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Construction of vaccination network and
influencing factors: a case study of
Chongging, China

Jianing Li'3, Jie Fan'23, Ling Zhu'2, Xiachua Wu?, Chunyu Luo? & Wei Wang'™

Vaccination is a fundamental tool in preventing infectious diseases. However, due to the wide
array of vaccines available, comprehending the entire vaccine landscape can be a daunting
task. To tackle this complexity, this study employs advanced network analysis methods
capable of capturing the intricate relationships within multivariate datasets. The objective is
to investigate how the vaccination landscape has evolved both before and after the COVID-19
pandemic. This study examined vaccination data in the Nanan District of Chongging, China,
spanning from 2016 to 2022. Additionally, the network topological characteristics were
computed and scrutinized across 2326 sliding windows. The investigation focused on
assessing alterations in the topological structure of the vaccination network before and after
the COVID-19 pandemic, encompassing analyses at both macro and mesoscale levels. Fur-
thermore, at the micro level, this study delved into the correlation degrees of selected vaccine
nodes within the vaccination network. The analysis unveiled that the correlation and activity
within the vaccination network showed a noticeable enhancement in strength in the wake of
the COVID-19 pandemic, especially during the spring and winter months. However, the
community structure and the average interactions between vaccines displayed a diminishing
trend post-pandemic. Among the analyzed vaccines, the HepA vaccine emerged as the one
with the highest average node-degree centrality rank. A closer examination of the node-
degree centrality ranking chart within the vaccination network disclosed fluctuations in the
rankings of various vaccine types across different time periods and seasons. In contrast,
vaccines incorporated into NIP exhibited a remarkable degree of consistency, which is
attributed to children adhering to a fixed vaccination schedule, rendering NIP vaccines less
susceptible to disruptions and enhancing their stability within the vaccination network. This
study offers valuable insights into the dynamics of the vaccination network, shedding light on
the impact of the COVID-19 pandemic, seasonal variations, and the ever-shifting correlation
patterns among different vaccine types. These discoveries enrich our comprehension of
vaccination trends and have the potential to guide forthcoming endeavors aimed at refining
vaccination strategies and enhancing public health outcomes, not only in the Nanan District
but also in analogous settings.
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Introduction

hroughout history, epidemics have caused great harm to

human societies. Today, the risk of epidemics continues to

persist, with the COVID-19 pandemic having a profound
impact on the global healthcare system (Abbas, 2021; Akande and
Akande, 2020; Czabanowska and Kuhlmann, 2021; Jakovljevic
et al, 2020). Vaccination has long been acknowledged as an
essential measure for preventing and reducing the impact of
epidemic diseases. By eliciting a protective response against
particular pathogens in the immune system, vaccines have saved
innumerable lives and significantly alleviated the burden of
infectious diseases across the globe. In 1974, a resolution by the
World Health Organization (WHO) suggested implementing the
“Expanded Program on Immunization” (EPI) (Kissi et al., 2022;
Qazi and Usman, 2021) globally. However, the field of vaccina-
tion has grown considerably more complex with the rise of var-
ious vaccine types and innovative immunization strategies.
Analyzing the entirety of the vaccine system presents a significant
hurdle due to its intricate nature and interrelated components.
Traditional analytical approaches frequently fall short of captur-
ing the complex relationships and structural patterns within
multivariate vaccination data. However, the process of imple-
menting complex network analysis presents a hopeful opportu-
nity for comprehending the fundamental dynamics of vaccination
networks and their reactions to external stimuli.

Over the last two decades, the key advancement in complex
system science has been the gradual improvement of the concept
of complex networks and its methodology, which draws on
mathematical graph theory. In a complex network, nodes refer to
entities within a complex system, with edges representing statis-
tical associations between distinct entities. The strength of these
edges is measured using correlations between nodes. The con-
struction of complex networks has garnered attention from
numerous scholars both domestically and internationally and has
found extensive application in diverse fields. Albert. R et al’s
research primarily integrates complex networks with statistical
mechanics (Albert and Barabdsi, 2002; Barabdsi and Albert, 1999;
Wang et al., 2019; Zhang et al., 2016). Besides its use in network
pharmacology (Moyeenul et al.,, 2023; Zhang et al., 2023), com-
plex networks find extensive application in the transmission of
infectious diseases (Armbruster et al., 2022; Wang et al., 2014)
within the medical field. Yang et al. constructed a dynamic net-
work to study the spread of infectious diseases in relation to social
structure, using computational sociology methods and inter-
personal relationships (Yang et al, 2022). Additionally, the
complex network was employed to analyze time series. Donner
et al. put forth various innovative techniques to analyze time
series’ structural properties using complex systems (Donner et al.,
20105 Plerou et al.,, 1999; Podobnik and Stanley, 2008; Zou et al.,
2019). Moreover, the intricate network finds widespread appli-
cation in finance, traffic, meteorology, and other domains
(D’Arcangelis and Rotundo, 2016; Ding et al., 2019; Steinhaeuser
et al, 2012).

