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The present study aims to explore the spatial and temporal changes and drivers of carbon

emission patterns in China, with the aim of encouraging county-level carbon reduction

policies in pursuit of sustainable development. To this end, we have studied the spatial

disparities, spatio-temporal patterns, and evolution characteristics of carbon emissions using

county-level carbon emissions data from China between 2002 and 2017. Additionally, we

have comprehensively considered the dynamic impacts of both county-level and city-level

environmental factors on carbon emissions based on an optimized hierarchical random forest

model. The results show that the carbon emissions of China’s counties have generally fol-

lowed an upward trend before stabilizing. Notable characteristics include elevated carbon

emissions in the northern regions and reduced carbon emissions in the southern areas.

Additionally, there are higher carbon emissions in the eastern regions compared to lower

emissions in the western and inland areas, with discernible local clustering patterns. These

findings underscore the importance of tailoring the government’s emission reduction strategy

to address the phased variations in carbon emissions across different districts and counties. It

is essential to emphasize the key role of major urban agglomerations and metropolitan areas

in carbon emission reduction, while also addressing potential emission sources in the

resource-rich, yet technologically disadvantaged, northwest region. Furthermore, improving

energy efficiency through technological innovation should be the primary means of carbon

emission reduction at the county level.
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Introduction

W ith the massive consumption of fossil energy, global
climate change has become one of the most con-
cerning environmental challenges in the 21st century.

Climate change is easy to trigger climate disasters, especially
climate warming, which leads to the rise of sea levels, forest fires,
an increase of extreme climate events (such as drought, flood, and
dust storm), and the re-emergence of prehistoric viruses, posing a
serious threat to low-lying areas and biodiversity, and the risk of
global epidemic panic (Mora et al. 2018; Trisos et al. 2020; Xia
and Zhang 2022). Greenhouse gas emissions are a major con-
tributor to climate warming. Therefore, since the Kyoto Agree-
ment came into effect, reducing greenhouse gas emissions and
promoting a low-carbon economic development model have
gradually attracted the attention of all countries. At the Con-
ference of Parties (COP26) held in 2021, 137 countries signed the
UN climate Convention and committed to achieving net zero
emissions by 2050, accounting for more than 80% of global
greenhouse gas emissions (Fuss et al. 2020).

As the world’s largest emitter and the second-largest economy,
China’s urbanization and rapid industrial development are often
accompanied by a large amount of energy consumption and CO2

emissions. According to statistics, in 2018, China’s CO2 emissions
reached 9.4Gt, accounting for 27.8% of the global total (British
Petroleum 2019). This high dependence on energy consumption
for economic growth is bound to put enormous pressure on the
environment and eventually slow down China’s urbanization
process. Therefore, to address the challenges related to climate
change and achieve sustainable economic development, China
has set a series of CO2 emission reduction targets. The National
Climate Change Plan (2014–2020) issued in 2014 clearly states
that by 2020, carbon dioxide emissions per unit GDP will
decrease by 40–45% compared with 2005, and the proportion of
non-fossil energy in primary energy consumption will increase by
about 15% (Xu et al. 2016). Meanwhile, the Chinese government
made a commitment in 2019 to peak carbon emissions by 2030
and strive to achieve carbon neutrality by 2060 (Cui et al. 2019).
However, the realization of these goals requires not only the
optimization of the overall energy structure and industrial
transformation and upgrading at the national level, but also
energy conservation and emission reduction measures and pol-
lution control by governments at all levels.

A review of previous studies reveals that the spatial distribution
of carbon emissions in China exhibits significant non-equilibrium
and agglomeration effects. Carbon emissions and per capita
carbon emissions in the eastern region, especially the eastern
coastal cities, are significantly higher than those in the central and
western regions. These cities are the center of energy consump-
tion and transportation carbon emissions (Zheng and Tang
2023). An analysis of regional differences in China’s carbon
intensity across the west, central, east, and northeast regions
indicates that spatial disparities primarily stem from within-
region variations, with the central region contributing the most to
overall differences and the western region’s influence gradually
increasing (Shen et al. 2023). In addition, Major cities such as
Beijing, Shanghai, Tianjin, Chongqing, Chengdu and Suzhou
have substantially higher carbon emissions than other cities, with
obvious spatial spillover effect on the surrounding areas, and the
changes among neighboring cities will have mutual influence
(Liu et al. 2022; Liu et al. 2021).

