
ARTICLE

Impact of Google searches and social media on
digital assets’ volatility
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Advanced digitalization and financial technology have of recent times become among the

most crucial tools. Data mining and sentiment analysis have revealed the importance of

digitalization in modern times. This study examines the influence of Google search activity on

the volatility of digital assets. We analyzed six digital asset prices for Bitcoin, Bitcoin Cash,

Ethereum, Ethereum Classic, Litecoin, and Ripple from the Coinmarketcap database. We used

tweets on Twitter to survey users’ sentiment by using the Twitter search Application Pro-

gramming Interface and Google trend search from web searches, news searches, and You-

Tube searches data using RStudio software. The study spanned 1 September 2019 to 31

January 2020 and employed the Vector Autoregression (VAR) approach for analysis. The

VAR estimation revealed that Google search variables have significantly influenced the

volatility of Bitcoin, Ethereum, Litecoin, and Ripple, as supported by the Granger causality test

and impulse response function. The results of this study could be useful for investors and

policymakers in drawing up strategies to reduce market volatility. These results should thus

be useful to investors in developing profitable investment strategies to mitigate the impact of

market turbulence.
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Introduction

Key advances in digitalization have made social media a
common platform for individuals and public to express
their opinions on specific issues. Public views are the users’

perspectives on particular topics, products, brands, issues or
policies (Lippmann, 2017). A study by Alkhatib et al. (2020)
stated that government policies and businesses could also be
significantly influenced by views of individual netizens on related
issues. They found that the government and businesses monitor
overall views of the community to gauge their perspectives on
current policies, products or events.

The theory of behavioural science have identified some char-
acteristics of individuals and the environment that may be related
with their innate behaviour. The theory also includes behavioural
theory and psychology in conventional economic and financial
elements to explain investor decisions. Among the earliest
researchers to develop the financial behaviour theory were Kah-
neman and Tversky (1979) and Thaler (1980). Based on financial
behaviour theory, Nouri et al. (2017) stated that buying and
selling shares was due to internal factors and external psycholo-
gical factors. Khajavi and Ghasemi (2006) also added that
financial behaviour theory covers various aspects of psychology
and social sciences. Some studies (Ding et al. 2020; Kraaijeveld
and De Smedt, 2020; Reis and Pinho, 2020; Anastasiou et al.
2021) also indicated that user sentiment may have an impact on
the individual’s behaviour and decision-making. Additionally,
one of the primary reasons for price fluctuation in digital assets
markets was due to external factors. Admittedly, by the middle of
2017, the majority of digital assets had undergone significant
price changes1 and at the same time, user reaction on Twitter2

and other social media platforms, as well as Google searches3 for
digital assets, all rose simultaneously.

Figure 1 and Fig. 2 illustrate Bitcoin volatility and trend in
Google data respectively on the keywords “Bitcoin”, from January
2017 until February 2020. They mostly showed similar patterns
between Bitcoin volatility and search activity, especially at the end
of 2017. Preis et al. (2013) also pointed out that Google search
activity and the stock market price had positive correlation,
especially before the stock market crash. An almost similar sce-
nario occurred in the Bitcoin market which recorded a surge in
searches in the web, news, and YouTube related to Bitcoin prior
to the fall in its price. We highlighted the Bitcoin market in this
study since the currency accounts for almost 50 percent of the top
100 Cryptocurrency1 and can thus influence the price of other
such currencies in the same way as changes in the price of Bitcoin
(Vidal-Tomás and Ibañez, 2018; Hajam et al. 2021). Further,
users’ sentiment on the Twitter platform also exerts significant
influence on the digital asset market. Several studies (Garcia et al.

2014; Garcia et al. 2015; Steinert and Herff, 2018; Shen et al. 2019;
Philippas et al. 2019; Kraaijeveld and De Smedt, 2020; Öztürk and
Bilgiç, 2021; Suardi et al. 2022) have already proven the impacts
of users’ sentiment on the digital assets market. In addition to
their findings, several studies (Garcia et al. 2014; Garcia et al.
2015; Li et al., 2021) have emphasized the combined significance
of Google search activity and Twitter as useful indicators to
investor sentiment.