In the field of public health, complex network models are
mostly used to study infectious diseases and epidemiology.
Researchers use these models to describe interpersonal contact
networks and transmission pathways, revealing the mechanisms
of disease transmission and the spread of risks. Although vacci-
nation can act as an immunization measure, no research has been
reported on the construction of vaccination networks. Kang et al.
investigate the present vaccine viewpoint on social media. They
achieve this by constructing and analyzing semantic networks of
vaccine information from highly shared websites of Twitter users
in the United States (Kang et al., 2017). In this study, we con-
centrate on observing the transformation of the vaccination
network in the Nanan District of Chongqing, China, before and
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after the COVID-19 pandemic. The COVID-19 pandemic, trig-
gered by the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) (Shi et al., 2021), has dramatically affected global
healthcare systems and vaccination strategies. Examining how
this unparalleled public health crisis has impacted the immuni-
zation network can generate invaluable perspectives into the
adaptability and resilience of vaccination programs.

This paper examines recent changes in the vaccination system
and the underlying reasons by constructing a topological net-
work. To illustrate, a topology network was built for 23 vaccine
types in the Nanan District of Chongqing between 2016 and 2022
based on the correlations of nodes. Secondly, the study examined
alterations in the topological characteristics of the vaccination
network pre- and post-COVID-19 pandemic at both macro and
mesoscale levels. The results indicate that the correlation and
activity of the vaccination network increased after the COVID-19
pandemic, particularly during spring and winter, whilst the
community structure and average interaction weakened post-
pandemic. Finally, this study examined the correlation levels of
various nodes in the vaccination network encompassing immu-
nization and non-immunization program vaccines across differ-
ent time periods at the micro level. Fig. 1 shows the research
framework for this article.

Methods

Data collection. The evaluation dataset was sourced from the
Chongging Immunization Planning Information Management
System. Over 5 million vaccine doses were recorded as admi-
nistered within Nanan District from January 2016 to May 2022.
The data was classified based on vaccine type and year, including
23 forms of National Immunization Program (NIP) vaccinations
and non-NIP vaccines (Hu et al., 2015).

Definition. NIP vaccines are defined as the free vaccines that
residents should receive following government regulations.
Guardians shall ensure that children of appropriate age receive
scheduled immunization vaccines according to law. NIP vaccines
provided by the Chongqing Municipal government include the
hepatitis B vaccine (HepB), Bacillus Calmette-Guerin vaccine
(BCG), diphtheria-pertussis- tetanus vaccine (DPT), diphtheria-
tetanus vaccine(DT), oral poliovirus vaccine (OPV)/ inactivated
poliomyelitis vaccine (IPV), measles-containing vaccine (MCV)/
measles-mumps-rubella vaccine (MMR), Japanese encephalitis
vaccine (JEV), meningococcal polysaccharide vaccine type
a(MPV-A), meningococcal polysaccharide vaccine type a and
c(MPV-AC), hepatitis A vaccine (HepA).

Non-immunization program vaccines refer to other vaccines
that are voluntarily administered by residents, including Haemo-
philus influenzae type b (Hib) and inactivated polio combined
vaccine (Penta), Haemophilus influenzae type b combined
vaccine (Quad), influenza vaccine (Flu), pneumonia vaccine
(PCV), human papillomavirus vaccine (HPV), Varicella vaccine
(VZV), Rotavirus vaccine(RVV), Rabies vaccine (Rab), Enter-
ovirus Type 71 Vaccine (EV71), Mumps vaccine (Mum),
COVID-19 vaccine (COVID-19) (Hartonen et al., 2023), etc.

