall.

The various aspects of agricultural productivity of Ethiopian
smallholder households have been the subject of numerous stu-
dies (Mekonnen, 2022; Dawit et al., 2020; Eshetie et al. 2020;
Gebreegziabher et al. 2016; Adamu, 2022; Nuno and Baker, 2021;
Tesema and Gebissa, 2022; Yao, 1996; Ademe et al., 2016; Ayele
and Tamirat, 2020). However, most of these studies did not
consider the impact of agricultural greenhouse gas emissions on
agricultural productivity over time and were limited to a specific
region and production factors at a specific point in time. How-
ever, it is current ongoing human activities that are leading to
climate change. Most of these studies, largely focused on the
microeconomic impacts of greenhouse gases, provided only a
partial picture of how greenhouse gas emissions have affected
agricultural production. Few studies have examined how green-
house gas emissions may affect agricultural productivity in
Ethiopia. This study attempts to address these gaps by assessing
the impact of greenhouse gas emissions on agricultural produc-
tion over time. Due to the nature of the study, it is also the first
attempt to assess how differences in agricultural productivity
affect fertilizer use, access to land, rural population, agricultural
employment, and the allocation of total area for grain production,
baseline path from 1990 to 2022. Given the issues raised above,
the research question of the study is posed as follows: “If there is a
relationship between agricultural greenhouse gas emissions and
agricultural productivity (proxied by grain yield per hectare), is
there a “long-term” “lead a positive or negative relationship?”.
Therefore, this study is an important initiative to understand the
long-term dynamics of greenhouse gas emissions and agricultural
productivity and will serve as input for subsequent discussions.

Literature review
According to the Climate Watch report (2023), climate change is
driven by greenhouse gas (GHG) emissions from human activ-
ities. Just ten nations are responsible for nearly 60% of global
greenhouse gas emissions, while the 100 lowest-emitting nations
each contribute <3%. Agriculture is the second largest source of
emissions after the energy sector. Although developing countries
have a comparatively smaller share of global greenhouse gas
emissions, their emissions are increasing from time to time.
Research on agricultural productivity by Zhai et al. (2009)
assumes that the long-term effects of climate change will last until
2080. Edoja et al. (2016) examine the impact of climate change on
agricultural productivity worldwide and show that it can increase
food prices and negatively impact agricultural welfare.

Developing nations, especially those in Africa, emit fewer
greenhouse gases due to human activity, but they are still very
exposed to and vulnerable to climate variability and events
associated with it (Sarkodie and Strezov (2019)). According to
research by Parry et al. (2004), food yields, productivity, and the
danger of hunger would all experience various effects of climate
change, with losses of up to 30% projected in poor nations,
particularly in Africa and some regions of Asia. For instance, the
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Valin, H. et al. (2013) study on agricultural productivity and
greenhouse gas emissions in developing countries suggests that
increasing yields could slow emissions expansion. Closing yield
gaps for crops and livestock could reduce emissions by 8% overall
and 12% per calorie produced by 2050. Ekpenyong and Ogbua-
gu’s (2015) study reveals a negative correlation between agri-
cultural productivity and climate change in Nigeria, with a 100%
increase in greenhouse gas emissions resulting in a 22.26%
decrease in AGP. And, the Edoja et al. (2016) study in Nigeria
also found a long-term association between CO2 and agricultural
productivity, with a one-way causal connection between CO2 and
food security. Molua’s (2002) study on climate variability in
southwestern Cameroon revealed that climate change reduces
crop yields in agriculture-based economies, highlighting the
challenges and implications for food security. Similarly, Muamba
and Kraybill’s (2010) study on Mt. Kilimanjaro revealed that
climate change impacts agriculture-dependent economies, redu-
cing food yields.

Ethiopia’s contribution to regional and global greenhouse gas
emissions is also quite small. However, greenhouse gas emissions
occasionally show increasing trends with slight fluctuations.
Forestry and agriculture, as well as land use and land use change,
have contributed significantly to the country’s greenhouse gas
emissions. According to the UN FAO, agricultural emissions in
Ethiopia have continuously increased from around 53 million
tonnes of carbon dioxide equivalent (MtCO2eq) in 1993 to
around 117 MtCO2eq in 2019 (FAOSTAT, 2021). The Ethiopian
government has started implementing the 2010–2030 CRGE
(Climate-Resilient Green Economy) strategy to reduce the risks
associated with climate change. This plan aims to promote sus-
tainability and development while keeping greenhouse gas
emissions at or below 150 Mt CO2 emissions. In Ethiopia spe-
cifically, climate change has an impact on agricultural production
by shortening the maturation period and subsequently reducing
crop yield, altering the availability of feed for livestock, impacting
animal health, growth, and reproduction, lowering the quality
and quantity of forage crops, and altering disease distribution. For
instance, Mekonnen (2022), Eshete et al. (2020), and Geb-
reegziabher et al. (2016) studies highlight the significant impact of
Ethiopia’s agriculture on climate change, with CO2 emissions
negatively affecting productivity and household welfare. Addi-
tionally, their research indicates potential impacts on land pro-
ductivity and the economy.

In summary, research from Ethiopia and other countries shows
increased greenhouse gas emissions, changing weather condi-
tions, and other factors affecting agricultural productivity. Most
studies in Ethiopia focus on micro-level effects (cross-sectional
effects), but there is a lack of sufficient studies that calculate
effects over time using CRGE. Therefore, this study aims to
complement the existing literature.

Methods
The relationship between several quantities as they change over
time is captured by the statistical model known as vector auto-
regression (VAR). Human activities can significantly change
greenhouse gas emissions, which is not always permanent.
Therefore, the VAR methods would be suitable to capture the
dynamics between greenhouse gases and agricultural productiv-
ity. The VAR model also includes all empirical methods applied
to draw more precise conclusions from the data provided; The
VAR is considered for the study period from 1990 to 2022.
Therefore, the unit root or stationarity tests were applied using
the Augmented-Dickey-Fuller (ADF) and Phillips-Perron (PP)
testing methods. Then, the cointegration test, VECM, Granger
causality test, variance decompositions, and stability test are used

after selecting the appropriate delay length based on informative
criteria.

Data sources. The study used data from the World Bank’s IBR-
D.IDA database to analyze the relationship between agricultural
productivity and greenhouse gas emissions from 1990 to 2022.