To understand the reasons for spatial heterogeneity or aggre-
gation of carbon emissions, evaluate the environmental impact,
clarify carbon reduction paths, and develop low-carbon targets,
studying the factors that affect carbon emissions has become an
important research direction. Wang et al. (2022) established
datasets of influencing factors such as resident population, GDP,

the proportion of output value of secondary industry in GDP, the
scale of construction land, and investment in fixed assets in 1042
counties of the Yangtze River Economic Belt in China. Based on
these datasets, they thoroughly considered the spatial correlation
between each influencing factor and carbon emissions. Using a
geographical weighted regression model, they found that the
population size is the key determinant of energy consumption in
the study area, with population expansion being the leading
contributor to carbon emission increases. Qi et al. (2022) took the
county unit of Zhejiang Province as the research object and
employed the spatial error STIRPAT model to reveal that the
increase of per capita GDP and the proportion of secondary
industry had positive and negative effects on the increase of
carbon emissions, respectively. They also showed that the socio-
economic factors affecting the carbon emissions of counties are
spatially correlated. Qin et al. (2022) concluded that the imbal-
ance of energy intensity, resource allocation and labor force are
the main drivers of the imbalance of carbon emission distribution
among provinces and regions in China, as determined through a
spatio-temporal decomposition method. Liu et al. (2022) took 283
prefecture-level cities in China as samples and found that digital
technology could have a positive impact on carbon emission
reduction through “spillover effect” and reduce carbon emissions
in local and surrounding cities. Summarizing the above studies,
the environmental factors affecting carbon emissions can be
decomposed into four aspects: population size, economic model,
energy structure and means of reducing carbon emissions.

Considering the vast territory of China, there are significant
differences in resource endowment, industrial structure, economic
development model, and environmental carrying capacity among
different cities. It is necessary to clarify the spatial heterogeneity,
evolution trend, and driving mechanism of carbon emissions in
different regions, so as to formulate industrial, energy, and envir-
onmental protection policies according to local conditions. At
present, the research on carbon emission generally takes “unitized”
or “modular” regions as the target, most of them take the country,
province, and city as the division unit, and a few are oriented to the
county-level scale. The exploration of the spatio-temporal dis-
tribution pattern of carbon emissions in county units and the
proposal of systematic emission reduction measures are not only
the extension of the existing research on carbon emissions at a finer
granularity but also lay the foundation for further clarifying the
spatial relationship between economic, energy, population and
other social factors and carbon emissions. At the same time,
because it is difficult to refine the night light data and energy
consumption data to the county scale, the research on the driving
mechanism of carbon emission spatial differentiation cannot cover
all the influencing factors, and thus cannot provide help for the
development of carbon emission policies at the county level.

In this context, we took the total carbon emissions of 2877
county units and 371 city units in China as the research object.
Based on spatial autocorrelation analysis and standard deviation
ellipse, we refined the spatial and temporal distribution pattern
and evolution trend of carbon emissions at the county scale. To
further collect the county-level or city-level influencing factor
data of population, economic model, economic model, energy
structure and carbon reduction means, the multi-level random
forest (RF) model is used to quantify the nonlinear impact of
environmental factors on carbon emissions and reveal the driving
mechanism of carbon emissions spatial differentiation. Relevant
studies have enriched the understanding of the differences in
China’s carbon emissions under the demand of multi-spatial scale
analysis, and provided regionally targeted scientific energy con-
servation and emission reduction measures and pollution control
means for the realization of the “double carbon” goal.
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This paper is organized as follows: Section 2 presents the
methods and data collection techniques employed in the research.
In Section 3, we delve into the results, highlighting the spatial
disparities, spatio-temporal patterns, and evolution characteristics
of carbon emissions. Section 4 provides a discussion on the
implications of our findings, particularly summarizing the key
takeaways and suggesting directions for future research.

Data and methodology
Data. Previous studies have relied on published energy use data to
calculate county-level carbon dioxide, but because county-level
energy use information is often missing, estimated carbon dioxide
emissions are limited by study area and study duration. Based on
the above considerations, this paper adopts the carbon emission
data at the county and city levels in the CEADs database
(www.ceads.net). The database, jointly established by Chinese,
British, American and European research institutes, presents the
latest research results of China’s multi-scale energy, carbon
emissions and socio-economic accounting inventory, including
sub-databases such as energy inventory, carbon dioxide inven-
tory, industrial process carbon inventory, emission factors and
input-output tables (Chen et al. 2020). Multi-scale and long time
series (1997–2015) of national, provincial and urban energy and
CO2 emission data are provided.

Summarizing previous studies (Liu et al. 2022; Qi et al. 2022;
Qin et al. 2022; Wang et al. 2022), the potential influencing
factors of carbon emissions are selected based on the following
four aspects: population size (total population (TP)), economic
model (added value of primary industry(AVPI), added value of
secondary industry (AVSI), the number of industrial enterprises
above the scale (NIES), Energy structure (electricity consumption
(EC)), average value of nighttime light data (NL) and means of
reducing carbon emissions (carbon sequestration value of
terrestrial vegetation (CSTV), the total index score of innovation
and entrepreneurship (TISIE).

