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Multifractal scaling analyses of the spatial diffusion
pattern of COVID-19 pandemic in Chinese
mainland
Yuqing Long1,2, Yanguang Chen 1✉ & Yajing Li1

Revealing spatio-temporal evolution regularity in the spatial diffusion of epidemics is helpful

for preventing and controlling the spread of epidemics. Based on the real-time COVID-19

datasets by prefecture-level cities, this paper is devoted to exploring the multifractal scaling

in spatial diffusion pattern of COVID-19 pandemic and its evolution characteristics in Chinese

mainland. The ArcGIS technology and box-counting method are employed to extract spatial

data and the least square regression based on rescaling probability (μ-weight method) is

used to calculate fractal parameters. The results show multifractal distribution of COVID-19

pandemic in China. The generalized correlation dimension spectrums are inverse S-shaped

curves, but the fractal dimension values significantly exceed the Euclidean dimension of

embedding space when moment order q«0. The local singularity spectrums are asymmetric

unimodal curves, which slant to right. The fractal dimension growth curves are shown as

quasi S-shaped curves. From these spectrums and growth curves, the main conclusions can

be drawn as follows: First, self-similar patterns developed in the process of COVID-19 pan-

demic, which seems to be dominated by multifractal scaling law. Second, the spatial pattern

of COVID-19 across China can be characterized by global clustering with local disordered

diffusion. Third, the spatial diffusion process of COVID-19 in China experienced four stages,

i.e., initial stage, the rapid diffusion stage, the hierarchical diffusion stage, and finally the

contraction stage. This study suggests that multifractal theory can be utilized to characterize

spatio-temporal diffusion of COVID-19 pandemic, and the case analyses may be instructive

for further exploring natural laws of spatial diffusion.
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Introduction

Human beings have long been suffered from various rapidly
spread epidemics. It is significant to research the spatial
diffusion regularity of infectious diseases. The most recent

case of epidemic outbreak is the well-known coronavirus
(COVID-19) in December 2019 (Huang et al., 2020; Mehta et al.,
2020). Studies on the spatial diffusion pattern of COVID-19 are
not only helpful for understanding its transmission dynamics, but
also for the future prevention and control of epidemics. In lit-
erature, many studies have analyzed and modeled the spatial
diffusion pattern of epidemics by various mathematical methods
(Chen et al., 2021; Fang et al., 2009; Kang et al., 2020; Meng et al.,
2005; Wang et al., 2008; Wu et al., 2020; Yeşilkanat, 2020; Zhao
and Chen, 2020). Conventional mathematical methods are based
on the mathematical concept of characteristic scale, which is
always termed characteristic length in literature (Hao, 1986; Liu
and Liu, 1993; Takayasu, 1990; Wang and Li, 1996). If a spatial
distribution bears no characteristic length, conventional mathe-
matical modeling will be ineffective. In this case, the modeling
idea from characteristic scale should be replaced by that from
scaling. Fractal geometry provides a powerful tool for scaling
analysis (Mandelbrot, 1982), and has been widely used to char-
acterize complex systems such as cities (Batty and Longley, 1994;
Chen, 2014a; Eke et al., 2002; Frankhauser, 1998). In this study,
we propose a multifractal scaling model to capture the complex
pattern and process of spatial epidemic dynamics.

Multifractal scaling can be employed to quantitatively describe
various spatial heterogeneus phenomena. In recent years, growing
studies have employed multifractal scaling modeling to geospatial
pattern analysis (Chen and Wang, 2013; Frankhauser et al., 2018;
Man et al., 2019; Murcio et al., 2015; Salat et al., 2018). Multi-
fractal measures reflect a distribution of physical or other quan-
tities on a geometric support (Feder, 1988). The spatial diffusion
pattern of the epidemic is also the reflection of spatial organiza-
tion patterns and cascade system of human social and economic
activities (Wang et al., 2020). Previous studies have found that the
spatial distribution of population exhibits multifractal structure
(Appleby, 1996; Liu and Liu, 1993; Semecurbe et al., 2016), and
the epidemic infections spread among the population. Population
may be the geometric support of multifractal distribution of
COVID -19 pandemic. It is valuable to figure out whether the
spatial diffusion pattern of COVID-19 shows multifractal char-
acteristics, and what can be learned from the spatio-temporal
analysis of multifractal scaling model for spatial diffusion.