As evident from the graph above, news and YouTube searches
on digital assets show a very similar pattern to the digital asset
market. Moreover, users tend to browse through various Google
search platforms to gather sufficient information. In consequence,
the objective of our study will be to examine the search effects of
web, news, and YouTube on the volatility of digital assets. The
study identified six digital assets, namely Bitcoin, Bitcoin Cash,
Ethereum, Ethereum Classic, Litecoin, and Ripple, with the
highest market capitalization in 20194. Together these assets
comprised 71 percent of the market capitalization in the economy
in 20195. In consequence, we may evaluate the impact of these
searches on digital assets volatility and identify the sources that
may have significant influence. In this way investors and pol-
icymakers may acquire a better understanding of the importance
of user sentiment and Google searches in the digital assets mar-
ket. For example, the USD currency captured almost 70 percent
of Bitcoin transactions in 20206; such, the findings of this study
may be highly beneficial to the United States policymakers and
also to other policymakers who welcome the use of digital assets
in their transactions. This finding is in line with Huerta et al.
(2021), who noted that such analysis was particularly helpful to
national policymakers, since they will have a better understanding
of users’ attention and accordingly create a suitable framework to
solve future issues. In addition, investors can formulate a prof-
itable investment strategy through understanding the relationship
between Google trend data and the digital assets market
(Chuffart, 2022; Siriopoulos et al. 2021). This study utilized the
RapidMiner software to obtain real-time data from the Twitter
developers. In this way not a single tweet was missed over the
5-month tweet collection period. Data were thus gathered over a
short time period. Consistent with the majority of earlier studies
(Feng Mai et al. 2018; Steinert and Herff, 2018; Shen et al. 2019;
Kraaijeveld and De Smedt, 2020;) the study analyzed sentiment
data from Twitter over the course of only 2–3 months. This paper
starts with an introduction in section one and continues with the
literature review in section two and on to the methodology in
section three. The empirical findings are given in section four
with the discussion presented in section five, and the conclusion
in section six.
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Fig. 1 Bitcoin volatility.
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Literature review
Many researchers have conducted studies related to behavioural
science theory. For example, Subrahmanyam (2008), Dowling
et al. (2009) and Lodhi (2014) studied internal factors, including
the investor’s personality and psychological nature. Khajavi and
Ghasemi (2006) examined the theory of financial behaviour
covering various aspects of psychology and social sciences, con-
trary to the efficient market hypothesis. Studies that neglect users’
behaviour in the rational pricing model may result in less accu-
rate estimation of securities performance (Baker and Wurgler,
2006). Financial behaviour can also be used to explain the irra-
tional behaviour of investors (Anastasiou et al. 2021). The aspect
on sentiment may illustrate price discrepancies due to stock price
changes away from the initial price (Reis and Pinho, 2020).
Consequently, investor behaviour may be one of the factors that
influence the stock price movement. However, the Efficient
Market Hypothesis (EMH) theory contends that stock market
prices accurately reflect all relevant information and indicate
signals for resource allocation (Fama, 1970). Despite the spread of
new information to the public, the stock price will return to
normal without experiencing any market shocks. Ding et al.
(2020) admittedly claimed that in a real-world scenario, investors
tend to overreact to a bad incident that may exert an immediate
impact on the financial market in the short term and neglect
historical stock price data. Furthermore, Kraaijeveld and De
Smedt (2020) emphasized that the EMH theory pays little
attention to the perspective of users’ behaviour. Additionally,
Bourghelle et al. (2022) noted that users’ behaviour is a non-
fundamental variable and it frequently exerts an impact on their
investment decision although separate from the economic aspects
of the market.

Further, the behavioural financial theory reveals the irrational
behaviour of investors and indicates that their investment deci-
sions are not always rational. Some studies (Liu and Tsyvinski,
2018; Katsiampa et al. 2019; Chang et al. 2021; Chuffart, 2022;
Aslanidis et al. 2022; Pinto-Gutiérrez et al. 2022) discovered a
strong relationship between Google trend data and volatility and
return of digital assets. These findings were also supported by the
real situation that occurred in 2017 as illustrated in Fig. 1 and
Fig. 2. The price of Bitcoin in December 16, 2017 was $19, 345.49,
at the same time the Google search activity related to Bitcoin
reached the peak level of popularity. However, the Fama French
3-factor model does not incorporate the importance of users’
attention. It is an asset pricing model that was developed on the
capital asset pricing model (CAPM) by including size risk and
value risk elements to the market risk factors. The analysis of the
financial market volatility is hence inaccurate when the beha-
vioural factor is not included in the model.

Recently, human autobiographical memory was shown to
influence issues related to investment decisions. For example, the
development of social networking sites opens up opportunities for
behavioural science studies to easily access or obtain user data.
Behaviour science and social network studies demonstrate a
correlation between digital currency and Twitter (Steinert and
Herff, 2018). In addition, conventional media platforms, namely
television, magazines, or newspapers, use social media to rapidly
spread information to readers (Araya et al. 2017). In addition,
during the Covid-19 pandemic, Twitter was the platform for users
to obtain information and make predictions on Bitcoin
(Kaminski, 2014; Ozturk and Bilgic, 2021) the stock market
(Bollen et al. 2011; Zhang et al. 2011; Mittal and Goel, 2012; Rao
and Srivastava, 2012; Si et al. 2013; Sprenger et al. 2014), election
results (Bermingham and Smeaton, 2011; Sprenger et al. 2014),
and health and risk factors (Huerta et al. 2021; Lee et al. 2022).

Kristoufek (2013) and Yu et al. (2019) studied Bitcoin prices
using Google trends and Wikipedia. Kristoufek (2013) found a
two-way relationship whereas Yu et al. (2019) discovered that
Google search was considered a source of information compared
to Wikipedia, which does not provide new information, but only
general information. Papadamou et al. (2022) further added that
the number of searches gathered from the Google trend data can
be considered as the overall population’s behaviour for a parti-
cular search, and such searches were proven useful in evaluating
investor behaviour. Other studies found that Twitter and Google
searches produced significant contributions to the volatility of
Bitcoin prices (Garcia et al. 2015) but contradicted the results of
Han et al. (2019), in which Google search showed more sig-
nificant relationship with the price of Bitcoin than that in Twitter.
Both studies used a number of tweets and were Google-themed,
and this difference may be due to obviating user sentiment on
Twitter as opposed to other researchers (Kim et al. 2016; Deng
et al. 2017; Kim et al. 2017; Mai et al. 2018; Steinert and Herff,
2018; Wolk, 2019).

Most past studies only focused on Google search in measuring
the effectiveness of the digital assets market (Zhang et al. 2018;
Katsiampa et al. 2019; Aslanidis et al. 2022; Chang et al. 2021;
Chuffart, 2022; Zhang et al. 2021; Pinto-Gutiérrez et al. 2022;
Süssmuth, 2022; Smales, 2022; Tripathi et al. 2022). In particular,
Chuffart (2022) demonstrated that Google search is a solid
indicator of the correlation between digital assets and provides
useful information for portfolio management. He further added
that Google search activity could explain the significant changes
in the correlation dynamics between digital assets especially the
bubble burst in 2017. However, none of the studies focused on
news and YouTube search indicators related to digital assets. We
know that users rely on Google search and browse other aspects
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Fig. 2 Google trend data.
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to get complete comprehensive information. This study has
contributed to the narrowing of knowledge gaps on the impli-
cations of searches in the websites, news, and YouTube for digital
assets and the volatility of their prices. The platforms provide
significant sources for identifying the impact of price volatility
due to digital asset.