Proxy measurements
Productivity measurement. Agricultural productivity is the ratio of
agricultural output to input, measured by crop yield or seed ratio.
In Ethiopia, grain production is a significant subsector, employing
60% of the rural workforce and occupying 80% of agricultural
land. Grains account for 40% of household food budgets, making
grain per yield the perfect measure of agricultural productivity.
While agriculture includes both crop production and livestock
production, crop yield is preferred as a proxy variable for
this study.

Greenhouse gas emissions. It refers to the total amount of
greenhouse gases (GHGs) released into the atmosphere, including
carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O).
Carbon dioxide (CO2) equivalent is a common measurement of
greenhouse gas emissions. A gas’s global warming potential
(GWP) is multiplied by its emissions to convert its emissions into
CO2 equivalents. This measure is most commonly used in the
scientific literature and is adopted by the United Nations Fra-
mework Convention on Climate Change (UNFCCC).

Model specification
The econometric VAR specification. To prevent heteroskedasticity
and demonstrate the elasticity of the variable, we first converted
all the data of the variable into a log format. The unstructured
VAR model is then defined as a VAR model:

Log AGPð Þ ¼ β0 þ β1ilog AGPð Þt�iþβ2ilog FeCð Þt�i

þ β3ilog A Landð Þt�iþβ4ilog CO2 emissionsð Þt�i

þ β5ilog AMEð Þt�iþβ6ilog ANOEð Þt�iþβ7ilog R PoPð Þt�i

þ β8ilog A empt
� �

t�iþβ9ilog Land CPð Þt�iþε1t

ð1Þ
Were, βi ‘s are coefficients of 1x k matrix to be estimated related
to each predictor variable. i= 1, k the VAR-order; ε1t= the error-
term; Log= Log of the variables

The constraints of the model are linear, but the variables are
non-linear. Semielasticities are represented by βi coefficients,
while a stochastic perturbation term with known characteristics is
represented by ε1t. The relative contributions of the respective
explanatory variables, which in turn depend on how well the
economic system under consideration functions, determine the
sign of each coefficient.

The vector error correction specification. We applied a vector error
correction model to study the dynamical system with properties
that incorporate the deviation of the current state from its long-
term relationship into its short-term dynamics. An error cor-
rection model is not a model that corrects the error in another
model. According to Eq. (1), the error correction model is spe-
cified as follows:

ΔLog AGPð Þ ¼ Ω½β2log FeCð Þt�1 þ β3log A Landð Þt�1þ β4log CO2 emissionsð Þt�1

þ β5log AMEð Þt�1 þ β6log ANOEð Þt�1 þ β7log R PoPð Þt�1þ β8log A empt
� �

t�1

þ β9log Land CPð Þt�I � þ C þ πiΔLn AGPð Þt�i þϒiΔLog FeCð Þt�i

þ ΦiΔlog A Landð Þt�i þψiΔLog CO2 emissionsð Þt�i þΘiΔlog AMEð Þt�i

þ νiΔLog ANOEð Þt�i þ σ iΔlog R PoPð Þt�i þ ζ iΔLog A empt
� �

t�i

þ λiΔLog Land CPð Þt�i þ ε1t

ð2Þ
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Were, Ω is the coefficient of the error term or the speed-of-
adjustment term. πi, Υi, σi, ψi, Өi, νi, ζi, λi, and Φi are short-run
coefficients of the 1X K matrix to be calculated. I= 1, 2, 3…
where εt is a vector of external shocks and k is the lag order.

Empirical strategy for data analysis. According to various statis-
tical justifications, the time series data used in VAR must be
stationary. Therefore, stationarity tests are carried out. Due to the
ability of the tests to account for the autocorrelation issues, the
“extended” Dickey-Fuller (ADF) and Phillip-Peron (PP) tests are
used in this study. Second, error correction models (ECM) and
cointegration are used to examine the relationships between the
regressors and the dependent variable. Therefore, the choice of
the delay length is one of the most important steps after the
stationary test and before carrying out the cointegration test.
While the Hannan-Quin is more effective when the observations
are above 120, the AIC and Final Prediction Error (FPE) are more
suitable when the observations are below 60 (Liew, 2004).
Therefore, we applied AIC and FPE information criteria to
determine the delay order of the study. We then used the Johnson
test with trace or eigenvalue to test the cointegrating equation in
the examined series. Since the Johnson test allows for multiple
cointegrating relationships and is more generally applicable than
the Engle-Granger test, which is based on the Dickey-Fuller test
(or extended test) for roots of unity in the residuals of a single
(estimated) cointegrating relationship, we have used it to test the
cointegration equation in the series examined. Third, an error
correction model is used for this study to determine the short-
term dynamic characteristics of the model. We used an error
correction model to consider a dynamical system with the
property that short-term dynamics are affected by the deviation
of the current state from the long-term relationship. A model that
fixes a problem in another model is not an error correction
model. Based on the parsimonious model, we then specified the
short-term model of the series. Fourth, since multicollinearity
often affects the coefficients of VAR models, it is pointless to
evaluate these results directly (Boschi, 2005). Therefore, the var-
iance decomposition and impulse response techniques are used to
study the dynamic behavior of the data series. Fifth, the Granger
causality test is used to determine the degree of relevance of one
factor in predicting the other, as well as the direction of causality
(unidirectional or bidirectional) between the dependent variable

and the predictors (Granger, 1969). The results are the only
evidence of linear interdependence between one component and
another, not coefficients of actual dependence or evidence of true
causality. Finally, we also checked the stability of the study over
time (Table 1).

Result and discussions
Unit root test. Table 2 and Table 3 show the results of the unity
root at the level and the first difference, respectively. This can be
demonstrated by comparing the observed values of the ADF and
PP test statistics with the critical values of the test statistics at the
1, 5, and 10% significance levels (both in absolute numbers).
Table 2 provides strong evidence of nonstationarity. Since the
absolute values of the test statistics fall below the critical value
according to the critical value rule of Mackinnon (1991). Except
for the rural population (whose stationarity is confirmed by their
P-value), stationary values could not be determined for all vari-
ables. As a result, the null hypothesis is accepted and it is suffi-
cient to conclude that the variables have a unit root.