To address the above problems, we perform the multifractal
scaling analyses to quantify the spatial diffusion pattern of
COVID-19 pandemic. The multifractal measures are applied to

spatial network datasets rather than time series, but the fractal
parameters form a set of sample paths, which can be used for
simple time series analysis. The evolution characteristics of
COVID-19 pandemic diffusion in Chinese mainland can be
revealed by the sample paths. The analytical process is as below:
First of all, a spatial database of COVID-19 infections by
prefecture-level cities on different dates is established. Then, the
functional box-counting method and the ordinary least square
(OLS) regression based on rescaled probability are employed to
calculate multifractal parameters. Finally, multifractal-based
spatial analysis is made. The remainder of this paper is orga-
nized as follows. In Section 2, the multifractal scaling models are
introduced, and dataset and analytical procedure used in this
study are illuminated. In Section 3, the main results of multi-
fractal analyses are presented. The multifractal characteristics of
the spatial pattern of COVID-19 are examined, and then two sets
of multifractal spectrums are employed to reveal detailed char-
acteristics of the spatial diffusion pattern. Finally, the spatial
diffusion process and its stage features are illustrated by the
fractal dimension growth curves. In Section 4, the key points of
the analyzed results are outlined, and related questions are dis-
cussed. In Section 5, the discussion is ended by drawing the main
conclusions of the spatial diffusion pattern of COVID-19 pan-
demic in Chinese mainland.

Methodology and materials
Multifractal model of multifractal system. Multifractal scaling
analysis bears analogy with telescopes and microscopes in spatial
analysis. It provides two sets of parameter spectrums adequately
quantifying the spatial pattern and the statistical distribution of
measurements across spatial scales (Pavon-Dominguez et al.,
2017; Stanley and Meakin, 1988). The spatial pattern of COVID-
19 pandemic in Chinese mainland can be treated as a spatial
heterogeneous system, and multifractal measures can be
employed to characterize its complexity. A multifractal system is
a self-similar hierarchy with cascade structure, which is based on
two or more scaling processes (Chen, 2014a) (Fig. 1a). Multi-
fractals are also known as multi-scaling fractals. Therefore, dif-
ferent subareas have different scaling behaviors and growth
probabilities, i.e., the denser and sparser zones may display dif-
ferent spatial characteristics, leading to a heterogeneous dis-
tribution. Therefore, a single fractal dimension is difficult to fully
describe the patterns and processes of complex systems in the real
world (Chen, 2014a; Murcio et al., 2015). The multifractal ana-
lyses provide a series of parameters to capture detailed informa-
tion about the rich structure at fine scales, which finally appear in

Fig. 1 Schematic illustration of how different dominant structures of system are projected to the multifractal spectrums. Note: a Different hierarchical
structures of regular multifractals. b The generalized correlation dimension spectrum, D(q) curve, and singularity spectrum, f(α) curve, of regular
multifractals.
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a multifractal spectrum of parameters (Caniego et al., 2005) (Fig.
1). Generally, two sets of parameters are employed to make
multifractal analyses, including global and local parameters. The
global parameters consist of generalized correlation dimension,
D(q), and mass exponent, τ(q), which reveal overall characteristics
of multifractal systems. The local parameters comprise singularity
exponent, α(q), and local fractal dimension of the fractal subsets,
f(α), which reveal local characteristics of multifractal structure
(Feder, 1988). The parameter q refers to the moment order
(−∞ < q <∞), and by changing the value of q, the fractal char-
acteristics of the spatial pattern of COVID-19 with different
densities can be reflected. In the multifractal spectra, when
q→∞, attention can be focused on locations with high density.
Corresponding to the geographical space, it represents the spatial
characteristics of the core area with more COVID-19 infections;
when q→−∞, attention can be focused on locations with low
density. Corresponding to the geographical space, it represents
the spatial characteristics of the sparse regions with few COVID-
19 infections (Fig. 1b).

The diffusion pattern of COVID-19 in Chinese mainland can
be seen as a spatial heterogeneous network, consisting of various
cities as nodes. For a given date, the confirmed cases of COVID-
19 form various sizes of clusters around urban nodes.
Geographical location, urban population size, and government
control means can affect the chances of case occurrence. Different
opportunities for virus transmission manifest as different
probabilities of case occurrence, and different probabilities reflect
different case distribution densities. So, two measures can be used
to describe the network structure of virus diffusion at given time.
One is the growth probability of COVID-19 cases, Pi, and the
other is the linear size of case clusters, εi, where i= 1, 2, 3, …, N
represents the number of case clusters. If the transmission and
distribution network of COVID-19 has fractal properties, there is
a scaling relationship between the linear size εi and growth
probability Pi, and this suggests that the probability depends on
linear size. So, the clusters represent different fractal units, which
form a self-similar hierarchy with cascade structure. If the fractal
structure bear multiple scaling processes, then we have

∑
N

i¼1
PiðεÞqεð1�qÞDðqÞ

i ¼ ∑
N

i¼1
PiðεÞqr�τðqÞ

i ¼ 1; ð1Þ

which is a transcendental equation characterizing varied systems.
In many cases, it is neither necessary nor possible for us to
describe the distribution clusters of cases of various sizes
separately. A smart approach is to transform the probability
distribution reflecting density differences into multifractal para-
meter spectrums by means of unified linear size, ε, where ε≡ εi. A
desirable approach is box-counting method, and thus ε indicates
the linear size of box. Based on box-counting method, Eq. (1)
changes to

∑
N

i¼1
PiðεÞq ¼ ετðqÞ ¼ εðq�1ÞDðqÞ; ð2Þ

which is the basic expression of Renyi entropy and global
parameter of multifractals.