Methodology
The methodology is divided into several stages. The first step
involved data collection wherein six digital assets were focused
on: Bitcoin, Bitcoin Cash, Ethereum, Ethereum Classic, Litecoin,
and Ripple, which together accounted for 71 percent of the
market capitalization of 100 digital assets. The digital asset price
data were sourced from coinmarketcap.com. This study also
sourced user tweets on Twitter for digital assets using the Twitter
search Application Programming Interface (API). We collated
Twitter data that included usernames, hashtags, tweets, and some
retweets. We used RapidMiner software to collect the 160 data
per day for each digital asset by using the keywords ‘Bitcoin’,
‘Bitcoin Cash’, ‘Ethereum’, ‘Ethereum Classic’, ‘Litecoin’, and
‘Ripple’. In addition, data related to web search, news search, and
YouTube search based on these keywords were sourced from
Google Trend data using RStudio software. The data have value
that range from 0 to 100. A value of 100 indicates peak popularity
for the search term and the reverse for 0 value. Daily data were
collated between 1 September 2019 and 31 January 2020.

The second step was computing the volatility for stated digital
assets and cleaning the collected tweets. Starting with market data
for digital assets, we used the price of Bitcoin, Bitcoin Cash,
Ethereum, Ethereum Classic, Litecoin, and Ripple Pi,t to calculate
the return, as shown in Eq. (1):

Returni;t ¼
Pi;t � Pi t � 1ð Þ

Pi t � 1ð Þ ð1Þ

The variance of digital asset returns was then estimated using
the generalized autoregressive conditional heteroskedasticity
(GARCH) approach in this study. The following are the condi-
tional mean and variance specifications:

Returni;t ¼ β0 þ β1Returni;t�1 þ εi;t

εi;t ¼ ηi;t
ffiffiffiffiffiffiffi

hi;t;
p

ηi;t � N 0; 1ð Þ ð2Þ

σ2i;t ¼ x þ αε2i;t�1 þ βσ2i;t�1 ð3Þ
Where, Returni,t is the current digital asset rate of return
(i= 1,2,3,4,5,6) at time t. Next, Returni,t-1 refers to the past digital
assets rate of return for Bitcoin, Bitcoin Cash, Ethereum, Ether-
eum Classic, Litecoin, and Ripple, and εi,t is an error term. The
parameters of x > 0, α ≥ 0, β ≥ 0, and ηi,t are independent and
similar random variables distributed with zero mean and unit
variance. The hi,t is the matrix co-variances. The error terms act
normally, and maximum likelihood is used to estimate para-
meters. Subsequently, the compiled tweets were then processed to
remove any noise components. In this study, user sentiments
were analyzed using the Valence Aware Dictionary for Sentiment
Reasoning (VADER) (Hutto and Gilbert, 2014). This dictionary is
useful for deciphering some punctuation, symbols, and numbers
in tweets. Our study used the VADER dictionary to clean the
data, as demonstrated by Öztürk and Bilgiç (2021). Tweets were
cleaned up from all types of punctuations, except #, $, @, ‘, ’, !, “,
?, ., and webpage links. Additionally, all uppercase letters were
changed to lowercase.

The third phase of this study comprised sentiment analyses on
the cleaned tweets. The VADER approach is a lexicon and rule-
based sentiment analysis and its specifically trained, and appro-
priate for sentiments expressed on Twitter (Elbagir and Jing,

2019; Kraaijeveld and De Smedt, 2020). Valencia et al. (2019)
stated that VADER has several additional advantages, and it is
particularly useful for analyzing tweet content and extracting
sentiment values from emotions, emojis, punctuation, use of
grammar, slang, and acronyms compared to machine learning
techniques. Moreover, VADER can produce three types of sen-
timent which are positive sentiment, neutral sentiment, and
negative sentiment. Further, VADER was used to estimate the
compound score. Based on this, each tweet gathered for the study
was divided into three sentiment categories. A tweet with a score
of −1 was categorized as a negative sentiment, whereas a tweet
with a score of +1 was classified as a positive sentiment. Hutto
and Gilbert (2014) also indicated that compound scores of
≥0.05 show positive sentiments, while neutral sentiments ranged
between >−0.05 and <0.05, and ≤−0.05 for negative sentiments.
This range of scores was also employed in earlier studies that used
the VADER dictionary (Kraaijeveld and De Smedt, 2020; Öztürk
and Bilgiç, 2021; Suardi et al. 2022). The total number of positive,
neutral, and negative sentiments were counted and categorized
into daily tweet datasets individually after the sentiment analysis
was complete. The Python software7 was used for the cleaning
process and sentiment analysis.

In the fourth step, the datasets for digital assets were organized
independently. The variables in this study had to be renormalized
since the sentiment and Google trend data were highly volatile
compared with other variables. The Z-transformation was used to
standardize all of the time series: Zt= (Xt−μx)/σx, where μx and σx
are defined as the mean and standard deviation of each time series,
respectively. Due to the equal scale and variance of all the data,
researchers were able to quantify the effects of the changes in
numerical analysis (Garcia et al. 2015). Before proceeding with the
VAR analysis, this study adopted the Augmented Dickey Fuller
(ADF) to assess each time series stationary properties (Fuller,
2009). The null hypothesis of the Augmented Dickey–Fuller t-test
is 0 Ho θ= (i.e., the data need to be differenced to make it sta-
tionary) versus the alternative hypothesis of 0: H1 θ < (i.e., the data
is stationary and doesn’t need to be differenced). All variables have
to be tested using ADF, and if rejected by the null hypothesis, the
data is considered stationary and significant at level I(0).