Among them, County-level impact indicators include CSTV,
EC, NL, AVPI, AVSI, and TP, while city-level impact indicators
encompass NIES, EC, NL, and TISIE. It is noteworthy that, CSTV
is also obtained from CEADs database; TISIE is obtained from
Enterprise Big Data Research Center of Peking University
(https://www.cer.pku.edu.cn/); EC (Chen et al. 2022) and NL
data (Y Wu et al. 2022) are obtained by summarizing the original
1 km*1 km resolution raster data according to county-level and
city-level administrative units; Additionally, AVPI, AVSI, TP, and
NIES are all obtained from China Statistical Yearbook. Table 1
shows the descriptive statistics and correlation analysis results of
the multi-year average values of the potential influencing factors
of carbon emissions from 2002 to 2017.

Research method. To comprehensively examine the geographical
differences and trends of carbon emissions in China, we utilize
spatial autocorrelation to describe the overall spatial distribution
pattern and local clustering of carbon emissions. Subsequently,
the standard deviation ellipse characterizes the spatial features of
China’s carbon emissions, including the trend of center of gravity
migration, dispersion, and directional trends. Finally, we capture
the complex nonlinear relationship between carbon emissions
and county-level and city-level influences through an improved
hierarchical RF model.

Spatial autocorrelation reflects the correlation degree between
an attribute value on a unit in the study area and the same
attribute value on the adjacent unit, which can be divided into
global spatial autocorrelation and local spatial autocorrelation.
Global spatial autocorrelation reflects the aggregation of a
phenomenon based on the overall spatial distribution. Global
Moran’s I is used to measure global spatial autocorrelation, and
the formula is as follows:

I ¼ n

∑n
i¼1 xi � �x

� �2
∑n

i¼1 ∑
n
j¼1 Wij xi � �x

� �
xj � �x

� �

∑n
i¼1 ∑

n
j¼1 Wij

ð1Þ

where, n represents the number of spatial units; xi and xj
represents the attribute values of spatial objects i and j
respectively; Wij is the spatial weight matrix; represents the
adjacency relationship between spatial objects i and j.

Local spatial autocorrelation is used to analyze the correlation
degree between a spatial element and its neighbors, and to
determine the spatial hot areas or high incidence areas of the
attribute values of spatial objects. The calculation formula is as
follows:

Ii ¼ xi � �x
� �∑

n
j¼1 Wij xj � �x

� �

1
n∑

n
j¼1 xj � �x

� �2 ð2Þ

Where, xi and xj respectively represent the attribute values of the
unit i and j, and Wij is the spatial weight matrices. When the
attribute value of a spatial unit is similar to that of its neighbors,
the corresponding value Ii is positive; when the attribute value of
a spatial unit is different from that of its neighbors, the
corresponding value Ii is negative.

Standard deviation ellipse is a common spatial statistical
technique to measure the distribution form of geographic
elements, which can reflect the overall dominant distribution
direction of spatial elements and the dispersion degree of each
direction (Gao et al. 2022). By applying the standard deviation
ellipse, we can identify the concentration and direction of carbon
emissions, which aids in understanding regional disparities and

Table 1 Descriptive statistics and correlation explanation of potential influencing factors of carbon emissions (multi-year
average value).

Influencing factors Min Max Mean Std Pearson correlation

county-level TP (105) 1 371.09 48.03 34.17 0.40a

AVPI (108 ¥) 0.01 75.53 12.54 12.87 0.23a

AVSI (108 ¥) 0.22 2548.38 58.67 100.44 0.54a

EC (GWh) 7.20 34609.86 1208.91 1557.09 0.74a

NL (nW/cm2/sr) 0 63.01 8.96 13.94 0.29a

CSTV (MT) 0 116.99 3.91 5.48 −0.07a

city-level NIES 0 11523.50 628.62 1096.23 0.74a

EC (GWh) 12.63 67992.01 9374.77 9821.54 0.80a

NL (nW/cm2/sr) 0 56.71 5.06 7.54 0.43a

TISIE 0 100 39.62 31.83 0.53a

ameans 1% significance level.
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informing targeted policy interventions. The center of standard
deviation ellipse can be expressed as below:

�x ¼ ∑n
i¼1 wixi
∑n

i¼1 wi
;�y ¼ ∑n

i¼1 wiyi
∑n

i¼1 wi
ð3Þ

Where �x and �y are longitude and latitude coordinates of the
incidence center of lung cancer in Henan; n is the total number of
districts and counties; xi and yi are the central longitude and
latitude coordinates of the counties i; and wi is the incidence rate
of lung cancer in space unit i.