The coefficients of Table 3 (test statistics) showed that all
variables were stationary at the first difference compared to
critical values at the 1, 5, and 10% significance levels. This
rejects the null hypothesis of non-stationarity and one can
safely assume that the variables are stationary. This advocates
that each variable be integrated to order one or I (1), except
R_PoP which is integrated to order zero or I (0). This means
that the model’s variables are cointegrated or that they have a
\“long-run\“ or equilibrium relationship if the model residual is
found to be stationary at the level. In other words, the
hypothetical scenario is a long-term model. The plot (Fig. 1)
also confirmed the stationary behavior of the residual as it
crossed the zero-grid line more than once. In other words, the
VAR has a “long-term” relationship. In other words, green-
house gas emissions have significant long-term impacts on a
country’s agricultural productivity and performance.

Cointegration test result and analysis
The VAR order selection criteria analysis. By using AIC and FPE
as given in Table 4 below, an appropriate lag length is selected
using a simple VAR model.

The recommended lag length in this case is two. The lowest
AIC value was determined here because all information criteria

Table 1 Data sources and descriptions.

Data description Proxy Sources

Agricultural productivity (AGP) AGP is agricultural productivity measured (proxied) as Cereal
Yields, kilogram per hectare

The World Bank, IBRD.IDA https://data.
worldbank.org/country/ET

Fertilizer Consumption (FeC) FeC is fertilizer Consumption measured in terms of fertilizer
consumption, kg/ha of arable land

The World Bank, IBRD.IDA https://data.
worldbank.org/country/ET

Arable land size(A_Land) A_Land is the arable land measured in terms of hectare per
person

The World Bank, IBRD.IDA https://data.
worldbank.org/country/ET

Carbon dioxide emissions
(C02_emissions)

CO2_emissions is CO2 emission measured in terms of kt The World Bank, IBRD.IDA https://data.
worldbank.org/country/ET

Agriculture Methane emissions or CH4

(AME)
AME is emissions of methane (CH4) from agriculture
(thousand metric tons, of CO2 equivalent)

The World Bank, IBRD.IDA https://data.
worldbank.org/country/ET

Agriculture Nitrous oxide emissions or
N2O (ANOE)

ANOE is emissions of nitrous oxide from agriculture
(thousand metric tons of CO2 equivalent)

The World Bank, IBRD.IDA https://data.
worldbank.org/country/ET

Rural population (R_PoP) R_PoP is the rural total population at the time, t, The World Bank, IBRD.IDA https://data.
worldbank.org/country/ET

Agricultural Employment (A_empt) A_empt is Employment in agriculture (% of total employment) The World Bank, IBRD.IDA https://data.
worldbank.org/country/ET

Total land for cereal production
(Land_CP)

Land_CP is the total land allocated for cereal production in
hectares

The World Bank, IBRD.IDA https://data.
worldbank.org/country/ET

Source(s): Authors’ compilation (2023).
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supported lag length 2. Since we are currently running the model
in the first difference and not in the level, when we used VAR to
determine the lag length, the lag length for cointegration is the lag
length chosen above minus one. The trace and maximum
eigenvalue cointegration tests of Johnsen (1991) are therefore
used to test the dynamic relationships between greenhouse gases
and agricultural productivity.

Johnson cointegration test result. The result shown in Table 5
shows the maximum eigenvalue and trace statistics of greenhouse
gases and agricultural productivity.

The study found a long-term dynamic relationship between
greenhouse gas emissions, agricultural productivity, and other
predictors, as evidenced by cointegration between independent
and dependent variables at a significance level of 5%. Both tests
rule out the null hypothesis that there is no cointegrating
equation, which we have manipulated to reject. The degree of
cointegration is between 4 and 6. Cointegration would not have
proven successful in practice. Without the use of statistical theory,
the parameters of linear systems cannot be tested or estimated.
Therefore, the cointegration plot of the estimated VAR model was
displayed to support the statistical test of the long-term impact of

Table 2 PP and ADF stationary test (at levels).

Variables ADF (Intercept) ADF (Trend & Intercept) PP (Intercept) PP (Trend & Intercept)

Log (AGP) 0.682872(−3.670170)* −2.672438(−4.273277) 0.845484(−3.653730)* −3.051010(−4.273277)*
Log (FeC) −5.185613(−3.661661)* −3.447394(−4.273277)* −1.905916(−3.653730)* −3.447394(−4.273277)*
Log(A_Land) −1.711639(−3.661661)* −2.349513(−4.284580) −1.789907(−3.653730)* −2.061623(−4.273277)*
Log (CO2_Emissions) 0.386750(−3.653730)* −3.746129(−4.273277)* 0.837553(−3.653730)* −3.743538(−4.273277)*
Log (AME) −0.074335(−3.653730)* −2.450443(−4.273277)* −0.078956(−3.653730)* −2.499049(−4.273277)*
Log (ANOE) −0.101948(−3.653730)* −2.665148(−4.273277)* −0.101948(−3.653730)* −2.665148(−4.273277)*
Log (R_PoP) −12.81103(−3.670170)* −2.934496(−4.296729)* −13.66560(−3.653730)* −4.579092(−4.273277)*
Log (Land_CP) −1.393267(−3.711457)* −3.466175(−4.309824)* −15.57669(−3.653730)* −31.19871(−4.273277)*
Log (A_Empt) 0.666734(−3.689194)* −1.836798(−4.296729) −1.749072(−3.653730)* −0.858107(−4.273277)*
V −3.491235(−2.967767)** −3.425185(−3.221728)*** −3.198609(−2.967789)** −3.180296(−3.221728)***

Note: Mackinnon’s (1991) critical value for rejecting the unit root hypothesis was used. * Significance at 1%, ** significance at 5%. Critical values are indicated by figures in parentheses.
Source: Author’s estimation made using EViews 13 (2023).

Table 3 First difference, ADF and PP stationarity test.