Finally, to investigate the implication of Google searches on the
volatility of digital assets, a VAR method was employed in the
following form:

Yi;t ¼ aþ ∑
p

i¼1
AiYi;t�i þ ∑

k

j¼1
βiXi;t�j þ εi;t ð4Þ

where a is a vector of constant white noise innovations while εi,t is
an independent vector. Yi,t is the vector y of variable volatility for
Bitcoin, Bitcoin Cash, Ethereum, Ethereum Classic, Litecoin, and
Ripple. Xi,t-j represents the vector that contains different variables,
such as web search, news search, YouTube search, positive sen-
timent, neutral sentiment, and negative sentiment. The lag
selection was based on the Schwarz Criterion (SC), the Akaike
Information Criterion (AIC), and the Hannan-Quinn (HQ)
Criterion. However, the suggested lag for Bitcoin and Ripple has
an autocorrelation problem. To solve this problem, other lags
were chosen, namely lag 3 for Bitcoin and lag 2 for Ripple. In
addition, lag 1 was chosen for Bitcoin Cash, Ethereum, Ethereum
Classic, and Litecoin based on the lag selection criteria SC, AIC,
and HQ. With this VAR model, this study subsequently per-
formed a linear Granger causality test (Granger, 1969). The
Granger causality test is written as follows for a linear system:

ΔYi;t ¼ β0 þ ∑
n

i¼1
β1iΔYi;t�1 þ ∑

m

i¼1
β2iΔXi;t�1 þ εi;t ð5Þ

This research has carried out the Impulse Response Function
(IRF) analysis, which is a fundamental method in a VAR model
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(Dizaji, 2019; Siriopoulos et al. 2021). IRF shows how the digital
assets volatility response to a shock in web search, news search,
YouTube search, positive sentiment, negative sentiment, neutral
sentiment, and volatility. In IRF, the vertical line represents the
magnitude of response to shocks and the horizontal line indicates
the period after the initial shock. The dotted lines represent 95%
confidence intervals, whereas the solid lines depict the impulse
response. When the horizontal line falls between confidence bands,
the impulse response is not statistically significant. On the other
hand, the ordering of variable could affect the IRF findings. Dizaji
(2019) proposed that the ordering of variables should adhere to
economic theory. These were mostly exogenous variables to
endogenous variables. Google trend and sentiment variables were
placed as the first and second variables being the most exogenous

variables in our model. Volatility variables come next in the
Cholesky ordering, after the first and second variables. Hence,
volatility is the most endogenous variable in the VAR system.
Subsequently, a diagnostic test of the estimated VAR model was
conducted separately utilizing the inverse roots of the AR char-
acteristic polynomial (VAR stability) and the VAR residual serial
correlation Lagrange Multiplier (LM) test for digital assets datasets.

Empirical results
Table 1 reports the mean, median, maximum, minimum, stan-
dard deviation (Std. Dev) and skewness for the variables of
volatility, web search, news search, YouTube search, positive
sentiment, negative sentiment, and neutral sentiment for digital

Table 1 Descriptive Statistics.