Global parameters describe the research object such as network
of COVID-19 diffusion from the macro level. The generalized
correlation dimension D(q) is defined on the basis of Renyi’s
entropy (Hentschel and Procaccia, 1983; Feder, 1988; Vicsek,
1989). Considering L’Hospital’s rule, the formula of generalized
correlation dimension can be derived from Eq. (2) as follows

DðqÞ ¼ � lim
ε!0

IqðεÞ
ln ε

¼
1

q�1 limε!0

ln∑NðεÞ
i¼1 PiðεÞq
ln ε ; ðq≠1Þ

lim
ε!0

∑NðεÞ
i¼1 PiðεÞ ln PiðεÞ

ln ε ; ðq ¼ 1Þ

8
><

>:
; ð3Þ

where q refers to the moment order (−∞ < q <∞), Iq(ε) to the
Renyi’s entropy with a linear size ε, and Pi(ε) is the growth
probability of the ith fractal unit. Based on box-counting method,
a set of fractal units at given level are replaced by nonempty boxes
with corresponding linear scales ε. Therefore, when measured by
box-counting method, N(ε) refers to the number of nonempty
boxes, and Pi(ε) represents the growth probability in the ith box,
indicating the distribution probability of COVID-19 infections.
At a specific scale ε, the larger the Pi(ε), the higher the density of
COVID-19 infections, which corresponds to central regions.
According to Eq. (2), another global parameter, mass exponent
τ(q), can be estimated by D(q), and the formula is (Halsey et al.,
1986; Feder, 1988)

τðqÞ ¼ ðq� 1ÞDðqÞ; ð4Þ
which reflects the properties from the viewpoint of mass. The
global analysis relies heavily on the generalized correlation
dimension D(q). The changing curve of D(q) with q forms the
global multifractal spectrum.

Local parameters focus on the micro-level in a multifractal
network of COVID-19 diffusion. Due to its heterogeneity, the
multifractal system has many fractal subsets, taking on various
clusters of case distribution. As indicated above, there is a scaling
relation between the growth probability of COVID-19 and
corresponding linear size of cluster of cases. This relation
suggests a power law as below

PiðεÞ / εαðεÞi ; ð5Þ
where εi refers to the corresponding linear size of the ith fractal
unit, and α(q) denotes the strength of local singularity, also
known as Lipschitz-Hölder singularity exponent, suggesting the
degree of singular interval measures (Feder, 1988). Different
values of α correspond to different subsets of multifractals.
Accordingly, the number of fractal subsets with the same α value
under the linear εi is given by

Nðα; εiÞ / ε�f αð Þ
i ; ð6Þ

where f(α) refers to the local fractal dimension. Therefore, the
different subset will also have a corresponding fractal dimension,
composing a singularity spectrum f(α) that changes along with
α(q) to describe the corresponding changes in the subsystem
(Song and Yu, 2019). The curve of correlation between f(α) and
α(q) forms the local multifractal spectrum. The global parameters
and local parameters of multifractals can be associated with
Legendre transform, that is

αðqÞ ¼ dτðqÞ
dq

¼ DðqÞ þ ðq� 1Þ dDðqÞ
dq

; ð7Þ

f ðαÞ ¼ qαðqÞ � τðqÞ: ð8Þ
If we use a certain algorithm to calculate the global parameters,

D(q) and τ(q), we can obtain the local parameters, α(q) or f(α), by
means of Eqs. (7) and (8), and vice versa.