Vaccines time series diagram. According to vaccination data
from Nanan District in Chongqing, we utilized R software (ver-
sion 4.2.2) to create time series graphs for various vaccines which
would be shown in the Results. These graphs allowed us to
observe trends and seasonal changes in vaccination rates.

Research methods for constructing vaccination network. A
network consists of nodes connected by edges, where nodes
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Fig. 1 The research frame of the article. This figure shows the research process and framework of this study.

usually represent either individuals or organizations in reality and
edges represent the connections between them, and researchers
commonly utilize an adjacency matrix to depict the connection
relationship between vertices.

To construct a vaccination network, consider each vaccine as a
node and a time window of every 30 days. The Pearson
correlation coefficient quantifies the strength of the correlation
between two vaccines. A larger coefficient indicates that an
increase in the dose of one vaccine corresponds to an increase in
the dose of the other vaccine, reflecting a correlation between
diseases. Additionally, from a medical resource perspective, it
reflects the competition or synergism effects for medical
resources. The Pearson correlation coefficient (Deng et al,
2021; Donges et al., 2009) was used to calculate the correlation
between the 23 vaccines. If the coefficient value exceeded the
appropriate threshold, a strong correlation between two nodes
was detected, thereby generating a link. This link allowed for the
construction of an adjacency matrix, which in turn formed the
basis of the vaccination network. Changes in the vaccination
network were then tracked by continuously sliding the time
window.

Data preprocessing. The vaccine’s Pearson correlation coefficient
is not computed if the average daily dose per vaccine falls below
10 doses within one window. Additionally, if the number of days
in which the vaccine dose remains at 0 exceeds 15 days, it is not
included in the calculation.

The data for vaccines is the daily number of vaccinations,
which has been standardized. Besides, the data used in the article
has no missing values.

Calculate the correlation coefficients of nodes. The Pearson
correlation coefficient is utilized in statistics to evaluate the cor-
relation between two variables X and Y. A more significant
absolute value indicates a stronger relationship between these two
variables.

In each time window of 30 days, calculate the Pearson
correlation coefficient between the two vaccine nodes.

Constructing vaccination network. When the Pearson correla-
tion coefficient falls to 0.8, it is an indication of the strong

correlation between sequences. In order to ensure the con-
nectivity of the network, the system should have as many maxi-
mally connected subgraphs as possible. Therefore, after
comparing with other thresholds, it was observed that a corre-
lation coefficient threshold of 0.8 provided a more distinct
topology of the network. Due to the conclusion not qualitatively
changing, this paper elects a threshold of 0.8 for network edge
construction. When the Pearson correlation coefficient exceeds
0.8, the corresponding series value is set to 1. If the correlation
coefficient is less than 0.8, then the series value is set as 0. Using
the updated matrix as the adjacency matrix of the network, the
vaccination network is constructed accordingly. Next, progress
through each day sequentially to create new time windows. Based
on data from 2016 to 2022, a total of 2326 time windows were
generated. To examine the traits and features of the network, the
topological measures of the immunization network are evaluated
using standard statistical indicators.

Then, create a visualization of the vaccination network using
Gephi software (Heymann and Grand, 2013) as can be seen in
Fig. 2.

Theory
The topological indicators of the network. In this study, the
topological indicators of the network (Burcu and Vincent,
2013) are calculated and analyzed at macro, mesoscale, and
micro levels. The macro indicators consist of average degree,
average clustering coefficient, and network heterogeneity, while
the mesoscale indicators comprise modularity and maximal
connected subgraphs. The degree of centrality serves as the
micro indicator. By examining macro indicators, we can ana-
lyze how various vaccine nodes are grouped in vaccination
networks and the characteristic scale, enabling us to under-
stand the overall topology of the network. Meanwhile,
mesoscale indicators allow us to assess the strength of com-
munity division structures in vaccination networks. Addi-
tionally, micro indicators can determine the significance of
each vaccine node in the network and the correlation that
exists between them.

In every network, calculate and analyze these indicators.

Average degree (Tang et al., 2006) is a common attribute of the
network. The degree of a node in an undirected network is the
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Fig. 2 Visualization of the vaccination network. This is a visualization of

one of the sliding vaccination networks created using Gephi software.

number of edges connected to it. Average degree (k) is simply the
average degree of per node in the network, and we have

1n
(k) ==X k;. (1)
ni=1
where k; is the degree of node i. It is a rough measure of the
stability of the network. In the context of vaccinations, an
increase in the average degree of a vaccination network indicates
a stronger degree of aggregation and increased network activity,
resulting in greater stability.