Bitcoin

Variable Mean Median Maximum Minimum Std. dev Skewness

Bitcoin
Volatility 2.76E-16 −0.2480 4.5018 −1.1525 1.0000 2.3150
Web Search −7.59E-16 0.0658 2.4591 −1.9149 1.0000 0.4403
News Search 6.75E-17 −0.0314 2.6079 −2.1051 1.0000 0.5733
YouTube Search −2.08E-16 −0.0244 1.9755 −2.1152 1.0000 0.1224
Positive Sentiment −8.45E-16 −0.0627 3.2659 −4.4751 1.0000 −0.2240
Negative Sentiment −5.47E-16 −0.1292 3.0693 −2.8916 1.0000 0.3882
Neutral Sentiment 5.95E-17 −0.0254 3.7623 −3.9978 1.0000 −0.0531
Bitcoin Cash
Volatility −1.05E-16 −0.3665 3.8501 −0.9267 1.0000 1.8068
Web Search −6.68E-17 0.0266 2.0579 −2.2438 1.0000 0.2005
News Search −5.59E-17 −0.3207 3.6074 −0.3207 1.0000 2.9115
YouTube Search −2.87E-16 −0.0069 2.3096 −2.0611 1.0000 0.3022
Positive Sentiment 8.71E-18 −0.1434 4.5274 −2.1582 1.0000 1.3811
Negative Sentiment −1.15E-16 −0.2959 4.2775 −1.2901 1.0000 2.0722
Neutral Sentiment −3.66E-16 −0.0041 2.8077 −2.7638 1.0000 0.3233
Ethereum
Volatility −7.42E-17 −0.2997 6.0759 −0.8583 1.0000 2.8903
Web Search 2.61E-16 −0.0788 2.5265 −2.1141 1.0000 0.4738
News Search −2.63E-16 −0.1566 2.3980 −0.9634 1.0000 0.8377
YouTube Search −1.47E-16 -0.0569 2.4017 −1.9521 1.0000 0.5094
Positive Sentiment 4.62E-16 −0.1304 3.1706 −2.7992 1.0000 0.4016
Negative Sentiment −1.45E-17 −0.1920 4.8539 −1.4858 1.0000 1.5986
Neutral Sentiment −1.57E-16 0.1449 2.2600 −2.7060 1.0000 −0.1100
Ethereum Classic
Volatility 1.48E-16 −0.3363 4.4449 −0.7073 1.0000 2.5833
Web Search 2.59E-16 −0.3372 2.7390 −1.2048 1.0000 0.9828
News Search −6.75E-17 −0.2690 4.2682 −0.2690 1.0000 3.6178
YouTube Search −8.49E-17 −0.6551 2.6128 −0.6551 1.0000 1.2868
Positive Sentiment 9.40E-16 −0.2211 3.4290 −1.5898 1.0000 0.7807
Negative Sentiment −1.55E-16 −0.2790 3.6659 −1.0882 1.0000 1.4943
Neutral Sentiment −2.53E-16 −0.2375 4.3854 −1.2513 1.0000 1.3697
Litecoin
Volatility 1.32E-16 −0.1688 4.6910 −1.9739 1.0000 1.7195
Web Search −4.06E-17 −0.1282 2.3073 −2.2255 1.0000 0.4692
News Search −2.47E-16 −0.5228 2.5382 −0.5228 1.0000 1.5948
YouTube Search 1.12E-16 −0.1015 2.3127 −1.7110 1.0000 0.4779
Positive Sentiment 1.79E-16 −0.0500 3.9478 −3.3525 1.0000 0.3777
Negative Sentiment 1.32E-16 −0.1688 4.6910 −1.9739 1.0000 1.7195
Neutral Sentiment −1.67E-16 −0.0828 3.7452 -3.3540 1.0000 0.4543
Ripple
Volatility 5.55E-17 −0.3699 4.8489 −0.7172 1.0000 2.6861
Web Search −2.38E-16 −0.1919 2.2027 −1.9656 1.0000 0.4106
News Search −2.28E-16 −0.1724 2.7702 −1.0023 1.0000 1.0620
YouTube Search 5.89E-16 −0.0418 2.0879 −2.4846 1.0000 0.1662
Positive Sentiment 8.42E-17 0.0455 3.0607 −3.4722 1.0000 −0.0642
Negative Sentiment 3.86E-16 −0.2179 4.6813 −1.7548 1.0000 1.8459
Neutral Sentiment 3.76E-16 −0.1050 3.4716 −2.9516 1.0000 0.5483
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assets such as Bitcoin, Bitcoin Cash, Ethereum, Ethereum Classic,
Litecoin and Ripple. The news search and neutral sentiment (web
search and positive sentiment) of Bitcoin (Ethereum) shows a
higher mean compared to other digital assets of the period.
Furthermore, YouTube search of Litecoin (volatility and negative
sentiment of Ripple) has a markedly greater mean than other
digital assets. Besides, Bitcoin datasets describe that positive
sentiment and neutral sentiment are negatively skewed and other
variables are positively skewed. Among the variables, only neutral

sentiment (positive sentiment) in Ethereum (Ripple) datasets is
skewed negatively. Conversely, all the variables in Bitcoin Cash,
Ethereum Classic, and Litecoin are skewed positively. The stan-
dard deviation values of all variables for all digital assets shows
the value of one (1) due to all time series being standardized using
the Z-transformation8.

Table 2 shows the unit root test results for the variables of
volatility, web search, news search, YouTube search, positive
sentiment, negative sentiment, and neutral sentiment for digital

Table 2 Augmented Dickey–Fuller unit root test.

ADF

Level 1st diff

Digital asset Variable Intercept Trend and intercept Intercept Trend and intercept

Bitcoin
Volatility −3.2828** −3.2806* −11.5331*** −11.4978***
Web Search −5.0903*** −5.9645*** −9.1787*** −9.1505***
News Search −10.3709*** −10.4579*** −12.3760*** −12.3341***
YouTube Search −7.7060*** −7.6778*** −9.8504*** −9.8325***
Positive Sentiment −10.5865*** −11.5580*** −8.9761*** −8.9448***
Negative Sentiment −6.6882*** −12.1412*** −10.4134*** −10.4057***
Neutral Sentiment −9.3399*** −10.8159*** −8.8411*** −8.8183***

Bitcoin Cash
Volatility −3.2790** −3.3879* −13.2946*** −13.2505***
Web Search −9.8232*** −10.2435*** −12.4274*** −12.3847***
News Search −11.3431*** −11.3374*** −9.7828*** −9.7412***
YouTube Search −11.4092*** −11.6967*** −17.4295*** −17.3736***
Positive Sentiment −9.4744*** −9.4649*** −13.4430*** −13.3986***
Negative Sentiment −8.9534*** −9.3000*** −11.7575*** −11.7180***
Neutral Sentiment −10.3283*** −10.3015*** −13.2081*** −13.1939***

Ethereum
Volatility −4.5180*** −4.5151*** −13.1482*** −13.1048***
Web Search −8.5510*** −8.5655*** −13.1744*** −13.1300***
News Search −12.1161*** −12.2834*** −9.6108*** −9.5820***
YouTube Search −9.3039*** −9.4519*** −14.1723*** −14.1223***
Positive Sentiment −8.5786*** −8.5399*** −11.7938*** −11.7601***
Negative Sentiment −6.0165*** −6.0517*** −14.0999*** 14.0524***
Neutral Sentiment −9.6824*** −10.1760*** −10.1202*** 10.0808***

Ethereum Classic
Volatility −3.3488** −3.7215** −11.5638*** −11.5305***
Web Search −12.0606*** −12.1873*** −10.7717*** −10.7391***
News Search −13.1811*** −13.2487*** −10.5470*** −10.5181***
YouTube Search −10.7132*** −10.6774*** −12.1176*** −9.9998***
Positive Sentiment −3.1863** −4.1552** −14.8078*** −14.7595***
Negative Sentiment −6.1494*** −6.1269*** −9.8475*** −9.8155***
Neutral Sentiment −7.2444*** −7.2280*** −11.5940*** −11.6047***