Variables, ADF, (Intercept) ADF, (Trend &, Intercept) PP, (Intercept) PP, (Trend &, Intercept)

Log (AGP) −5.442758(−3.670170)* −5.796221(−4.296729)* −6.524712(−3.661661)* .6.524712(−3.661661)*
Log (FeC) −10.48202(−3.661661) −11.13399(−4.284580) −8.948700(−3.661661)* −9.433169(−4.284580)*
Log (A_Land) −3.121173(−2.960411)** −3.043001(−3.215267)*** −3.121173(−2.960411)** −3.043001(−3.215267)***
Log (CO2_Emissions) −5.705850(−3.661661)* −5.734734(−4.284580) −5.979680(−3.661661)* −6.002109(−4.284580)*
Log (AME) −4.059803(−3.670170)* −4.025628(−3.568379)** −4.989526(−3.661661)* −4.912648(−4.284580)*
Log (ANOE) −5.696611(−3.661661)* −5.617268(−4.284580)* −5.696858(−3.661661)* −5.617332(−4.284580)*
Log (R_PoP) −3.493137(−2.960411)** −4.997517(−4.284580)* −3.779139(−3.661661)* −16.08931(−4.284580)*
Log (Land_CP) −4.424620(−3.679322)* −4.808460(−4.356068)* −33.13801(−3.661661)* −42.28315(−4.284580)
Log (A_Empt) −1.535645(−2.625121)*** −2.885868(−3.225334)*** −1.624761(−3.661661)* −2.298126(−3.215267)***
V −5.897840(−3.689194)* −5.775352(−4.323979)* −12.689194(−3.689194)* −12.82301(−4.323979)*

Note: Mackinnon’s (1991) critical value for rejecting the unit root hypothesis was used. * Significance at 1%, ** significance at 5%. Critical values are indicated by figures in parentheses.
Source: Author’s estimation made using EViews 13 (2023).
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Fig. 1 Stationarity of the residual both at level and first difference. Note: The figure shows the stationary behavior of the residual at the level and first
difference. since it crossed the zero-grid line more than once. Therefore, the residuals are stationary. In other words, the VAR has a “long-run” relationship.
Source: Authors.
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greenhouse gas emissions on productivity. The graph in Fig. 2
shows a long-term relationship between the study variables.
Convergence towards long-term equilibrium occurs when the
grid line is crossed several times.

Similarly, the residual test (Annex 1) was conducted based on
the Jarque-Bera test statistics and confirmed that the residuals do
not satisfy the Jarque-Bera normality test. The residual hetero-
skedasticity test (Annex 2) confirmed that there was insufficient
information to reject the null hypothesis. Additionally, the
characteristic polynomial roots are shown below in Fig. 3.

According to the inverse root of the AR characteristic
polynomial, no point lies outside the circle. This shows once
again that the VECM is stable and that the system contains a
potentially cointegrated equation. The result showed that each
error term has a normal distribution.

Similarly, to check whether the study specification suffers from
autocorrelation, we used the Correlogram-Q statistics and the
Breusch-Godfrey LM tests. The autocorrelation and partial

autocorrelation functions of the residuals as well as the Ljung-
Box Q statistic for higher-order serial correlation are calculated to
determine whether the estimates obtained using the Q statistic
(Annex 4) are valid or not. All Q statistics should not be
significant if there is no serial correlation. The presence of serial
correlation is indicated by p-values <0.10. The result proved that
there is no serial association as the P-value is >0.1. Similar to this,
LM Test Statistics is used to determine whether the estimates are
valid or not and it is determined that the null hypothesis of the
test is that there is no serial correlation in the residuals up to the
specified lag order.

Cointegration test result. Table 6 below shows the dynamic rela-
tionships between agricultural productivity with greenhouse gas
emissions and other regressors in Ethiopia.

Therefore, the estimated long-run equation would be clearly
expressed in the following general form: Thus, the stable long-run
relationship is given as follows:

Table 4 Selection criteria for VAR lag order.

Lag LogL LR FPE AIC SC HQ

0 376.4444 NA 4.10e-22 −23.70609 −23.28977 −23.57038
1 812.9627 591.4118 5.55e-32 −46.64275 −42.47956 −45.28566
2 1001.804 146.2001* 2.61e-34* −53.60028* −45.69023* −51.02180*

* Denotes the lag order chosen by the criterion.
LR: sequential modified LR test statistic, with each test conducted at the 5% level; Final prediction error (FPE); Akaike Information Criteria (AIC); Schwarz information Criteria (SQ); Hanna Quinn
information criterion (HQ).
Source: Author’s estimation made using EViews 13 (2023).

Table 5 The results of the Johansen cointegration test (Trace and maximum eigenvalue).

Lags interval (in first differences)

Endogenous variables: LOG(AGP) LOG(FeC) LOG(A_LAND) LOG(CO2_EMISSIONS) LOG(AME) LOG(ANOE) LOG(R_POP) LOG(LAND_CP)
LOG(A_EMPT)

Deterministic assumptions: Case 3 (Johansen-Hendry-Juselius): Cointegrating

Hypothesized- No. of CE(s) Eigenvalue Trace- Statistic 0.05 Critical-Value Prob.** Critical-Value

None* 0.996135 498.9190 197.3709 0.0000
At, most 1* 0.976380 326.6870 159.5297 0.0000
At, most 2* 0.902921 210.5709 125.6154 0.0000
At, most 3* 0.793884 138.2718 95.75366 0.0000
At, most 4* 0.644743 89.31307 69.81889 0.0007
At, most 5* 0.597191 57.23077 47.85613 0.0052
At, most 6 0.437196 29.04269 29.79707 0.0609
At, most 7 0.274750 11.22314 15.49471 0.1982
At, most 8 0.039977 1.264752 3.841465 0.2608

Hypothesized No. of CE(s), Eigen-value Max-Eigen Statistic 0.05 Critical-Value Prob.** Critical Value

None,* 0.996135 172.2320 58.43354 0.0000
At most, 1* 0.976380 116.1161 52.36261 0.0000
At most, 2* 0.902921 72.29909 46.23142 0.0000
At most, 3* 0.793884 48.95877 40.07757 0.0039
At most, 4 0.644743 32.08231 33.87687 0.0806
At most, 5* 0.597191 28.18808 27.58434 0.0418
At most, 6 0.437196 17.81955 21.13162 0.1367
At most, 7 0.274750 9.958390 14.26460 0.2147
At most, 8 0.039977 1.264752 3.841465 0.2608

Max-eigenvalue-test denotes 4, cointegrating equation(s) at, the 0.05, level.
*Denotes, rejection of the hypothesis at the 0.05 level.
**p-values.
Trace-test indicates, 6 cointegrating, equation(s), at the 0.05 level.
Unrestricted cointegration-Rank-Test (Max-Eigen Statistics).
Source: Author’s estimation made using EViews 13 (2023).
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Substituted coefficients:

Log AGPð Þ ¼ 52:12487þ 0:276156log FeCð Þ
þ 2:094041log A Landð Þ � 2:748532log CO2 emissionsð Þ
� 17:10959log AMEð Þ þ 15:91562log ANOEð Þ
þ 5:325542log R PoPð Þ þ 1:314319log Land CPð Þ
� 5:818187log A empt

� �

After identifying Table 6 above, the substituted coefficients,
cointegration test output, and vector error correction estimates in
the long-run coefficient model (elasticities) with “cointegration
lag” shows:

Farm size (A_Land) and productivity. We discover solid proof
that farm size (proxied by arable farmland per hectare per per-
son) and agricultural productivity (measured by cereal yield per
hectare) are positively correlated in the long run. Let us now focus
on the self-reported estimates of whether there is an inverse
relationship (IR) between farm size and productivity when fer-
tilizer use, CO2 emissions, and total area allocated to grain pro-
duction are taken into account. The results in this case indicate a
strong and statistically significant correlation between farm size
and yield. The coefficients in the third column of row 1 in Table 6
show that increasing the size of a farm increases grain yield per

hectare by ~2.094%. These results once again underline the
importance of considering fertilizer use and the main con-
tributors to climate change (CO2 emissions) when analyzing the
relationships between farm size and productivity. Here, farm size
(FS) is the arable land2 measured in terms of hectares per person
at time t. The result showed a positive relationship between farm
size and agricultural productivity with a low standard error value.
Additionally, the statistical noise in the estimates is low and is
statistically significant at the 1% significance level. Assuming
other factors remain constant, a 1 percent increase in agricultural
land in hectares per person in the economy appears to lead to a
2.094 percent increase in agricultural output in the country in the
long run. Therefore, the responsiveness of the dependent variable
due to a change in agricultural acreage is high and elastic. It is
consistent with (Oppong et al., 2021; Paul and Wa Gĩthĩnji, 2018;
Diriba, 2020). In contrast to this finding, researchers found that
land fragmentation in Ethiopia led to food shortages and
increased the time spent traveling from one plot to another,
reducing agricultural productivity (Abebe et al. 2022; Knippen-
berg et al. 2020).

According to a 1962 study by Amartya Sen, small farms had
the highest average agricultural yields, which was a conclusion
observed in many developing countries. This led to proposals for
land reform and a focus on small farms in agricultural
development programs. However, our results, highlighted in
Table 6 above, show that the inverse relationship between farm
size and yield does not hold for time series data. Large
agricultural operations, on the other hand, are often considered
the most productive in industrialized nations, even if these
operations often have low labor productivity.

Below are the results of estimating greenhouse gas emissions
using the three critical variables:

CO2 emissions (measured in terms of kt). Research has shown that
higher atmospheric concentrations of carbon dioxide have two
major effects on crops: they increase crop yields by speeding up
photosynthesis, which promotes growth, and they reduce the
amount of water that crops lose through transpiration. So, Table 6
above shows that carbon dioxide emissions and agricultural
productivity are negatively correlated, with a low standard error
value. This implies little statistical noise in the calculations and is
statistically significant at the 1% level. So, holding other factors
constant, a 1 percent increase in carbon dioxide emissions in the
economy appears to lead to a 2.749 percent decline in Ethiopia’s
agricultural output in the long run. The responsiveness of agri-
cultural productivity is elastic as a result of the increase in CO2

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

92 94 96 98 00 02 04 06 08 10 12 14 16 18 20 22

Cointegrating relation 1

Fig. 2 Cointegration graph. Note: The co-integration graph crosses the zero-grid line more than once. It demonstrates that there is long-run relationship
among the study’s variables. To put it another way, there is convergence towards long-term equilibrium. Source: Authors.

Fig. 3 Inverse roots of AR characteristics polynomial graph. Note: The
points are inverse roots of the characteristic polynomial. According to the
inverse root of the AR characteristic polynomial, no point is seen outside
the circle. It demonstrates that the VECM is stable and that the system
contains a potentially cointegrated equation. The outcome further reveals
that each error term has a normal distribution. Source: Authors.
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emissions. Although overall CO2 gas emissions continue to rise in
Ethiopia, per capita CO2 emissions are still very low. Fossil fuel
burning, deforestation, and other land use changes all contribute
to carbon dioxide production in Ethiopia. We found that emis-
sions from land use change are directly related to increasing
agricultural production in Ethiopia, suggesting that crop-growing
technology may be crucial in reducing atmospheric CO2 con-
centrations. Several micro-level empirical studies (Eshete et al.
2020) support these findings. In addition, the study refutes the
positive association findings of Appiah et al., 2018.

Agricultural methane emissions (AME). The empirical result in
Table 6 shows that a 1% increase in agricultural methane emis-
sions would lead to a proportional decrease in agricultural pro-
ductivity of 17.11 percent at the 1% significance level. The result
also showed that the elasticity of agricultural productivity is
highly elastic, meaning that a proportional change in agricultural
methane emissions would lead to a large proportional change in
agricultural productivity. Here, we didn’t get any empirical evi-
dence in Ethiopia that supplements this study. Methane (CH4)

3 is
a strong greenhouse gas, mainly produced through agricultural
activities. Methane is important when it comes to reducing
emissions in the food chain and stopping catastrophic climate
change. However, methane’s potential to contribute to global
warming is estimated to be 25–35 times greater than that of CO2
over 100 years, and since 2007, its concentration in the atmo-
sphere has increased significantly and much faster than that of
CO2. Experts believe that cutting methane emissions now could
help prevent catastrophic short-term consequences while we wait
for the significant long-term spending on reducing carbon
emissions to pay off (Oppong et al. 2021).

Agricultural nitrous oxide emissions (ANOE). The result shows
that a 1% increase in nitrous oxide emissions per year (carbon
dioxide equivalents are used to measure) leads to a 15.916%
increase in agricultural productivity. Here, the responsiveness of
agricultural productivity due to these predictor variables is very
elastic and positive as it is >1 with a low standard error value
which implies low statistical noise in the estimates, and at a 1%
significance level, it is statistically significant. Nitrous oxide
(N2O), a powerful greenhouse gas, is produced primarily by
agricultural practices (e.g., the use of synthetic and organic fer-
tilizers in crop cultivation). When nitrogen (N) is added to soils,
nitrogen dioxide is produced (Stehfest and Bouwman, 2006).
Both nitrification and denitrification of nitrogen occur; The latter
process leads to the release of N2O gas into the environment
(Abebe et al. 2022). Since fertilizer application is the primary
anthropogenic activity that causes N2O emissions, the increasing
trend in emissions and the contribution of fertilizer application
indicate the need for efficient mitigation measures. Little
empirical research has been conducted in sub-Saharan Africa
(SSA) to measure and understand the dynamics of soil N2O
fluxes from smallholder cropping systems. There is an urgent
need to summarize the sparse literature on soil N2O fluxes in
Ethiopia to facilitate policy formulation activities and mitigation
strategies.