We capture the complex nonlinear relationship between
carbon emissions and various factors at different spatial scales
(i.e., county and city levels) through the Hierarchy RF Model. The
hierarchical structure of the model accounts for the nested nature
of the data, which enables us to simultaneously analyze the effects
of factors at multiple levels. The model has been improved based
on the hierarchical linear model (HLM), which is a model that
considers the interaction between data within a group. It not only
takes into account the influence of micro independent variables
on dependent variables, but also considers the interaction
between macro independent variables and dependent variables,
overcoming the tendency of homogeneity within a group among
nested data. The HLM formula adopted in this study is as follows:

The first layer:

y carbon ¼ ε1 þ β1x1 þ β2x2 þ β3x3 þ β4x4 þ β5x5 þ β6x6 ð4Þ
The second layer:

β2 ¼ f7x7 þ ε2 ð5Þ

β3 ¼ f8x8 þ f9x9 þ ε3 ð6Þ

β5 ¼ f10x10 þ ε4 ð7Þ
The factorization is as follows:

y carbon ¼ ε1 þ β1x1 þ f7x7x2 þ ε2x2 þ f8x8x3 þ f9x9x3 þ ε3x3
þβ4x4 þ f10x10x5 þþε4x5 þ β6x6

ð8Þ
Where y_carbon represents the county-level carbon emissions, βi
represents the regression coefficient of the i th independent
variable of the first layer, ε1 represents the regression constant of
the first layer, fi represents the regression coefficient of the i th
independent variable of the second layer, and ε2 and ε3 are the
regression constants of the second layer.

In general, linear models can capture the linear relationship
between variables, but if there is some nonlinear functional
relationship between variables, or there is a strong hierarchical
relationship between independent variables and dependent vari-
ables, it is difficult to use linear models to achieve effective data
fitting. At the same time, the HLM model can judge the positive
and negative effects of each independent variable on carbon
emissions, but it cannot quantify the impact degree of each variable
on carbon emissions. Based on the above two considerations, this
paper uses RF to improve HLM. RF is a set model based on
decision trees. In regression experiments, RF integrates the results
of multiple different decision trees by “bagging”method, which not
only achieves the purpose of nonlinear modeling but also weakens
the influence of overfitting of a single decision tree. In addition, the
increment of mean square error can be used to calculate the
importance degree of self-variables.

Results
Spatial distribution pattern and spatial-temporal evolution of
carbon emissions at the county level. From 2002 to 2017, the
total carbon emissions of all districts and counties in China showed

an overall upward trend (Fig. 1), and the spatial distribution gra-
dually became stable, with obvious characteristics of higher carbon
emissions in the east and lower carbon emissions in the west,
higher carbon emissions in the north and lower carbon emissions
in the south, higher carbon emissions in the coastal areas and lower
carbon emissions in the inland areas, and local agglomeration.
Northern distribution with many industries in China, such as the
three northeastern provinces, Inner Mongolia, Hebei, and Shan-
dong provinces, the city industrial development mainly depends on
the resources superiority, energy consumption is given priority to
coal, urban development is highly dependent on carbon-intensive
industries, this kind of resource-oriented extensive economic
development mode led to the northern city of carbon emissions is
generally on the high side.

When faced with the problem of resource depletion, an
economic downturn will occur, which is the main reason why the
increase of carbon emissions in Northeast China, a traditional
industrial base, has decreased in recent years. In addition to the
agglomerations in coastal urban clusters and industrial bases such
as the Beijing-Tianjin-Hebei region, Shandong Peninsula urban
cluster, Yangtze River Delta region, and Pearl River Delta region,
the carbon emissions of provincial capital cities and their adjacent
counties are also significantly higher than those of other regions
in the province, indicating a clear “core-edge” pattern in the
distribution of carbon emissions within each province. Therefore,
accelerating industrial transformation and low-carbon develop-
ment in economically developed areas is of great significance to
achieve China’s overall emission reduction target and drive the
green and sustainable development of surrounding cities.

To further realize the quantitative evaluation of carbon
emissions in China, we describe the overall spatial distribution
of carbon emissions and the clustering or dispersion of local
spatial distribution based on global Moran’s I and local LISA
clustering graphs, so as to reflect the spatial clustering
characteristics of carbon emissions distribution. The global
Moran’s I and corresponding significance test results of China’s
carbon emissions in 2002, 2007, 2012, and 2017 are shown in
Table 2. The Moran’s I of carbon emissions in China’s counties
were all greater than 2, and the Z value was greater than 1.96,
indicating that they passed the significance test at the level of 99%
and were statistically significant. The overall distribution of
carbon emissions in geographical space showed significant spatial
aggregation rather than random dispersion. At the same time,
Moran’s I showed an inverted “U” -shaped trend, increasing from
0.299 in 2002 to 0.338 in 2007, and then continuously decreasing
to 0.322 in 2017. This indicates that the agglomeration level of
carbon emissions in China’s counties increased first and then
decreased, and gradually became stable in the later stage.