Litecoin
Volatility −3.3490** −3.4575** −11.5043*** −11.4702***
Web Search −8.7743*** −8.7537*** −19.9845*** −19.9186***
News Search −11.631*** −11.7167*** −10.9305*** −10.9016***
YouTube Search −11.3114*** −11.2694*** −9.0622*** −9.0485***
Positive Sentiment −10.6015*** −10.5474*** −10.3006*** −10.2668***
Negative Sentiment −11.1748*** −11.1451*** −10.8939*** −10.8616***
Neutral Sentiment −9.8805*** −9.9304*** −13.1970*** −13.1596***

Ripple
Volatility −6.0248*** −6.0057*** −9.1486*** −9.1263***
Web Search −9.0908*** −9.1911*** −9.8045*** −9.8020***
News Search −12.1186*** −12.0846*** −12.1879*** −12.1457***
YouTube Search −5.3790*** −5.6461*** −13.6224*** −13.5853***
Positive Sentiment −12.6704*** −12.8878*** −16.9856*** −16.9470***
Negative Sentiment −9.6592*** −10.143*** −9.6801*** −9.6456***
Neutral Sentiment −11.3186*** −11.3510*** −9.6032*** −9.5727***

*Null hypothesis rejection at 10%.
**Null hypothesis rejection at 5%.
*** Null hypothesis rejection at 1%.
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assets such as Bitcoin, Bitcoin cash, Ethereum, Ethereum classic,
Litecoin, and Ripple by using the ADF method in the categories
of intercepts, trends and intercepts. All variables in the Ethereum
and Ripple datasets stationarity showed 1% significance level. For
Bitcoin, Bitcoin Cash, Ethereum Classic, and Litecoin, all vari-
ables are stationary at the same level as Ethereum and Ripple, but
the volatility is stationary at the 5 and 10% significance levels.
Specifically, the volatility of Bitcoin and Bitcoin Cash is stationary
at 5% (intercept) and 10% (trend and intercept) significance levels
respectively. In addition, the volatility of Ethereum Classic and
Litecoin is stationary at a 5% (intercept and trend and intercept)
significance level.

VAR estimation. Table 3 presents the findings of the VAR
models, with the coefficient estimates in Panel A and the Granger

causality results in Panel B. According to the results of the VAR
estimation of Bitcoin, web search influences Bitcoin volatility, with
a significant positive at lag 1 and a significant negative at lag 2 at
the 1 and 10% significance levels, respectively. These results were
value added by the Granger causality results, indicating that the
null hypothesis was successfully rejected thus designating that web
search does not Granger cause volatility at the 1% significance
level. The mix of positive and negative relationships at lags between
user attention and the Bitcoin market is highly fluctuating due to
Bitcoin price (Chen et al. 2020). Furthermore, Hasan (2022)
pointed out that the reaction of the Bitcoin market towards user
attention and sentiment was more in line with temporary senti-
ment shocks. This analysis also discovered that news searches had
significantly affected volatility at lag 2 with 5% significance level.
This observation proved that a rise in news search led to an
increase in volatility on the 2nd day. The Granger causality test also
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Fig. 3 Impulse response function of bitcoin.
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revealed that news search resulted in Granger volatility to be sig-
nificant at 10% level. Although, YouTube impact volatility was
significantly positive in panel A, the result however was not sup-
ported by Granger causality findings in panel B.

The VAR estimation for Bitcoin Cash revealed that volatility is
influenced by own shock only and is not influenced by other
variables in the model. It may happen since Bitcoin cash is less
popular than Bitcoin, and investors are more familiar with
Bitcoin in the world of digital assets. Consequently, most of the
previous studies (Polasik et al. 2015; Garcia et al. 2015; Kim et al.
2016; Kim et al. 2017; Mai et al. 2018) only focused on Bitcoin in
their analyses due to similar reasons. Besides, Ethereum volatility
is significantly affected by web search at lag 1 with 1% significance
level. These findings are supported by the Granger causality
results at 1% significance level, as shown in panel B of Table 3.

Moreover, the VAR estimation of Ethereum Classic illustrates
that web search impacts Ethereum Classic volatility, with a
significant positive at lag 1 at the 10% significance level. These
findings were supported by the Granger causality results at the
10% significance level. Further, positive sentiment (negative
sentiment) influences Ethereum Classic volatility significantly and
negatively (positive) at lag 1 with 5% (1%) significance level. The
Granger causality test has explained that positive sentiment and
negative sentiment can be very useful in predicting future
volatility at the 5 and 1% significance levels, respectively.
Subsequently, Litecoin volatility was affected significantly and
positively by web search and negative sentiment at lag 1 with 1%
significance level. These outcomes were value added by the
Granger causality test in panel B at the 1% significance level.
Meanwhile, the VAR estimation for Ripple described that web
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Fig. 4 Impulse response function of bitcoin cash. Note: Y-axis and X-axis represent response standard deviation (s.d) and period.
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search have a significant positive impact on Ripple volatility at lag
1 with 1% significance level. In addition, YouTube search affects
Ripple volatility, with a significant positive at lag 1 and a
significant negative at lag 2 with 5 and 1% significance levels,
respectively. The Granger causality results in panel B also
revealed that the null hypothesis was rejected indicating that
web search and YouTube search does not Granger cause volatility
at the 5 and 1% significance levels, respectively. Even though,
news searches influence Ripple volatility significantly in panel A
but the results are not supported by the Granger causality test in
panel B.