As mentioned earlier, the definition of multifractal dimension
spectrum is based on Renyi entropy and generalized correlation
function. With the help of entropy, the spatial difference and
space-filling pattern of COVID-19 can be characterized. With the
help of correlation function, the diffusion mechanism and
controlled degree of COVID-19 can be revealed. In this study,
the main measure indexes are as follows: the generalized
correlation dimension spectrum D(q), the local singularity
spectrum f(α) and three representative fractal dimensions: the
capacity dimension D0, the information dimension (Shannon
entropy) D1, and the correlation dimension D2 (Grassberger,
1983). First of all, the log-log plots of D0, D1 and D2 are drawn to
reveal the fractal feature of the spatial pattern of COVID-19.
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Secondly, the value of D0, D1 and D2 are compared to determine
whether it can be characterized by multifractal structure (Chen,
2014a; Murcio et al., 2015). Thirdly, the global multifractal
spectrum D(q) is employed to reflect overall characteristics. In
theory, based on box-counting methods, the multifractal dimen-
sion values should come between topological dimension dT= 0
and embedding dimension dE= 2 (Huang and Chen, 2018).
Fourthly, the local singularity spectrum, i.e., the f(α) curve, is
employed to reflect local characteristics. In theory, if it appears as
a right-leaning unimodal curve, the fractal growth is dominated
by spatial concentration. Conversely, if it appears as a left-leaning
unimodal curve, this suggests the fractal pattern of spatial
deconcentration (Chen, 2014a). Lastly, the time varying curves of
D0, D1 and D2 are drawn to demonstrate the stage characteristics
of spatial diffusion of COVID-19.

Data sources and methods. The main aim of this study is at the
complex structural characteristics of the spatial network of
COVID-19 diffusion in Chinese mainland by using multifractal
scaling and measures. The spread of COVID-19 is a process,
neither a flash in the pan event, nor an unchangeable event. On
the other hand, fractal is spatial order emerging from self-
organized evolution (Hao, 2004). The fractal pattern is gradually
developed from non-fractal structure (Benguigui et al., 2000).
Therefore, it is necessary to generate the multifractal spectrums of
COVID-19 spread on different dates. The COVID-19 dataset by
prefecture-level city and date is obtained from the real-time
authorized reports announced by National Health Commission of
the People’s Republic of China and the provincial health com-
missions. We collect the cumulative number of confirmed cases
in Chinese mainland from Jan 11 to Feb 29, 2020, which was
during the early pandemic period of COVID-19 in China (Table
S1). There are a total of 50 consecutive days of spatial datasets, of
which 42 days of data can be used for spatial analysis based on
multifractal scaling. The COVID-19 dataset is matched with the
latest administrative units of prefecture-level cities in ArcGIS
10.2. Thus, the spatial analysis database of COVID-19 is estab-
lished for multifractal modeling.

The extraction and conversion of basic data of COVID-19 for
fractal dimension calculation can be done using box-counting
method, and the multifractal parameters of the spatial pattern can
be calculated by least squares regression based on μ-weight
method. First of all, define a study area. That is, determine a study
region for fractal measurement. This study area is applicable to all
dates during our study period. We make a box nearly covering the
whole range of Chinese mainland as our study area (Fig. 2). This
is the largest box, representing the first level box. The area of this
box represents the measure area of multifractal network. Second,
generate point set of data. Transform each prefecture-level
administrative unit into a point according to its geographic
center. Third, spatial disaggregation. Divide the box into four
equal secondary boxes, and then divide each second level box into
four third level boxes. In this way, recursively divide each box into
four smaller boxes. The number of boxes increases exponentially
and quickly reaches the limit of recursive subdivision of space.
This method is termed functional box-counting (Chen and Wang,
2013; Lovejoy et al., 1987). In this study, the space of study area is
recursively subdivided to the sixth level. Therefore, the range of
the linear sizes of boxes is from 1/32 to 1(Fig. 3). Fourth, obtain
datasets for estimating fractal dimension. Count the number of
points in each box at each level, and produce the cumulative
number of confirmed cases based on hierarchy of boxes. For each
box at given level, we have a probability value of confirmed cases
of COVID-19. Fifth, estimate the multifractal parameters. If the
relationship between Renyi entropy of confirmed cases and the

corresponding linear size of boxes satisfies logarithmic function,
or if the relationship between generalized correlation function
and the linear size of boxes follows scaling law, we can use the
OLS-based regression method to calculate multifractal parameters
by reconstructing probability measure (Chen and Wang, 2013).

There are two ways to estimate multifractal parameters of
complex spatial networks. One is to estimate the global
parameters first, and then use the Legendre transformation to
work out the local parameters, and the other is to first calculate
local parameters, and then use Legendre transformation to figure
out global parameters. The first way: from global parameters to
local parameter. The generalized correlation dimension can be
directly computed by the linear regression based on Eq. (3). The
independent variable is the logarithm of the linear size of the box,
ln(ε), and the dependent variable is Renyi entropy,
Iq(ε)= (ln∑Pi(ε)q)/(1-q). Specially, as shown above, for q= 1,
Renyi entropy should be replaced by Shannon entropy I1(ε)= -
∑Pi(ε)lnPi(ε). The regression coefficient gives the value of Dq, and
the mass exponent τ(q) can be calculated with Eq. (4). Discretize
the differential Eq. (7) yields a difference expression as follows

αðqÞ � ΔτðqÞ
Δq

; ð9Þ

which can be utilized to estimate the singularity exponent α(q).
Then the local fractal dimension f(α) can be computed with Eq.
(8).