The clustering coefficient (Saramiki et al, 2007) is an
important indicator in social networks, which is a coefficient
used to describe the degree to which vertices in the network are
clustered together. The clustering coefficient of the network is
based on a local clustering coefficient for each node

M,
Kk -1 @

where M; indicates the number of edges between adjacent nodes
of node i, and k;(k; — 1) indicates the number of possible edges
between adjacent nodes of node i. The average clustering
coefficient for the whole graph is the average of the local values
C;, and we have

C =

1 n
C=->¢, (3)
ni=1
where 7 is the number of nodes in the network. In the vaccination
network, the larger the average clustering coefficient of the
network is, the stronger the degree of linkage of vaccine nodes is,
and the denser the structure of the vaccination network is.
Network heterogeneity (Xiang et al., 2022) means that the
connection status (degree) of each node has a serious uneven
distribution. The degree of most nodes is small, while the degree
of a few nodes is large. In this paper, it is defined as

L (4)

(k)*’

where (k?) is the average of the squared degrees of the network,
(k) is the average degree of the network. In the vaccination

4

network, the greater the network heterogeneity, the more uneven
the degree distribution of vaccine nodes is, and the more
significant the difference of vaccine nodes is.

Modularity (Newman, 2006) is a measure of the quality of the
division of network modules (also known as node sets or
communities). If the modularity degree is high, the connections
within the node-set are tight. Modularity is defined as

1 kikj
QZ%%‘, <Aij_)/%>8(civcj)v (5)
where m is the number of edges, A is the adjacency matrix of
network, k; is the degree of node i, y is the resolution
parameter(simply use y = 1), and 8(c;,¢;) is 1 if i and j are in
the same community, else 0. In the vaccination network, the
larger the modularity is, the stronger the community structure of
the vaccination network is, the more consistent the detected
community with the characteristics of tight inside and loose
outside is, and the better the grouping quality is.

The maximal connected subgraph (Guo et al., 2016) represents
the connectivity of a network graph. It means any two vertices in
it can be connected by edges and cannot be extended by adding
more nodes or edges. In this paper, the index of measuring the
maximal connected subgraph is defined as

nS
s=", ©)
where n, is the number of nodes in the maximally connected
subgraph, and n is the total number of nodes in the network. In
the vaccination network, as S increases, the connectivity
component also increases, resulting in stronger network
connectivity.

Degree centrality (Wen et al., 2023) is a metric used to assess
the significance and impact of nodes within a network. Technical
abbreviations will be explained when first used. The average
degree can be distorted by nodes with the highest degree, making
degree centrality (Zhang and Luo, 2017) a better measure when
evaluating a node’s centrality based on its degree. Degree
centrality defines the fraction of nodes a given node i is
connected to. To ascertain the significance of each vaccine node,
it is crucial to understand that in the vaccination network, the
correlation between vaccines is stronger with a higher degree of
centrality of vaccine nodes. Therefore, vaccines with a stronger
degree of centrality are more critical. Every three months, nodes
are ranked based on their calculated degree of centrality in order
to assess their importance (Cadini et al., 2009).

Results

Basic information on vaccination. Nanan District covers an area
of 262.43 square kilometers, with jurisdiction over 8 subdistricts
and 7 towns. It has a permanent resident population of 1,197,600,
with an urbanization rate of 97.8%. The immunization coverage
rate among school-age children has remained at a high level,
reaching 98.23 percent in 2022. A total of 5,271,374 vaccination
data were collected from January 2016 to May 2022. There were
23 kinds of vaccines, among which 3,071,963 doses of COVID-19
vaccine were given, accounting for 58.28 percent of the total. The
vaccination data for each year are shown in Table 1.

Macroscopic topological property of vaccination network. The
network topological indicators of 2326 sliding windows are drawn
and analyzed using the Networkx library of Python software.