Fertilizer consumption (FeC). From Table 6 above, it can be seen
that the impact of fertilizer use on agricultural yield productivity
is positive. However, the extent to which productivity value
responds to a change in fertilizer use is small. Here, agricultural
productivity and fertilizer consumption (kg/ha), which had low
standard errors and regression coefficients, were both statistically
significant at the 1% significance level. That is, putting all other
things under a black box condition, a one percent increase inT
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fertilizer consumption in the country appears to produce a 0.276
percent increase in agricultural productivity in the long run. This
is because, despite the government’s efforts to provide it, Ethio-
pian agriculture relies heavily on fertilizers, meeting only a small
percentage of farmers’ needs. Compared to other emerging
countries, chemical fertilizers are hardly used to increase agri-
cultural production in Ethiopia. However, this use is currently
increasing. The use of chemical fertilizers increased from 12 kg/ha
in 1996 to 36.2 kg/ha in 2018. Due to this, the production of
primary crops (cereals) increased from 16.5 quintals/ha in 2009 to
23.94 quintals /ha in 2018 (Abebe et al. 2022). The result also
confirmed that the response to the change in agricultural pro-
ductivity due to fertilizer use in Ethiopia is inelastic due to low
fertilizer application in kg per hectare. This finding is consistent
with (Tesema and Gebissa, 2022; Endale, 2011; Weeks et al. 2004;
Alene et al. 2006; Ajao, 2012; Fuglie & Rada 2011).

The rural population (R_PoP). The result in Table 6 shows that
agricultural productivity is positively linked to rural populations. This
result shows that a 1% increase in the growth of rural populations
leads to a 5.326 percent increase in agricultural productivity, with a
low standard error value implying low statistical noise in the esti-
mates, and at the 1% level of significance, it is statistically significant.
Here, agricultural productivity is highly elastic in its response.
Ethiopia has seen rural development for a longer period than many
other African nations. Although not to the extent anticipated, it has
also benefited from rising government support over the years.
According to the World Bank, Ethiopia’s rural population as a per-
centage of the overall population was 77.83% in 2021. Variables will
determine productivity increases in Ethiopia, boosting economic
growth and reducing poverty, particularly among the rural popula-
tion, which positively impacts agricultural productivity.

Agricultural employment (A_Empt). An interesting result shows
that for every 1% increase in the number of employers in the
agricultural sector, agricultural productivity in Ethiopia decreases
by 5.818 percent. A well-known explanation for this is the fact
that Ethiopian rural households use more family labor than wage
labor in their agricultural production processes. The likelihood
that agricultural management activities increase agricultural
productivity would therefore increase as the labor force in a
household increases. This finding also showed that the number of
agricultural workers hired is not efficient in increasing agri-
cultural productivity. The result here also shows that the
dependent variable is more elastic when this variable changes by 1
percent. This study is also consistent with Tessema Urgesa’s
(2015) findings from his research on the factors affecting agri-
cultural production and income of rural households in Ethiopia.

Total land allocated for cereal production in hectares (Land_CP).
One of the important findings of this work is that when the area
dedicated to grain production in Ethiopia increases by 1 percent,
agricultural productivity (yield kg/ha) increases by 1.314 percent and
is statistically significant at the 1 percent significance level. with a low
standard error value, implying low statistical noise in the estimates.
Therefore, it is crucial to promote the use of dry-season cropland
farms, whether through irrigation or another type of source, to
increase the productivity of rural agricultural households in Ethiopia.

Error correction model (ECM) result. The error correction model
shown in Table 7 below provides information about the speed at
which the model returns to equilibrium after an exogenous short-
term shock. Engle and Granger (1987) proved that when there is a
cointegrating relationship between non-stationary variables, there

is a correction plot towards equilibrium. The maximum lag length
that can be included in the VECM estimation is three in level;
Therefore, we propose a lag order of three to better capture the
short-term movement of variables. Therefore, the agricultural
productivity coefficient for the last year was negative and sig-
nificant. That is, any deviation from the equilibrium point is
traced back to the long-term path. Therefore, an ECM represents
both the short-term and long-term behavior of a system. This
means that our estimates were statistically significant at 5 percent.

Here only the statistically significant values are considered or
insignificant variables are excluded to arrive at the final error
correction model. The findings above yield the most parsimo-
nious short-term model in the study:

Δ LOG AGPð Þð Þ ¼ �0:744129* �0:258085log FeC �1ð Þð� �

� 0:1566760Log A land �1ð Þð Þ
� 0:082992log CO2 emissions �1ð Þð Þ
� 1:81031log AME �1ð Þð Þ þ 2:420891log ANOE �1ð Þð Þ
� 1:895112log R PoP �1ð Þð Þ þ 0:130198log Land CP �1ð Þð Þ
þ 2:08653log A Empt �1ð Þ� þ 8:804653

The estimated variables would have the following meaning in
the “short term”:

● The coefficients of the “speed of adjustment” or “error term”
for the estimated productivity model are statistically significant
and negative. This implies the convergence of the model
towards long-run equilibrium in the event of an exogenous
shock in the short run. The coefficient of −0.744 shows that
74.4% of point adjustments occur each year to achieve long-
term equilibrium. Therefore, convergence to a steady state
takes ~1 year and 4months. This means that the variables are
rapidly approaching their long-term equilibrium.

● But we got an unexpected sign: fertilizer consumption and
agricultural productivity (in the first-time lag) are nega-
tively correlated and have a statistically significant effect in
the short term. All other factors being equal, a one-unit
increase in the log of technological adoption (fertilizer use,
kg/ha) in Ethiopia appears to result in a 0.258 percent
decline in agricultural productivity. This implies that
excessive fertilizer consumption is a sign that agricultural
sector performance is improving slowly in the short term.
This seems to bring unrealistic and nonsensical findings.