The second way: from local parameters to global parameters.
This way relies heavily on what is called μ-weight method. The μ-
weight method is actually a rescaling probability method.
Reconstructing probability measure by normalizing the qth
moment of probability Pi(ε) as follows (Chhabra and Jensen,
1989)

μiðεÞ ¼ PiðεÞq= ∑
NðrÞ

i¼1
PiðεÞq; ð10Þ

we have (Chhabra et al., 1989)

αðqÞ ¼ lim
ε!0

1
log ε

∑
NðεÞ

i¼1
μiðεÞ logPiðεÞ; ð11Þ

f ðαÞ ¼ lim
ε!0

1
log ε

∑
NðεÞ

i¼1
μiðεÞ log μiðεÞ: ð12Þ

Then taking ln(ε) as an independent variable, and∑μi(ε)lnPi(ε)
or ∑μi(ε)lnμi(ε) as a dependent variable, we can estimate the
values of α(q) and f(α) by OLS-based linear regression analysis
(Chen, 2014a; Chen and Wang, 2013). Finally, the values of D(q)
and τ(q) can be converted by Eqs. (4) and (8). Experience suggests
that the second way is more convenient (Chen, 2014a). In this
study, both ways were used, but the second way was the main
one. The main calculation results can be found in the
supplementary information (Table S2).

Results
Multifractal characteristics of the spatial pattern of COVID-19.
The fractal development state of a complex system can be
intuitively reflected by using double logarithmic plots, i.e., log-log
plots. The log-log plots show the fractal features of the spatial
pattern of COVID-19 diffusion (Fig. 3), and its multifractal
characteristics are revealed by the global and local fractal
dimension spectrums (Fig. 4). In fact, the spatial pattern of
COVID-19 displays fractal property, but its fractal structure is not
well-developed. This can be treated as a type of weak multifractal
phenomenon (Tarquis et al., 2017). The reason may be due to the
government’s lockdown measures. After all, fractal is an emer-
gence pattern evolving from self-organized process (Hao, 2004).
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As seen in Table 1, the model has significant double logarithmic
linear relation, indicating there is an obvious fractal nature of the
spatial pattern of COVID-19 in the Chinese mainland.

According to the calculation results, the spatial pattern of
COVID-19 diffusion in the Chinese mainland bears multifractal
scaling properties. First of all, examine the basic parameters. The
fractal parameters D0 >D1 >D2 significantly. However, the log-
log plots show that the fit of model to data is not so well when
q ≠ 0, implying a poorly developed multifractal structure (Fig. 3b,
c). Then, investigate the multifractal spectrums. The global and
local multifractal parameters are calculated to obtain the
corresponding generalized correlation dimension spectrum
D(q), and the local singularity spectrum f(α) (Fig. 4). The D(q)
spectra appear as inverse S-shaped curves, rather than horizontal
lines; and the f(α) spectrums are winding unimodal curves,
instead of a single point. Both of them display typical signs of
multifractal features. All in all, these calculations lend further
support to the judgment that the spatial patterns of COVID-19
diffusion bear multifractal characteristics.

Multifractal spectrum analysis. The most intuitive reflection of
geographic spatial diffusion is through maps. Using maps we can
describe the laws of spatial diffusion and also reveal the features
of spatial evolution (Morrill et al., 1988). By comparing different
distribution maps of COVID-19 infections in Chinese mainland
on different dates, we can see the characteristics of process and
pattern of COVID-19’s spread (Fig. 5). However, the deep
structure and dynamics of spatial diffusion of COVID-19 cannot
be reflected or revealed through maps. Multifractals is a multi-
scaling self-similar hierarchy with cascade structure. With the
help of multifractal scaling, we can ignore specific geographical
locations, project spatial information of density distribution into a
hierarchical system of probability measurements, and then

convert probability distribution into two sets of spectral curves.
As mentioned above, one is the generalized correlation dimension
spectrum, i.e., D(q)-q spectrum or D(q) curve, and the other is
singularity spectrum, i.e., f(α)-α(q) spectrum or f(α) curve. The
former reflects global multifractal feature, and the latter mirrors
the local multifractal structure. The combination of global and
local multifractal spectrums can disclose the spatial diffusion
characteristics of COVID-19 in the Chinese mainland.