As can be seen from Fig. 3A, C, the average degree of
vaccination network and the average clustering coefficient of the
network are generally higher in spring and winter. As can be seen
from the boxplot of Fig. 3B, D, both the mean and quantile of (k)
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Year of inoculation COVID-19 vaccine doses Other vaccines doses Accumulated vaccination amount
From January to December 2016 0 210,262 210,262
From January to December 2017 0 299,898 299,898
From January to December 2018 0 331,015 331,015
From January to December 2019 0 382,261 382,261
From January to December 2020 2294 312,273 314,567
From January to December 2021 2,594,056 477,882 3,071,938
From January to May 2022 475,613 185,820 661,433
Accumulated vaccination amount 3,071,963 2,199,411 5,271,374
A B
10.01 10.01 “
™ ’| P A B EE
A l | A
¥ 50 | \ ¥ 5.0
ki —
2.51 251 Lﬁ :
b - 0.01 , .
2016 2017 2018 2019 2020 2021 2022 before ] after
time (Average degree) Pl

i
. ‘MW WM

UO:Z: V*W 00:2- S |

|
|

0.0 0.0 .
2016 2017 2018 2019 2020 2021 2022 before after
time 3 p iod
(Average clustering coefficient ) =
E
F
4 .
!
) |
3

2] »-'J: Jﬁ‘g M MMM‘MJ 'JJ LWL

(]

Awﬁ
|
\
L

2016 2017 2018 2019 2020 2021 2022 before after
time period

(Network heterogeneity)

Fig. 3 Macroscopic topological property changes of vaccination network. A The line chart shows the variation in the average degree in the vaccination
network. B The boxplot shows the comparison of the average degree in the vaccination network before and after the COVID-19 outbreak. € The line chart
shows the variation of the average clustering coefficient in the vaccination network. D The boxplot shows the comparison of the average clustering
coefficient in the vaccination network before and after the COVID-19 outbreak. E The line chart shows the variation of network heterogeneity in the
vaccination network. F The boxplot shows the comparison of network heterogeneity in the vaccination network before and after the COVID-19 outbreak.
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Fig. 4 Mesoscale topological property changes of vaccination network. A The line chart shows the changes in the maximally connected subgraph in the
vaccination network. B The boxplot shows the comparison of the maximally connected subgraph in the vaccination network before and after the COVID-19
outbreak. € The line chart shows the changes in the modularity of the vaccination network. D The boxplot shows the comparison of the modularity in the

vaccination network before and after the COVID-19 outbreak.

and C increase significantly after the epidemic, indicating that the
average degree and average clustering coefficient of the vaccina-
tion network increased after the epidemic.

The average degree and clustering coefficient values are
elevated during spring and winter, suggesting that the vaccination
network is closely linked and increasingly active. Post-epidemic,
the values of average degree and clustering coefficient demon-
strate an increase in trend. On one hand, the expansion of vaccine
varieties leads to an increase in nodes, which in turn reinforce the
connections within the network. On the other hand, the
interrelation of the entire vaccination network is becoming
increasingly intimate. This suggests an increase in vaccination
activities resulting from seasonal illnesses. The COVID-19
pandemic has raised public awareness of vaccination, and health
infrastructure has likely improved in certain regions, leading to
greater accessibility to vaccination networks.

As can be seen from the Fig. 3E, F, the network heterogeneity
decreases after the epidemic, indicating that the degree distribu-
tion of vaccine nodes is uneven before the epidemic, and there are
some vaccine nodes with high degrees. However, following the
epidemic, there has been a reduction in network heterogeneity,
which indicates that vaccine nodes’ degree is becoming average
and small. This proposes that the average interactivity of the
vaccination network has diminished after the outbreak. In light of
the COVID-19 outbreak, governments and healthcare profes-
sionals have implemented far-reaching measures to endorse

6

vaccination and guarantee a fairer distribution of vaccination
opportunities. This approach renders the network less hetero-
geneous, as a more extensive population receives immunization.
Reduced network heterogeneity is commonly viewed as advanta-
geous as it suggests greater accessibility of vaccination to the
public and increased societal acceptance of vaccination, resulting
in higher vaccination coverage and a reduction in the spread of
outbreaks.