Based on the global spatial autocorrelation analysis, the LISA
diagram was further used to analyze the local spatial agglomeration
and dispersion of carbon emissions in counties (Fig. 2), and it was
found that there were obvious aggregation areas in the whole study
period. On the whole, the spatial clustering pattern of carbon
emissions in counties was dominated by high clustering and low
clustering, and the number of districts and counties with high
clustering gradually increased, while the number of districts and
counties with low and low clustering constantly decreased. In 2002,
the high cluster areas were mainly distributed in the Bohai Rim
economic circle (Beijing-Tianjin-Hebei region, central and south-
ern Liaoning region and Shandong Peninsula urban agglomera-
tion), Yangtze River Delta region, Pearl River Delta region, and
Changchun - Shenyang region, all of which are important light or
heavy industry bases in China, with typical characteristics of high
energy consumption, high emissions, and clustering of workers.

As time went by, especially under the influence of the decline
of the pillar industrial industry in Northeast China and the rise of
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the industry in Northwest China, the original high-altitude
agglomeration areas in the central and southern Liao, Changchun
and Shenyang disappeared, and the new high-altitude agglomera-
tion areas in the northern and central Inner Mongolia, Ningxia,
and southern Xinjiang began to appear in the later period. The
high-concentration area has an obvious tendency to move to the
west. The low-concentration areas were relatively concentrated in
Sichuan, Chongqing, Hunan, and Jiangxi during the study period.
The low and low-concentration areas in the west of China
gradually disappeared with the increase of high-concentration
areas nearby. It is foreseeable that the energy consumption level
in Northwest China increases synchronously with the urban
development level, but the energy utilization and carbon

reduction measures have a lag compared with the developed
coastal cities, and it may become a major carbon emission
province in China for a long time in the future.

Based on the preliminary identification of the spatial and
temporal distribution characteristics of carbon emissions in
China, it is of great significance to scientifically identify the
evolution characteristics, change trend, and development law of
the spatial pattern of carbon emissions, so as to clarify the focus of
the next step of emission reduction work for relevant departments
and cooperate with local governments to formulate scientific
strategies for energy conservation and sustainable development.
To this end, we used the barycentric standard deviation ellipse to
quantitatively explain the centrality, directionality, and dispersion
of the spatial and temporal distribution of carbon emissions in
China’s counties (Fig. 3). From 2002 to 2017, the standard
deviation ellipses were basically distributed in central and eastern
China, showing a “northeast to southwest” spatial distribution
pattern. Huaiyang, Taikang, Yanling, and Weidu counties were
found in the Huaiyang, Huaiyang, Taikang, Yanling, and Weidu
counties. During the 15 years, the center of gravity generally
moved to the northwest, and the distances moved were 25.79 km,
66.90 km, and 46.09 km every five years. From 2002 to 2007, it
moved to the north obviously, and from 2007 to 2017, it mainly
moved to the west.

Fig. 1 Spatial and temporal patterns of carbon emissions at the county level in China for the years. a 2002, b 2007, c 2012, and d 2017.

Table 2 Moran’s I analysis results of China’s global carbon
emissions from 2002 to 2017.

Year Moran’s I Z P Spatial pattern

2002 0.299 27.751 0.01 Cluster
2007 0.338 32.423 0.01 Cluster
2012 0.326 31.545 0.01 Cluster
2017 0.322 29.446 0.01 Cluster
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Fig. 2 LISA agglomeration of carbon emissions at the county level in China for the years. a 2002, b 2007, c 2012, and d 2017.

Fig. 3 Gravity center and directional distribution of carbon emissions at the county level in China from 2002 to 2017.
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This spatial distribution and moving trend of carbon emission
centers at the county level in China may be related to the
following reasons. First of all, effective control measures have
been taken in areas with high carbon emissions, such as industrial
restructuring and environmental pollution control in the Beijing-
Tianjin-Hebei region. Secondly, relying on the regional advan-
tages of linking east and west, the central region began to
implement the strategy of the rise of the central region. The local
government and enterprises actively developed industries and
promoted industrial undertakings. In recent years, energy
consumption and economic growth maintained a relatively high
level, which greatly promoted the growth of carbon emissions.
Finally, in the northeast old industrial base - gradually withdrawn
from the historical stage, Xinjiang and Inner Mongolia as coal
resources, China has to solve the problem of traffic inconve-
nience, as the coal chemical industry devastated the steady
progress of the project, has become China’s main coal production
and coal chemical industry, carbon emission levels increased
rapidly in recent years. All these conclusions indicate that while
focusing on pollution control and emission reduction in
developed cities, China should also pay more attention to the
new energy-consuming provinces in northwest China, strive to
promote the optimization of local industrial structure, and
actively promote the clean production and low-carbon and
efficient utilization of coal with the focus on reducing energy
intensity.