The global dimension spectrum can be compared to a
telescope. It reflects the overall characteristics of multifractal
pattern. Let’s firstly examine the global multifractal spectrums,
namely D(q) curves (Fig. 4a). When q→+∞, the central regions
with more infections would be brought into focus, especially in
Wuhan and its surrounding areas, as well as some sub-central
areas. Conversely, when q→−∞, the sparse regions with few
infections will be highlighted, mainly in the edge areas or remote
areas affected by COVID-19. In the D(q) spectrum, the
convergence value of D(q) decreased slowly when q > 0. This
suggests that the spatial diffusion of COVID-19 in central regions
was strictly confined by the lockdown measures. However, when
q→−∞, the convergence values of D(q) increased significantly
over time, even exceeds the Euclidean dimension of embedding
space (dE= 2). This implies that the spatial diffusion in edge areas
was becoming so random and unpredictable that it was hard to
control the epidemic in a short term. In short, the global
multifractal spectrum curve rises on the left (q < 0) and decreases
on the right (q > 0). The rising on the left means random
diffusion in the edge area (low-density area with lower growth
probability); while the decreasing on the right implies the effect of
the strong lockdown in the central area (high-density area with
higher growth probability).

The local multifractal spectrums reflect the micro mechanism
of the spatial epidemic diffusion. In terms of function, the local

Fig. 2 Spatial distribution of the cumulative confirmed cases of COVID-19 in Chinese mainland (up to Feb 29, 2020). Note: During our research period,
this is the spatial distribution map of the cumulative number of confirmed cases of COVID-19 in Chinese Mainland based on the observation data of the
last day.
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dimension spectrum can be compared to a microscope. The f(α)
curves display a strongly marked right-leaning unimodal curve,
indicating the spatial pattern of COVID-19 takes on overall
agglomeration characteristics (Fig. 4b). There are two basic
growth models of a multifractal system: if the f(α) spectrum is a
right-leaning unimodal curve, it represents the growth pattern of
spatial concentration (agglomeration); while if the f(α) spectrum
takes on a left-leaning unimodal curve, it represents the growth
pattern of spatial deconcentration (diffusion) (Chen, 2014a). It
can be seen that the peak value the f(α) curve slightly rises and the
curve opening span becomes larger over time. The increase of
peak value means that the confirmed cases of COVID-19

gradually increase during the study period, while the larger
opening means that the spatial diffusion leads to greater areal
differences of COVID-19 distribution between high-density areas
and low-density areas. In short, the f(α) spectrums reveal the
spatial concentration pattern of COVID-19, indicating most of
the epidemic infections are confined in a few regions, especially
around Wuhan as well as cities closely connected with Wuhan.
Thus, the timely control measures taken by Chinese government
have made positive effects. Otherwise, if the f(α) spectrum is
shown as a left-leaning unimodal curve, it implies that the spatial
diffusion of COVID-19 would be too rapid to be effectively
controlled. Fortunately, that is not the case. From the details of

Fig. 3 The log-log plots for estimating multifractal parameters of the spatial pattern of COVID-19 on Feb 29, 2020. Note: The largest box is recursively
subdivided to the sixth level. The linear sizes of the boxes are sequentially taken as ε= 1, 1/2, 1/4, 1/8, 1/16, and 1/32.
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the local dimension spectrum, there is no significant variation,
which also means that the spatial diffusion process of COVID-19
has been controlled to a certain extent.

Stage characteristics of the spatial diffusion of COVID-19. The
basis of this study is spatial data rather than time series. But the
sample path of fractal parameters can be used for development
stage analysis. A sample path is a subset taken from a time series
(Diebold, 2007). The growth process and diffusion pattern
represent two different sides of the same coin in geographical
analysis. The growth in spatial diffusion over time usually pre-
sents as sigmoid curves (Banks, 1994; Morrill et al., 1988). The
growth rate and acceleration behind the S-shaped curves can be
used for stage division (Chen, 2014b). Let’s examine three
representative fractal dimensions: D0, D1 and D2 (Fig. 6, Table 2
and Table S3). First, the capacity dimension D0 roughly reflects
the spatial diffusion pattern of COVID-19 from the perspective of

space filling. The space-filling degree of infected cities in Chinese
mainland increased quickly, and then the diffusion rate slowed
down. In the end, it formed a constant spatial distribution, no
longer spreading to new cities. Second, the information dimen-
sion D1 reveals the spatial difference pattern. The spatial uni-
formity of COVID-19 infections firstly increased, and then the
spatial difference increased gradually after Jan 26. In the end, the
spatial distribution of epidemic infections remained stable. The
significant decrease on Feb 12 is due to the statistical caliber
adjustment of confirmed cases in Wuhan, but it has little effect on
the overall trend. Third, the correlation dimension D2 reveals the
spatial dependence of epidemic infections among regions. The
spatial correlation degree of the epidemic diffusion reached the
strongest very quickly, then became weaker, and finally it was
blocked effectively. Thus, the fractal dimension growth of spatial
epidemic diffusion is different from that of cities. Urban growth is
a natural process of self-organized evolution. So the fractal
dimension curves of urban growth are continuous, which can be

Fig. 4 The multifractal spectrums of the spatial diffusion pattern of COVID-19 in Chinese mainland. Note: Spatial information that cannot be seen on a
map can be seen on multifractal spectral curves. In (a), the global spectral curves rise on the left and fall on the right over time. This means that the
containment management in the diffusion centers is effective, but COVID-19 is still spreading on a small scale in marginal areas. In (b), the peak value of
the local spectral curves slightly increases and the opening span slightly expands over time. This means that the total number of confirmed cases of
COVID-19 is rising slightly, while the regional difference is increasing.