Mesoscale topological property of vaccination network. As can
be seen from the boxplot of Fig. 4B, D, the mean and quantile of
the values of maximally connected subgraph S and modularity Q
decrease after the epidemic, indicating that the strength of the
community structure of the vaccination network is weakened
after the epidemic, and the internal co-activity between vaccines
is weakened due to the epidemic. This implies that greater
accessibility to vaccination and the availability of diverse vaccines
have led to higher immunization rates and decreased prevalence
of particular vaccine types within populations. Authorities and
governments may have implemented policies and programs to
promote the use of various vaccines. This could entail the
implementation of diverse vaccine types in various regions or at
different periods, to guarantee sufficient vaccine stocks. Such
policies might have impacted the interrelationship among vac-
cines in the community.
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Fig. 5 Ranking changes in node-degree centrality of vaccines. This figure shows the changes in the node-degree centrality ranking of 23 vaccine nodes in

the vaccination network from 2016 to 2022.

Micro topological property of vaccination network. As shown
in Fig. 5, the node with the highest average ranking of node-
degree centrality is the hepatitis A vaccine (HepA). The top five
nodes are HepA, EV71 vaccine, JEV vaccine, MMR vaccine, and
Hib vaccine. Among them, the node centrality ranking of HepA
vaccine is basically high, indicating that the hepatitis A vaccine
has the strongest correlation with other vaccines. This implies
that governments or health authorities could have implemented a
well-coordinated vaccination approach, encouraging or schedul-
ing the administration of various vaccines simultaneously at
specific times or events. Such a synergistic strategy has the
potential to improve vaccination efficacy whilst guaranteeing that
individuals receive immune protection from multiple vaccines.
Thus, the pronounced correlation between the hepatitis A vaccine
and other vaccines may be indicative of an alignment in health
policies.

Upon dissection and examination of the node-degree centrality
ranking chart for the vaccination network, it has been discovered
that there are fluctuations in the ranking of various types of
vaccines during different periods and seasons. This implies that
the correlation between different vaccines alters at distinct time
points. Consequently, we proceed to examine the correlation of
diverse vaccine types.

a. Immunization program vaccines
Fig. 6 shows the time series of doses of immunization
program vaccines from 2016 to 2022. Based on the curve
shown in Fig. 7, no discernible pattern has been identified.
Immunization program vaccines are typically administered
on a fixed schedule for each child, making them less
vulnerable to outbreaks.

b. Flu
As shown in Fig. 8A, the ranking of node centrality of
influenza vaccine is higher in spring and winter, indicating
a higher correlation between spring and winter. The
ranking of node centrality of influenza vaccine basically
reaches a peak in winter, indicating the highest correlation
in winter.
Influenza typically peaks during the winter, making flu
vaccination essential during spring and winter. Addition-
ally, seasonal diseases that are more prone to spreading
during specific periods may also necessitate vaccination.

Consequently, the correlation between vaccine uptake and
seasonality could indicate the development of seasonal
vaccination strategies by public health authorities to
guarantee optimal protection during influenza outbreaks.
During flu season, health departments may recommend
additional vaccinations to enhance immune protection in
individuals who receive the flu vaccine. This approach,
known as the cascade effect, encourages people to consider
getting other vaccines to boost their immune system’s
response, reducing the likelihood of contracting multiple
infectious diseases simultaneously. During flu season, the
demand for flu vaccines rises sharply, requiring adjustment
of the vaccine supply chain to guarantee adequate vaccine
distribution. This may lead to supply chain modifications
for other seasonal vaccines as well to meet demand. Thus, a
strong correlation implies the necessity of supply chain
management.

VZV

As shown in Fig. 8B, the node-degree centrality ranking of
the Varicella vaccine is higher in spring and winter,
indicating that the Varicella vaccine has a strong correlation
in spring and winter. The Varicella virus is a seasonal
outbreak, with a higher incidence rate during the spring
and winter seasons. It can be compared to the flu vaccine,
where there is a strong association with the spring and
winter seasons.