Impact of environmental factors on carbon emissions in China.
To further clarify the differences in the impact of environmental
variables on carbon emissions with the change of time, we con-
ducted a regression screening of county carbon emissions and
environmental variables based on an improved hierarchical RF
model, taking into account the interaction between city and
county level independent variables (macro and micro, respec-
tively). Due to the correlation between explanatory variables, the
estimation of the regression model will be distorted or difficult to
estimate accurately. Therefore, it is necessary to diagnose the
collinearity of variables before using the model to avoid serious
multicollinearity. Here, the variance inflation factor (VIF) was
used to test the collinearity among variables. When VIF > 10, the
variable was considered to have a strong collinearity relationship
with other variables and was eliminated. The test results show
that the VIF of all variables is less than five, that is, there is no
multicollinearity among variables, which can be input into the
model as explanatory variables. The results are shown in Fig. 4
and Table 2. Among them, the smaller RMSE, MAPE, and R2 of
the model are, the closer the predicted value of the model is to the
real value, and the more accurately it can describe the mapping
relationship between independent variables and dependent vari-
ables. Figure 4 shows that the range values of RMSE, MAPE, and
R2 are 0.47–1.87, 29.39–37.14%, and 0.71–0.85, respectively, with
mean values of 1.11, 32.75%, and 0.79, respectively, indicating a
high degree of accuracy of the model.

Fig. 4 Contribution rate and evaluation index of environmental factors to carbon emission.
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From 2002 to 2017, the impact degree and direction of
environmental factors affecting China’s carbon emissions were
different and in constant change. By analyzing the average
contribution rate of environmental factors to carbon emissions
(Table 3), total population, night light, power consumption, AVPI
and AVSI drive carbon emissions. total index score and carbon
sequestration of vegetation play a role in inhibiting carbon
emissions. From the perspective of impact degree, AVSI has the
highest contribution rate, followed by power consumption and
night light, indicating that energy consumption and industrial
structure are the main factors for the increase of carbon emissions
in China. Considering the population size, energy consumption,
industrial structure and carbon reduction means, the main
conclusions are as follows.

(1) Population size effect. At present, there are two main views
in the research focusing on the environmental impact of
population aggregation. According to one view, excessive
population concentration, while bringing high productivity, will
accelerate resource consumption and produce a large amount of
household waste, thereby destroying the self-purification capacity
of the ecosystem and increasing environmental pollution and
carbon emissions (Zhang et al. 2017). Another argument is that
by accelerating industry transformation, and promoting techno-
logical innovation, increasing the proportion of service industry
to form the development of the green energy-efficient model, and
the high density and compact city spatial structure to some extent
reduced the demand for private cars, there are population
agglomeration increases with the environmental quality improve-
ment of a win-win situation (Hong 2017). In this regard, Yi et al.
conducted case studies and found that carbon emissions first
increased and then decreased with the growth of the permanent
population in big cities, showing an “inverted U-shaped” change
trend (Zhou et al. 2022).

On the basis of these studies, we provide a developmental,
global perspective on the impact of population size on carbon
emissions. Affected by different levels of urban development, the
driving ways of population aggregation on carbon emissions may
also be different, but the contribution rate is always positive,
indicating that the overall promoting effect is still dominant. In
addition, the contribution rate fluctuates and decreases year by
year, which means that with the improvement of urbanization
level, especially the development of green technology innovation
and public transportation, most Chinese cities have entered a
benign development mode, and the positive feedback of
population aggregation on carbon emission reduction is increas-
ingly obvious.

(2) Energy consumption effect. From 1978 to 2021, China’s
total primary energy consumption increased by 9.18 times from
571 million tons of standard coal to 5.24 billion tons of standard
coal. Among them, the proportion of non-renewable fuels (such
as coal and oil) in energy consumption has been kept above 80%
(NBSC 2021). Fossil energy consumption is the main source of

carbon emissions. Previous studies to estimate CO2 emissions at
the county level usually rely on published primary energy use data
(Chen et al. 2020), but rarely consider the relationship between
secondary energy and carbon emissions. As a clean and efficient
secondary energy source, electrification has always been con-
sidered the key to the low-carbon development of all industries
and even the whole of society in the future (X Wu et al. 2022).
However, EC plays a stable role in promoting carbon emissions
(Fig. 4), and the carbon emissions related to electricity account
for more than 40% of China’s total carbon emissions (Wang and
Xie 2015). The reason for this is related to the fact that the main
form of power generation in China is thermal power. Therefore,
the transformation and development of traditional thermal power
are related to national energy security and people’s livelihood,
and it is also the obstacle of new energy consumption and energy
storage that must be overcome to promote the rapid development
of renewable energy under the “double carbon” goal.

(3) Economic structure effect. The economic structure is a
complex system influenced by the labor force, capital, and
technology under the geographical background of the regional
system, resources, and culture. Therefore, the economic structure
is characterized by similarities within regions and differences
between regions, which is the main reason for the spatial
heterogeneity of carbon emissions. There are differences in
carbon emissions in different industries, and there is a long-term
equilibrium relationship between economic (industrial) structure
and carbon emissions, which is often regarded as the largest
source of carbon emissions (Feng et al. 2018; Yu et al. 2018). Since
the added value of the tertiary industry has a relatively weak
impact on carbon intensity (Liu et al. 2018), and there is serious
collinearity with the added value of the secondary industry, we
only study the impact of the added value of the primary industry
and the secondary industry on carbon emissions.