● The other predictors, including agricultural area (ha/
person), CO2 emissions, agricultural methane emissions,
and rural population of the country, as presented in the
equation, have a negative association with agricultural
productivity at the 5% significance level and an increase in
it Variables by 1 percent would result in a decrease in the
country’s agricultural productivity by 0.157, 0.083, 1.81 and
1.89 percent, respectively. Since it is in log form, this means
that rural population and agricultural methane emissions
have an elastic relationship with the dependent variable
(>1), whereas agricultural land and CO2 emissions have an
inelastic relationship with the country’s agricultural
productivity. In the short term we considered, we obtained
the expected negative sign and the statistically significant
coefficient, which is present in the long term and is also
consistent with our previous expectation. This means that
in the short run, agricultural nitrous oxide emissions, total
area devoted to grain production, and agricultural employ-
ment are positively correlated with the dependent variable.
All other things being equal, a one-unit increase in these
factors increases the country’s agricultural productivity
output in the short term by 2.42, 0.13, and 2.086 percent,
respectively. Thus, variable agricultural employment and
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nitrous oxide emissions in agriculture have an elastic
relationship with agricultural productivity, while total grain
crop area has an inelastic relationship with the country’s
agricultural productivity.

However, the error correction model is difficult to interpret
because it sometimes gives the wrong sign for the variables under
study in the short term (Engle and Granger, 1987). Therefore,
analysis of the dynamic behavior of the model using the variance-
decomposition and impulse-response (Annex 8) approaches is
used to drive the conclusion.

Analysis of the dynamic behavior of the model. The variance
decomposition in Table 8 quantifies the effects of exogenous
shocks on variables over 5 years and captures both short- and
long-term responses.

Agriculture productivity (100%) in the first year can be fully
attributed to its innovation, proving its exogenous origin. However,

the following four periods show some fluctuations, and in the fifth
year it is only 59.05%, fertilizer consumption (22.13%), agricultural
land (5.96%), CO2 emissions (4.43%), agricultural methane emissions
(2.36%), agricultural nitrous oxide emissions (4.5%), rural population
(0.59%), total area devoted to grain production (0.92%), and
agricultural employment (0.0014%), which influence agricultural
productivity. The decomposition of fertilizer consumption indicates
(76.88%) the effect of its own innovation and agricultural
productivity (23.12%) in the 1st year, and in the last year, it is
explained, only (28.58%) by fertilizer consumption, agricultural land
by (0.20%), CO2 emissions by (1.30%), agricultural methane
emissions by (0.48%), agricultural nitrous oxide emissions by
(0.36%), rural population by (0.007%), total land for cereal
production by (0.057%), and agricultural employment by (0.0001%).

If a shock is generated on agricultural land in the first period,
the 76.74 percent effect of one’s innovation is explained. In the
fifth year: innovation in agricultural land by (15.03%), CO2

Table 9 Testing for Pairwise Granger Causality (Lags: 3).

Null-Hypothesis: Obs F Statistic Prob

LOG(FeC), does not Granger-Cause LOG(AGP) 30 3.17372 0.0434**
LOG(AGP), does not Granger-Cause LOG(FeC) 5.51694 0.0053*
LOG(CO2_EMISSIONS) does not Granger-Cause LOG(AGP) 30 5.35651 0.0060*
LOG(AGP), does not Granger-Cause LOG(CO2_EMISSIONS) 2.83754 0.0604***
LOG(AME), does not Granger-Cause LOG(AGP) 30 6.15993 0.0031*
LOG(AGP), does not Granger-Cause LOG(AME) 2.36205 0.0976***
LOG(ANOE), does not Granger-Cause LOG(AGP) 30 5.26010 0.0065*
LOG(AGP), does not Granger-Cause LOG(ANOE) 2.05082 0.1347
LOG(R_POP), does not Granger-Cause LOG(AGP) 30 7.76616 0.0009*
LOG(AGP), does not Granger-Cause LOG(R_POP) 0.55935 0.6472
LOG(A_EMPT), does not Granger-Cause LOG(AGP) 30 0.79103 0.5113
LOG(AGP), does not Granger-Cause LOG (A_EMPT) 3.51248 0.0313**
LOG(CO2_EMISSIONS,) does not Granger-Cause LOG (FeC) 30 2.45924 0.0884***
LOG(FeC), does not Granger-Cause LOG (CO2_EMISSIONS) 0.47779 0.7008
LOG (AME), does not Granger-Cause LOG (FeC) 30 5.35985 0.0060*
LOG (FeC) does not Granger-Cause LOG (AME) 5.31043 0.0063*
LOG (ANOE) does not Granger-Cause LOG (FeC) 30 6.06867 0.0034*
LOG (FeC) does not Granger-Cause LOG (ANOE) 5.64141 0.0048*
LOG (R_POP) does not Granger-Cause LOG (FeC) 30 2.62672 0.0746***
LOG (FeC) does not Granger-Cause LOG (R_POP) 1.48465 0.2450
LOG (LAND_CP) does not Granger-Cause LOG (FeC) 30 4.22209 0.0162**
LOG (FeC) does not Granger-Cause LOG (LAND_CP) 0.72905 0.5451
LOG (AME) does not Granger-Cause LOG (A_LAND) 30 2.49523 0.0852***
LOG (A_LAND) does not Granger-Cause LOG (AME) 1.07780 0.3781
LOG (ANOE) does not Granger-Cause LOG (A_LAND) 30 2.66932 0.0714***
LOG (A_LAND) does not Granger-Cause LOG (ANOE) 0.88206 0.4650
LOG (A_EMPT) does not Granger-Cause LOG (A_LAND) 30 2.18434 0.1173
LOG (A_LAND) does not Granger-Cause LOG (A_EMPT) 3.44498 0.0334**
LOG (AME) does not Granger-Cause LOG (CO2_EMISSIONS) 30 3.04662 0.0491**
LOG (CO2_EMISSIONS) does not Granger-Cause LOG (AME) 6.02113 0.0035*
LOG (ANOE) does not Granger-Cause LOG (CO2_EMISSIONS) 30 3.29698 0.0385**
LOG (CO2_EMISSIONS) does not Granger-Cause LOG (ANOE) 5.44758 0.0056*
LOG (R_POP) does not Granger-Cause LOG (AME) 30 6.96823 0.0017*
LOG (AME) does not Granger-Cause LOG (R_POP) 1.91575 0.1552
LOG (LAND_CP) does not Granger-Cause LOG (AME) 30 7.69602 0.0010*
LOG (AME) does not Granger-Cause LOG (LAND_CP) 3.82477 0.0233**
LOG (R_POP) does not Granger-Cause LOG (ANOE) 30 6.13404 0.0032*
LOG (ANOE) does not Granger-Cause LOG (R_POP) 1.71139 0.1925
LOG (LAND_CP) does not Granger-Cause LOG (ANOE) 30 8.39432 0.0006*
LOG (ANOE) does not Granger-Cause LOG (LAND_CP) 3.64121 0.0277**
LOG (LAND_CP) does not Granger-Cause LOG (R_POP) 30 0.94495 0.4352
LOG (R_POP) does not Granger-Cause LOG (LAND_CP) 2.76560 0.0649***
LOG (A_EMPT) does not Granger-Cause LOG (R_POP) 30 3.52133 0.0310**
LOG (R_POP) does not Granger-Cause LOG (A_EMPT) 3.62678 0.0281**

*Significance at 1 %, **significance at 5%, and ***significance at 10%.
Source: Author’s estimation made use of EViews 13 (2023).