PCV

As shown in Fig. 8C, the degree centrality ranking of the
pneumonia vaccine shows an upward trend, and the degree
ranking increases significantly from the end of 2019,
indicating that the pneumonia vaccine is increasingly
related. After the outbreak of COVID-19 in 2020, degree
centrality has ranked at the highest level of stability,
indicating an extremely strong correlation with the
pneumonia vaccine. It is essential for preventing respiratory
illnesses, and therefore its relevance has increased sig-
nificantly since the outbreak. The global outbreak of
COVID-19 has caused widespread public health concerns.
Pneumonia vaccines are regularly administered to prevent
various pneumonia-related illnesses, which can exacerbate
public health challenges during such outbreaks. Therefore,
healthcare professionals should take action to enhance the
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promotion and vaccination of pneumonia vaccines. significant increase thereafter, suggesting significant
Encouraging the administration of such vaccines alongside enhancement in HPV correlation after 2020. The nine-
others would improve individuals’ immune protection. valent HPV vaccine began to gain popularity in outpatient

e. HPV clinics around 2020. Fewer people had received the HPV
As illustrated in Fig. 8D, the degree centrality ranking of vaccine in China before 2020, leading to a noteworthy
HPV was comparatively low prior to 2020, but saw a increase in HPV vaccine correlation after 2020.
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from 2016 to 2022.

f. Quad and Penta Vaccine
As depicted in Fig. 8E, the node-degree centrality ranking
of Quad vaccine and Penta vaccine is staggered, indicating
an alternative correlation. Moreover, the ranking of the
Penta vaccine is lower when the ranking of the Quad
vaccine is higher. The quad and penta vaccines are
frequently administered to prevent several related infec-
tions, differing slightly in their composition and purpose.
The public may opt for either vaccine based on medical
counsel, personal health circumstances, and vaccine avail-
ability. The public may opt for either vaccine based on
medical counsel, personal health circumstances, and
vaccine availability. Therefore, individual requirements
and medical recommendations determine vaccine prefer-
ences. The accessibility and availability of vaccines can
impact individuals’ decisions to get vaccinated. The quad
vaccine may be more prevalent or accessible in certain
regions or time periods compared to others, influencing
individuals’ choices. Such disparities in vaccine availability
can lead to individuals having to choose between the
available vaccines.
g. COVID-19 Vaccine

As demonstrated in Fig. 8F, the COVID-19 vaccine has a
consistently low degree centrality ranking, suggesting a weak
correlation with other vaccines. This highlights its independent
nature within the vaccination system, rendering it less susceptible
to external factors. During an outbreak and spread, health
authorities and governments are likely to prioritize the admin-
istration of COVID-19 vaccinations to contain the spread of the

epidemic as soon as possible. This may result in the timing and
location of the COVID-19 vaccine becoming distinct from that of
other vaccines, thereby reducing their correlation (Figs. 8 and 9).

Discussion

The paper investigates changes in the vaccination network before
and after the COVID-19 outbreak by constructing a network and
studying it from macro, micro, and mesoscale perspectives.
Analysis of vaccination data from the Nanan District of
Chonggqing yields valuable insights into the dynamics and char-
acteristics of the vaccination network. These findings hold sig-
nificant implications for comprehending the effects of the
COVID-19 crisis, seasonal fluctuations, and the correlation pat-
terns between various vaccine types.

One of the main discoveries in our investigation is the
enhancement in correlation and activity within the vaccination
network subsequent to the COVID-19 pandemic. This finding is
consistent with the public’s heightened awareness and emphasis
on vaccination in response to the pandemic. Within this context,
the COVID-19 vaccine played a significant role in stimulating the
observed increase in correlation and activity. The prioritization
and widespread administration of COVID-19 vaccines is likely to
have resulted in more individuals engaging with the healthcare
system and a general increase in vaccination rates. Notably, our
analysis has also uncovered a declining trend in the community
structure and average interaction within the vaccination network
in the post-pandemic era. There may be several factors that
contribute to this finding. It is possible that the emphasis on
COVID-19 vaccinations caused a temporary shift of resources
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and attention from other routine vaccinations, leading to
decreased interaction and community cohesion within the vac-
cination network. Furthermore, alterations in public health
priorities and vaccination strategies during and after the pan-
demic may have impacted the network’s overall dynamics.