The primary industry includes agriculture, forestry, animal
husbandry, and fishery. The contribution rate curve shows that
the added value of the primary industry plays a role in promoting
carbon emissions, but the contribution rate is decreasing.
However, how to improve carbon emission efficiency without
reducing crop yield and develop low-carbon crop production is
still an effective means to mitigate global warming (H Wu et al.
2022). In the past, work on carbon emission nucleic acids from
crop production has been carried out (Hillier et al. 2009). On this
basis, the proposed measures such as tillage and irrigated
farmland management (Lal 2004), fertilizer and pesticide
upgrading (Zhang and Fang (2013)), and banning straw burning
(Linquist et al. 2012) have strongly promoted the transition to
low-carbon crop production.

The secondary industry consumes a large amount of energy for
a long time and has low utilization efficiency of resources,
resulting in a large number of pollutants (Yu and Liu 2020). In
particular, regions rich in natural resources tend to give priority
to the development of resource-based industries. While attracting
more investment in physical and human capital, they further
show a “crowding out effect” on industries with low energy
consumption and a “lock-in effect” on industries with high
energy consumption (Zheng et al. 2023). Such resource
dependence will not only hinder industrial diversification but
also affect the effect of industrial structure transformation on
carbon emission reduction. Therefore, in the future, the
transformation from heavy industry with high energy consump-
tion to the light industry with low energy consumption, getting
rid of resource-dependent industries, and the adjustment of
internal industrial structure can reduce the energy consumption
of the national economy.

(4) Carbon reduction means. At present, we believe that there
are two main carbon emission reduction methods: one is to

Table 3 Average contribution rate of environmental factors
to carbon emissions.

Environmental factor Mean contribution rate

Total population 0.074
Night light 0.107
Power consumption 0.157
Added value of primary industry 0.066
Added value of secondary industry 0.173
Total index score −0.064
Carbon sequestration of vegetation −0.009

ARTICLE HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-023-02262-0

8 HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |          (2023) 10:786 | https://doi.org/10.1057/s41599-023-02262-0



promote industrial structure transformation and resource utiliza-
tion efficiency through technological innovation; the other is to
give full play to the carbon sequestration effect of vegetation
through afforestation. The aggregate index score is an important
index to evaluate the quality of innovation and entrepreneurship
in a region by comprehensively considering the multi-
dimensional data such as R&D funds, patents, and enterprise
registrations. It has a significant inhibitory effect on carbon
emissions in a region. With the development of technology, the
traditional resource-dependent industries are gradually elimi-
nated, and the leading industries begin to change from labor-
intensive to technology-intensive and capital-intensive. Under the
guidance of this trend, the demand structure and supply structure
change, thus indirectly improving the region’s energy structure
and energy efficiency, and reducing carbon emissions.

Carbon sequestration by vegetation means that plants absorb
large amounts of carbon dioxide and release oxygen during
photosynthesis. Therefore, some people have suggested alleviating
the pressure of carbon emission in cities by improving the natural
photosynthetic rate, the carbon storage capacity of the soil, and
the utilization rate of biological building materials, and putting
the theory into practice, achieving an ideal emission reduction
effect (Kuittinen et al. 2023). However, some people also believe
that quantifying plant carbon sequestration is not important
because the carbon absorbed by plants, especially crops, will
decompose and return to the atmosphere after being eaten by
humans and animals (Li et al. 2019). Although our study found
that carbon sequestration by vegetation does not always show an
obvious effect of inhibiting carbon emissions, increasing the
urban green area is still a positive measure to optimize the living
environment and curb carbon emissions.

Conclusions and policy recommendations
Guided by the goals of carbon peaking and carbon neutrality, we
analyzed the spatial and temporal distribution patterns of carbon
emissions in China and their evolutionary trends and quantified the
driving mechanisms of four environmental factors on the devel-
opment of carbon emissions, namely, population size, energy
structure, economic model and means of carbon reduction, based
on a hierarchical RF model. The main findings are as follows:

(1) From 2002 to 2017, carbon emissions at the county level in
China showed an upward trend, with obvious spatial differ-
entiation. Overall, carbon emissions in northern counties were
higher than those in southern counties, and carbon emissions in
eastern coastal cities were higher than those in western and
central cities. The carbon emission at the county level has a sig-
nificant spatial agglomeration feature, and the carbon emission
center of each province is concentrated in the provincial capital
cities and the surrounding areas, showing a “core-periphery”
distribution pattern. Spatial autocorrelation analysis showed that
the aggregation level increased first and then decreased, and
gradually tended to a strong aggregation state in the later stage.
The high cluster is mainly distributed in the Bohai Economic
circle, Yangtze River Delta, Pearl River Delta, and Changchun -
Shenyang area, which are all important light or heavy industry
bases in China, and the role of these regions in China’s current
and future carbon emission reduction cannot be ignored.