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-023-02437-9 ARTICLE

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |           (2024) 11:52 | https://doi.org/10.1057/s41599-023-02437-9 13



emissions by (1.14%), agricultural methane emissions by (2.70%),
agricultural nitrous oxide emissions by (1.93%), rural population
by (2.92%), total area devoted to grain production by (0.72%),
and agricultural employment by (0.013%). The innovation of
CO2 emissions in the first period is explained by their innovation
(87.15%) and (71.03%) in the 5th year. Innovations in agricultural
methane emissions, agricultural nitrous oxide emissions, rural
population, the total area of grain production, and agricultural
employment for the first period are represented by 53.79, 0.71,
48.71, 36.29, and 0.50%, respectively explained. Similarly, the
decomposition in the last period is also explained by 51.08, 1.55,
39.11, 42.98, and 0.25% respectively.

Analysis of the Granger Causality test. Causality does not always
mean exogeneity, as the result may not make it clear whether a
positive or negative relationship exists. In any case, the direction
of the causal relationship between predictable variables and
dependent variables is revealed by the next finding presented in
Table 9 below.

Engel and Granger show that if two variables show
cointegration in the long run, there must be unidirectional
or bidirectional Granger causality between those variables.
Our Granger causality estimate shows that there is bidirec-
tional causality between the dependent variable log (AGP) and
the three predictor variables such as log (FeC), log (CO2
emissions), and log (AME). While the other predictors like log
(ANOC), log (R_PoP) and log (A_Empt) have unidirectional
causality with the dependent variable. Since pairwise Granger
causality is evident at lag order three, we found statistically
significant causality between the predictors and agricultural
productivity at 10% significance levels. Therefore, the
estimated output showed that the performance of the
agricultural sector in the country is high, significant, and
positive in the long run and extremely positive and significant
in the short run. The estimation results showed that
agricultural productivity and total land area allocated for
grain production are positively correlated in the long term.
However, this is not supported by the Granger causality test at
lag order three. That is, there is no Granger causality from log
(AGP) to log (Land_CP). Based on the finding in Table 9, the
null hypothesis that the independent variables used in the
study do not influence Ethiopia’s agricultural productivity is
rejected and it can be safely concluded that there is a
unidirectional (bi)directional and causal effect.

Model stability tests. The recursive residual test plot, as shown in
Fig. 4, did not fall outside the lower and upper critical limits and
crossed the zero-grid line many times. In addition, the Ramsey
RESET test in Table 10 is used to determine whether the model is
linear and whether its specifications are correct. The results of the
Ramsey reset test include the test regression, the F-statistic, and
the t-statistic to evaluate the statement that the model is ade-
quately described when the coefficients of the powers of the fitted
values from the regression are jointly zero. The p-value is >0.1.
Therefore, the null cannot be rejected.

Conclusion and policy implications
GHG emissions pose a global concern, particularly in devel-
oping countries such as Ethiopia. Agriculture is particularly at
risk due to low rainfall. To address this, Ethiopia must
implement climate adaptation strategies, adopt climate-smart
agricultural practices, and create carbon sinks such as forests.
Global coordination of these efforts is critical to the transition
toward a just and environmentally responsible future. Fur-
thermore, the study contributes to the literature on farm size
and productivity in several ways. The inverse relationship
between agricultural productivity and farm size has recently
been discussed, particularly in the African context. The debate
over whether supporting large-scale agriculture is the answer
to agricultural problems or whether supporting small farms is
the best way to increase productivity is one of the topics fre-
quently discussed in the agricultural and development eco-
nomics literature. This study aims to contribute to this
discussion by providing the first in-depth examination of the
relationship between farm size and productivity in Ethiopia.
Therefore, interesting results of the cointegration study are
found. These are: (1) farm size (arable land, hectare per per-
son) has a significant positive impact on productivity over
time; (2) we also found that agricultural land size has an
elastic relationship with agricultural productivity over time.
The above findings could have significant policy implications
for agricultural policy development in Ethiopia if supported
by future studies in the country. Before broad generalizations
can be made about the relative productivity of small versus
medium or large farms in Ethiopia, much more data is needed
about the country’s varying conditions. Second, the discovery
that medium and large farms are more productive than small
farms does not mean that policies are needed to promote their
development over small farms or to support land transfers to

Fig. 4 Recursive residual stability test graph. Note: The blue plot of the recursive residuals test shows the stability of the variables under consideration. It
did not lie outside the lower and upper critical limits and also it crossed the zero-grid line many times. Hence it is stable. Source: Authors.
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medium and large farms. We are expanding farms because
productivity is just one factor that matters to Ethiopian gov-
ernments and societies.

To this end, the overall message of the study becomes clear in
the policy-making process in Ethiopia: greenhouse gas emissions
are reduced or carbon dioxide and methane sequestration are
improved, while at the same time, agricultural yield is maintained
or even increased. It is crucial to develop comprehensive insti-
tutional, technical, and financial innovation adaptation and
mitigation strategies to reduce the impact of greenhouse gas
emissions. Significant reductions in greenhouse gas emissions
from agriculture are therefore essential to improve agricultural
production, ensure food security, and slow climate change.

Data availability
Data from this research are available upon request from the
corresponding author.
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Notes
1 Agricultural Productivity: “Productivity measures the quantity of output produced with
a given quantity of inputs”, It also refers to how effectively farmers use resources like
land, labor, money, materials, and services to create outputs. Thus, “Agricultural
productivity is the ratio of agricultural outputs to inputs”.

2 Agricultural arable land: The FAO defines arable land as including land that is
temporarily fallow, under temporary crops (double-cropped areas are counted once),
under temporary meadows for mowing or for pasture, and under temporary market or
kitchen gardens. Land that has been abandoned due to shifting cultivation is not
included.

3 Methane Emissions: Enteric fermentation, manure management, rice farming, and
residue burning are the main sources of methane (CH4) emissions from agriculture
(FAOSTAT, 2020).
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