The hepatitis A vaccine (HepA) has been identified as the node
with the highest average ranking of node-degree centrality,
indicating its crucial role within the vaccination network. This
finding highlights HepA'’s significance in the local immunization
program. Furthermore, the fluctuating rankings of various vac-
cine types in terms of node-degree centrality imply differing levels

10

of correlation and interconnectedness among the vaccines at
different time points. An understanding of these dynamic inter-
connections can enable vaccination strategies to be better
informed, along with resource allocation and targeted interven-
tions for specific vaccine types. The stability and consistency
noted in the vaccines included in the NIP emphasize the sig-
nificance of adhering to fixed vaccination schedules. The NIP
vaccines comply with a standardized immunization cycle for each
child, offering a dependable framework for vaccination planning.
This stability reduces the likelihood of outbreaks and ensures
comprehensive coverage across the vaccination network.
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The innovation point of this study is to build a topological
network to study vaccination issues in public health. Studying the
nature of the topological network reflects the changes in the
vaccination system before and after the epidemic, in various sea-
sons, and under the influence of policies, and explains the changes
in the network in combination with the practical factors of public
health. By constructing Vaccination networks, disparities in vac-
cine uptake among populations can be identified and analyzed.
This enables targeted vaccine promotion and outreach efforts,
ultimately leading to improved vaccine coverage, increased
population immunity, and effective control and prevention of
infectious disease outbreaks and transmission. Vaccination net-
works assist researchers in evaluating the effectiveness of different
vaccine administration strategies and optimizing vaccination
plans. Analyzing the network topology facilitates the identification
of optimal vaccine administration strategies, thereby enhancing
vaccination efficiency and the protection of target populations.
Constructing Vaccination networks helps researchers forecast the
development trends and transmission pathways of epidemics,
enabling risk assessment. Utilizing network models, different
vaccine administration scenarios can be simulated to assess their
impact on epidemic transmission, providing scientific evidence for
formulating prevention and control strategies.

This investigation employs mathematical methods to analyze
public health concerns, aiding in the more precise prognostica-
tion of disease prevalence and optimal allocation of resources,
including vaccines, for healthcare entities, and in maximizing
benefits under restricted resources, allowing healthcare providers
to offer more medical services. The outcomes of this inquiry may
assist health officials in formulating more effective policies and
strategies to safeguard public health.

Limitations. This study is limited in several ways. Firstly, it has
not explored and explained some vaccines at the micro level
whose topological characteristics have stayed unchanged.

Secondly, the vaccination data in the Nanan District of
Chonggqing has been modeled and analyzed, which is inadequate
to portray the vaccination network in all regions. Extending
research into vaccination across a broader geographic area could
yield significant benefits. Firstly, varying regions may exhibit
disparate epidemiological characteristics, including infectious dis-
ease transmission rates, infection prevalence, and the prevalence of
variants. These disparities will impact vaccination needs and
strategies. Secondly, disparities may exist in the distribution of
healthcare infrastructure and resources across geographical regions.
Certain regions may possess superior medical facilities and vaccine
administration sites, thus facilitating the delivery of vaccination
services. Oppositely, other regions may encounter challenges related
to supply chain limitations and insufficient resources. Moreover,
socio-cultural factors and attitudes in various geographical locations
may affect the reception of vaccines. As a result, some regions may
exhibit a higher rate of vaccination uptake, while others may
experience vaccine hesitancy or refusal. Therefore, vaccination
research necessitates the consideration of these factors, warranting
the adoption of diverse communication and education strategies.

Thirdly, the findings are specific to the Chinese context and may
not directly apply to other countries or regions. We tried to expand
the study to other regions, but no publicly available data was
available. Therefore, caution should be exercised when generalizing
these results. In the future, more in-depth analysis and research can
be conducted through more in-depth data analysis.

Conclusion
In conclusion, our study offers significant insights into the
dynamics of the vaccination network in the Nanan District of

Chonggqing. The enhanced correlation and activity following the
pandemic, alongside the weakened community structure and
average interaction, underscore the intricate interplay of factors
influencing vaccination patterns. The findings underscore the
need to adapt vaccination strategies to address evolving dynamics
and promote consistent coverage. Future studies can expand on
these discoveries to guide focused intervention strategies, improve
immunization programs, and advance public health outcomes
within the vicinity. Public health officials and policymakers can
enhance their vaccination strategies in specific regions by utilizing
the regularity of vaccinations. Initially, it is important to establish
a fitting vaccination schedule that is aligned with the habits and
requirements of the target vaccination population. For instance,
factoring in seasonal and holiday elements should aid in deter-
mining the optimal timing for vaccination. Secondly, it is crucial
to ensure an adequate supply of vaccines in line with vaccination
schedules. Finally, it is necessary to promote and encourage
vaccination, as well as raise public awareness of its importance.

Data availability

The datasets generated during and/or analyzed during the current
study are available from the corresponding author upon reason-
able request.
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