There are obvious spatial differences in China’s carbon emis-
sions. Therefore, the carbon emission reduction strategy must be
adapted to local conditions, and under the premise of considering
the unique characteristics and needs of different regions in China.
Tailor-made, reasonable and efficient regional carbon emission
reduction action plans should be developed. For example, the
population and economy in the eastern coastal areas are highly
concentrated, and the carbon trading system should be further

improved and implemented, thereby promoting the green
transformation of the economic model. As the main production
base of grain and industrial raw materials in China, the central
region should focus its carbon emission reduction on promoting
concentrated and efficient use of land and solving the problem of
extensive waste in land use. The western region should avoid the
extensive development of industries with high carbon emissions
such as oil and coal, and start from the adjustment of industrial
structure and the optimization of energy utilization efficiency. In
addition, due to the spatial spillover effect of carbon emissions,
special attention should be paid to reducing the carbon emissions
of provincial capital cities so that their carbon emissions can have
a driving effect on surrounding areas. For industrial urban
agglomerations with concentrated carbon emissions, a regional
joint prevention and control working group should be established
to coordinate and coordinate the implementation plan of carbon
emission reduction in the region.

(2) Based on the preliminary identification of the spatial and
temporal distribution characteristics of carbon emissions in China,
we used standard deviation ellipses to explain the center of gravity
and direction of the spatial and temporal evolution of carbon
emissions in China’s counties. From 2002 to 2017, the center of the
standard deviation ellipse was always distributed in Henan Province
and generally moved northwest. The main reasons for this phe-
nomenon include the decline or transformation of the old industrial
base, the rising strategy of central China, and the steady advance-
ment of the project of the coal chemical industry moving west.
Compared with existing studies focusing on high carbon emission
areas such as northern China and eastern coastal urban agglom-
erations, we found that northwest China has gradually become a
new energy-consuming province and may become the main source
of carbon emissions in China in the future through the study of
carbon emission center shift at the county level. Therefore, how to
actively promote the optimization of local industrial structure and
technological progress, and improve energy utilization efficiency is
the hot direction of future emission reduction work.

To realize the low-carbon energy revolution in Northwest
China, the key lies in two points. On the one hand, focus on
breakthroughs in key traditional energy technology bottlenecks
such as low-carbon, energy-saving, intelligence, and energy sto-
rage. The specific plan includes the promotion of clean and
efficient utilization of coal technology, and the overall promotion
of the flexibility improvement, ultra-low emission, heating and
energy-saving transformation of existing coal-fired power units.
As well as improving coal railway transportation capacity,
accelerating the construction of national trunk oil and gas pipe-
lines, intensively deploying and orderly promoting the optimi-
zation of coal production capacity structure, and continuously
improving the quality of supply. On the other hand, it is neces-
sary to continuously improve the utilization level of clean energy.
The key measures focus on building a multi-energy and com-
plementary clean energy base, and developing new clean energy
such as geothermal energy and biomass energy according to local
conditions. For example, focus on deserts, Gobi, and desert areas
to accelerate the construction of large-scale wind power and
photovoltaic bases, and orderly promote the construction of
hydrogen energy infrastructure.

(3) Total index score and carbon sequestration of vegetation
help curb carbon emissions at the county level, total population,
night light, power consumption, AVPI, and AVSI have a sig-
nificant positive relationship with carbon emissions. Among
them, AVSI, power consumption, and night light have a much
higher impact on carbon emissions than other factors. Con-
sidering the population scale, energy consumption, economic
model and carbon reduction means, the reasonableness of energy
consumption intensity and industrial structure is the key to
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determine the carbon emission of a certain region. In addition,
the formulation and implementation of carbon emission reduc-
tion policies should consider the phased differences in county
development, and scientific and technological progress and the
adjustment of socio-economic development structure are the keys
to achieve overall carbon emission reduction.

Future priorities should include the following. First, scientifi-
cally and reasonably promoting population agglomeration in
cities and towns, vigorously developing urban public transport,
and increasing government public financial input to improve the
greening rate can effectively promote the green and low-carbon
development of districts and counties with high carbon emission
levels. Second, strengthen the energy-saving transformation of
thermal power facilities, control the scale of coal-fired power
generation, rationally coordinate power production and economic
development, and give full play to the effect of the power supply
structure in limiting carbon emissions. Third, we should reduce
the proportion of high-consumption and high-emission indus-
tries through technological innovation, optimize the energy
consumption structure and other means to promote the trans-
formation of resource-dependent areas and counties, and realize
sustainable low-carbon development.

Data availability
Data are available from the authors upon reasonable request.
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