Table 1 The capacity dimension, information dimension, and the correlation dimension of the spatial diffusion pattern of COVID-19
in Chinese mainland (examples).

Date Capacity dimension D0 R2 Information dimension D1 R2 Correlation dimension D2 R2

Jan 20 0.5369*** 0.9068 0.1033** 0.8151 0.0423** 0.7211
(0.0861) (0.0246) (0.0132)

Jan 25 1.4399*** 0.9918 0.9960*** 0.9915 0.5729*** 0.9900
(0.0656) (0.0460) (0.0288)

Jan 30 1.5321*** 0.9940 0.9964*** 0.9833 0.6052*** 0.9732
(0.0595) (0.0649) (0.0502)

Feb 5 1.5589*** 0.9950 0.8561*** 0.9753 0.4671*** 0.9584
(0.0551) (0.0682) (0.0486)

Feb 10 1.5598*** 0.9951 0.7792*** 0.9726 0.397*** 0.9572
(0.0547) (0.0654) (0.0420)

Feb 15 1.5607*** 0.9952 0.6112*** 0.9679 0.2714*** 0.9560
(0.0544) (0.0556) (0.0291)

Feb 20 1.5607*** 0.9952 0.5852*** 0.9680 0.2538*** 0.9571
(0.0544) (0.0532) (0.0269)

Feb 25 1.5607*** 0.9952 0.5747*** 0.9676 0.2472*** 0.9569
(0.0544) (0.0526) (0.0262)

Feb 29 1.5607*** 0.9952 0.5658*** 0.9678 0.2414*** 0.9574
(0.0544) (0.0516) (0.0255)

Note: The number of data points in each plot is 6, so the degree of freedom is 4. The parameter standard errors are quoted in parenthesis. *** significant at 1%; ** significant at 5%. Based on the
significance level at 5%, fractal dimension plus or minus twice the standard error yields the margin of error, i.e., the lower and upper limits of fractal dimension.
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Fig. 5 The spatial distribution of COVID-19 infections in Chinese mainland (Jan 20-Feb 29, 2020). Note: From January 30, 2020, a spatial distribution
map of the cumulative number of confirmed cases of COVID-19 in Chinese Mainland was drawn about every 5 days. The last subgraph is an exception,
corresponding to Fig. 2. Arranging maps of different dates can visually reflect the spatio-temporal diffusion pattern of the COVID-19 epidemic.
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described by logistic function or quadratic logistic function
(Chen, 2018).

The process of spatial diffusion is not a uniform rate of change
process. The changing curves of fractal dimensions reflect the
stage characteristics of spatial diffusion of COVID-19 (Fig. 6).
The stage characteristics reveal the practical effects of prevention
and control measures taken by Chinese government. The spatial

distribution maps of COVID-19 infections only roughly display
the spatial diffusion pattern, which is inconspicuous. In this
regard, the changes of fractal dimensions play an irreplaceable
role in the spatial analysis of epidemic diffusion. According to the
trend of parameters D0, D1, D2 (Table 2) and their corresponding
spatial meanings, the spatial diffusion pattern of COVID-19 can
be divided into 4 stages (Table 3). The four stages bear analogy

Fig. 6 The stages of the spatial diffusion and the scale growth of COVID-19. Note: This is a study on spatial multifractal patterns. Due to the analyses are
made on the multifractal patterns of 42 consecutive days, the fractal parameters form a set of sample paths. A sample path is a subset of time series,
representing a section taken from a time series. Time series is a theoretical concept, and empirical analysis focuses on sample paths.

Table 2 The changing trend of three representative generalized correlation dimensions and their reflected geographic
information.

Parameter Meaning Trend Inference

Capacity dimension D0 Space-filling degree Quasi S-shaped curve. First rise, then
tend to be stable

The spatial distribution range of COVID-19 pandemic was
expanded first and then converged

Information dimension D1 Spatial uniformity Firstly, it rose rapidly and then
decreased gradually

The spatial differences of COVID-19 pandemic were first
reduced and then enlarged

Correlation dimension D2 Spatial dependence Firstly, it rose rapidly and then
decreased gradually

The spatial correlation of COVID-19 pandemic were first
reduced and then enlarged
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with the urbanization curve which can be modeled by logistic
function (Chen, 2014b).