Impulse response function. Figure 3 illustrates the impulse
response of Bitcoin volatility when an innovation of other

variables operates over the next 15-day period. We identified that
shock in web search and news search triggered a gradual increase
in volatility. One unit shock in the standard deviation of the web
search (news search) influences Bitcoin volatility positively and
significantly from day 1 until day 7 (day 3 until day 9). In
addition, the IRF findings are in agreement with the VAR esti-
mation results, which describe that Bitcoin volatility responds
more towards Google search variables than Twitter sentiment
variables. Our results are consistent with some studies (Aalborg
et al. 2019; Zhang et al. 2018; Shen et al. 2019; Yu et al. 2019),
which indicated that the Google trend has a significant impact on
Bitcoin markets. This is a crucial finding since an investor
searching for Bitcoin information on the internet may become
motivated to invest in Bitcoin, producing a cause-and-effect
relationship with Bitcoin volatility. Further, the response of
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Fig. 5 Impulse response function of ethereum. Note: Y-axis and X-axis represent response standard deviation (s.d) and period.
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Bitcoin volatility to any shock resulting from the variables of
YouTube search, positive sentiment, neutral sentiment, and
negative sentiment was not significant. Conversely, one unit
shock in the standard deviation of the volatility affects Bitcoin
volatility positively and significantly from day 1 until day 7.

The impulse response of Bitcoin Cash volatility to shock in other
variables that took place over the next 15 days (period) is shown in
Fig. 4. The IRFs of Bitcoin Cash volatility are only significant
towards shock coming from news search and volatility. One unit
shock in the standard deviation of the news search influences the
Bitcoin Cash volatility slightly positively and significantly from day
1 until day 6. Furthermore, volatility response was significantly
positive from own shock from day 1 until day 11. These findings
are quite consistent with VAR results in that Bitcoin Cash volatility
is only significant towards its own shock.

Figure 5 depicts the impulse response of Ethereum volatility to
shock in other variables throughout the course of the following
15 days (period). IRF analysis showed that it responded positively
to web search shock from day 1 until day 5, which is consistent
with VAR estimation. The volatility response was positively
significant towards own shock from day 1 until day 7. In
comparison, the response of Ethereum volatility towards shock
coming from variables of YouTube search, news search, positive
sentiment, neutral sentiment, and negative sentiment was not
significant.

The impulse response of Ethereum Classic volatility to shocks
in other variables throughout the course of the next 15 days
(period) is illustrated in Fig. 6. The volatility is only significant
towards shock coming from negative sentiment and volatility.
The response was significant for the negative sentiment which

-.1

.0

.1

.2

.3

.4

.5

2 4 6 8 10 12 14

Response of Volatility to Web Search

-.1

.0

.1

.2

.3

.4

.5

2 4 6 8 10 12 14

Response of Volatility to YouTube Search

-.1

.0

.1

.2

.3

.4

.5

2 4 6 8 10 12 14

Response of Volatility to News Search 

-.1

.0

.1

.2

.3

.4

.5

2 4 6 8 10 12 14

Response of  Volatilit y to Positive Sentiment

-.1

.0

.1

.2

.3

.4

.5

2 4 6 8 10 12 14

Response of Volatility to Negative Sentiment 

-.1

.0

.1

.2

.3

.4

.5

2 4 6 8 10 12 14

Response of Volatility to Neutral Sentiment

-.1

.0

.1

.2

.3

.4

.5

2 4 6 8 10 12 14

Response  of Volatility to Volatilit y

Fig. 6 Impulse response function of ethereum classic. Note: Y-axis and X-axis represent response standard deviation (s.d) and period.
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shows that one unit shock in the standard deviation of the
negative sentiment influences volatility positively and signifi-
cantly from day 1 until day 10 which is in line with VAR
findings.

Figure 7 describes the impulse response of Litecoin volatility to
shocks in other variables that occurred over the next 15-day
period. We observed that shock in web search and negative
sentiment influenced volatility. One unit shock in the standard
deviation of the web search (negative sentiment) affects Litecoin
volatility positively and significantly from day 1 until day 9 (day 1
until day 8) as similarly shown by VAR estimation. Subsequently,
volatility impact was shown positively significant on own shock
from day 1 until day 8.

Figure 8 illustrates the Ripple volatility impulse response to
shocks in other variables throughout the course of the

subsequent 15 days (period). Ripple volatility responded posi-
tively to web search (YouTube search) shock from day 1 until
day 4 (day 3) in agreement with VAR estimation. In addition,
volatility reacts positively significantly towards own (negative
sentiment) shock from day 1 until day 4 (day 3) whereas the
response towards shock coming from other variables was not
significant.

Diagnostic tests
VAR residual serial correlation LM test. Table 4 shows the VAR
residual serial correlation LM test for Bitcoin, Bitcoin cash,
Ethereum, Ethereum classic, Litecoin, and Ripple. The test
revealed that the VAR estimation has no serial correlation rela-
tionship with all digital assets.
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Fig. 7 Impulse response function of litecoin. Note: Y-axis and X-axis represent response standard deviation (s.d) and period.
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Inverse roots of AR characteristic polynomial. Figure 9 illustrates
the inverse roots of the AR characteristics polynomial for Bitcoin,
Bitcoin Cash, Ethereum, Ethereum Classic, Litecoin, and Ripple.
The VAR stability findings showed that all the points were inside
the circle and the absolute values of Eigenvalue were <1 (1) for all
digital assets. As a result, the computed VAR model was stable
and satisfactory according to the diagnostic criteria.

Discussion
This study examines the implication of Google search activity
which comprises web search, news search, and YouTube search
on digital assets’ volatility. The empirical findings provide evi-
dence that the volatility of digital assets such as Bitcoin, Ether-
eum, Litecoin, and Ripple is influenced by the Google search
variables compared with sentiment indicators. As an explanation,

the volatility of Bitcoin was influenced by shock arising from web
search and news search, whereas the volatility of Ethereum and
Litecoin was affected by web search, and Ripple react to shock
coming from web search and YouTube search. These results are
in line with some studies (Urquhart, 2018; Katsiampa et al. 2019;
Lin, 2020; Aslanidis et al. 2022; Chuffart, 2022; Chang et al. 2021;
Li et al. 2021; Rutkowska and Kliber, 2021; Zhang et al. 2021;
Pinto-Gutiérrez et al. 2022; Süssmuth, 2022; Smales, 2022; Tri-
pathi et al. 2022) that highlight the importance of Google trend in
digital assets markets. However, past studies generally focused on
Google trend data and they did not consider the importance of
separate searches such as web search, news search, and YouTube
and relate these with digital assets markets. By perusing this
enquiry, we obtained a clear view of how digital asset markets
reacted to search activity.
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Fig. 8 Impulse response function of ripple. Note: Y-axis and X-axis represent response standard deviation (s.d) and period.
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In addition, digital assets such as Ethereum Classic and Lite-
coin only responded to Twitter sentiment among the six digital
assets. The literature review showed us that the influence of
Google search variables is superior to Twitter sentiment toward
digital assets’ volatility. These results become value-added as per

Steinert and Herff (2018) statement, which suggested a relation-
ship between digital assets and social media under the concept of
behavioural science. In addition, these findings are also in line
with behavioural finance theory, which indicates that psycholo-
gical and sentiment factors do have an important impact on
investment decisions (Kraaijeveld and De Smedt, 2020).

Admittedly, policymakers can benefit from such analyses,
especially in understanding the importance of Google search
activity and in identifying the actual causes of digital assets
volatility. This statement is supported by Huerta et al. (2021),
who indicated that policymakers needed to discover the real
reasons for financial market fluctuation in order to stabilize it
through implementing the suitable steps. In addition, Chuffart
(2022) stated that Google searches are known to be a valuable
predictor for cryptocurrencies and are able to provide profitable
information for portfolio management. Alternatively, during
market crisis, the investor or portfolio manager can consider
Bitcoin Cash as a safe-haven asset since it receives insignificant
effect from Google search and Twitter sentiment variables. At the
same time, an investor can undertake web search (Bitcoin,
Ethereum, Litecoin, Ripple), news search (Bitcoin), and YouTube
search (Ripple) before deciding on investment, especially in times
of market turbulence. In consequence, investors can avoid loss
and formulate promising investment strategies.

Conclusion
In our empirical analysis, we measured the implication of Google
searches on digital assets’ volatility. The user attention measured
by the Google trend significantly affects digital assets markets
compared with user sentiment on Twitter. Google search activity

Table 4 VAR residual serial correlation LM test.

Digital assets Lags LM test P-value

Bitcoin
1 1.0575 0.3719
2 1.0309 0.4189
3 1.0047 0.4674
4 0.7867 0.8513

Bitcoin Cash
1 0.8354 0.7811
2 0.7352 0.9106

Ethereum
1 0.7531 0.8923
2 0.9686 0.5364

Ethereum Classic
1 1.2556 0.1185
2 0.7981 0.8367

Litecoin
1 1.1333 0.2521
2 1.2616 0.1138

Ripple
1 0.8430 0.7683
2 0.7382 0.9073
3 0.9547 0.5633

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Bitcoin

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Bitcoin Cash

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Ethereum

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Ethereum Classic

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Litecoin 

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Ripple

Fig. 9 Inverse roots of AR characteristic polynomial.
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is a significant factor influencing the decision of investors to buy
or sell digital assets. Nowadays, an investor can easily obtain and
gather enlightening information from Google search and, at the
same time, make an investment decision. To the best of our
knowledge, this paper documents the important indication
regarding the impact of Google search activities such as news
search, web search, and YouTube search separately on digital
assets. As such, we may assist a policymaker in the US in
encouraging the use of digital assets to develop strategies to lessen
digital assets price volatility. Furthermore, during times of market
turmoil, investors can be assisted in decision-making after
observing the relationship between Google search variables and
digital assets prices. The users’ observation can also be used to
predict stock market’s volatility such as in S&P 500, Nikkei 225,
and FTSE 100. The limitation of this study is that we only ana-
lysed the six digital asset prices of Bitcoin, Bitcoin Cash, Ether-
eum, Ethereum Classic, Litecoin, and Ripple from the
coinmarketcap database, although there are many other digital
assets in the market.

Data availability
Data for digital assets price were collated from Coinmarketcap
which is available in a publicly accessible repository as the fol-
lowing link: https://coinmarketcap.com or Cryptocurrency Prices,
Charts And Market Capitalizations | CoinMarketCap. Data for
user tweets on Twitter was sourced using the Twitter search
Application Programming Interface (API). Data for Google trend
was collected using RStudio software. Both data are included in
this published article (and its supplementary information files).
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Notes
1 https://coinmarketcap.com.
2 https://bitinfocharts.com.
3 https://trends.google.com.
4 https://coinmarketcap.com.
5 https://www.barchart.com.
6 https://bitcoinity.org/markets.
7 https://www.python.org.
8 The variables in this study had to be renormalized because the sentiment and Google
trend data were highly volatile compared with other variables. The Z-transformation
was used to standardize all the time series: Zt= (Xt−μx)/σx, where μx and σx are
defined as the mean and standard deviation of each time series, respectively. Due to the
equal scale and variance of all the data, researcher were able to quantify the effects of
the changes in numerical analysis (Garcia et al. 2015).
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