(1) The initial stage. Before Jan 19, the epidemic spread inside
Wuhan, showing a single point of burst. So the fractal dimensions
are equal to 0.

(2) The rapid diffusion stage. From Jan 19 to 26, the space-
filling degree (D0), spatial uniformity (D1) of the epidemic
increased rapidly, and its spatial correlation degree (D2) reached
the highest. These suggest that the infected cities occupied
Chinese mainland quickly in large-scale space. In this stage, the
long-range diffusion of COVID-19 was the strongest. According
to the first law of geography, geographical proximity affects the
spatial correlation of regions. Spatial proximity may be the basis
of the spatial diffusion of epidemic (Wang et al., 2020). However,
action at a distance also play an important role in spatial diffusion
(Chen et al., 2021). In addition to surrounding cities, the
epidemic tended to spread from Wuhan to remote cities,
including megacities (e.g., Shenzhen, Beijing, Shanghai), provin-
cial capital cities, and some southeastern coastal cities (e.g.,
Wenzhou, Taizhou). These cities boast a developed economy and
are the main nodes of urban economic connections. The remote
spatial diffusion of COVID-19 may be dominated by economic
connections with high liquidity such as tourism and business
travel (Shi and Liu, 2020).

(3) The deceleration diffusion stage. From Jan 27 to Feb 9, the
diffusion rate of infections decreased gradually, and the spatial
difference increased. This implies that though more cities were
infected, their infections grew slower. While in central regions,
their infections grew faster significantly. Besides, the spatial
correlation became weaker, implying the epidemic mainly spread
to contiguous cities from regional central cities. So it can also be
described as the hierarchical diffusion stage, dominated by
contagious diffusion. Hierarchical diffusion is a common pattern
in the process of geographic spatial diffusion (Morrill et al., 1988).
As a whole, the spatial diffusion of COVID-19 infections is
seemly bounded by China’s population distribution boundary,
i.e., Hu Huanyong Line (Fig. 2). This line delineates the striking
difference in the distribution of China’s population (Hu, 1935).
As seen in Figs. 2 and 5, the epidemic infections in Chinese
mainland are mainly located in the east of ‘Hu Huanyong Line’,
which shares high similarity with the spatial pattern of population
distribution in Chinese mainland.

(4) The contraction stage. After Feb 10, the spatial diffusion
pattern of COVID-19 reached a relatively stable state. The value
of D0, D1 and D2 gradually converged, reflecting the spatial
contraction of epidemic diffusion. About 2 weeks after the

Wuhan lockdown (Jan 23), the spatial diffusion trend of
COVID-19 has been effectively controlled in Chinese mainland.
Besides, the cooperation mechanism on joint prevention and
control among regions further blocked the contagious diffusion.
This suggests the isolation over regions and reducing inter-
regional movement had basically curbed the spread of COVID-19
in Chinese mainland.

Corresponding to the spatial diffusion process of COVID-19,
the scale growth of the cumulative number of confirmed cases
also presents stage characteristics. The sample paths of cumula-
tive confirmed cases in Chinese mainland take on sigmoid curves
(Fig. 6b). Studies have found that the growth of cumulative
confirmed cases can be modeled by logistic function (Chen et al.,
2021; Consolini and Materassi, 2020; Martelloni and Martelloni,
2020; Pelinovsky et al., 2020; Wang et al., 2020). In Fig. 6b, two
logistic functions are employed to model the scale growth of
COVID-19 infections from Jan 11 to Feb 29, due to the statistical
caliber adjustment of diagnostic criteria. According to their
growth rate and acceleration, the scale growth of COVID-19 can
also be divided into 4 stages: the initial stage (before Jan 19), the
acceleration stage (Jan 19-Feb 5), the deceleration stage (Feb
6–14), and the late stage (after Feb 14). It can be found that the
increase of new confirmed cases reached a peak point on Feb 5.
After that, the growth rate slowed down and remained stable in
late February. While the spatial diffusion of COVID-19 has
reached its peak stage and stable stage earlier. Thus it can be seen
that the development of the spatial diffusion process is faster than
the scale growth process of COVID-19. On the whole, the stage of
spatial diffusion of COVID-19 reflected by fractal parameter
series is slightly different from that reflected by time series of
cumulative number of confirmed cases (Fig. 6 and Table 3). The
stage changes reflected by the fractal dimension sequence are
more profound, detailed, and specific. The two types of time
series, namely cumulative confirmed cases and fractal parameters,
can reflect the spatial filling in the diffusion process of COVID-
19, but the time series of cumulative confirmed cases cannot
reveal the spatial differences and correlations in this process.

Discussion
The above calculations show that the spatial network of COVID-19
infections in Chinese mainland takes on multifractal characteristics.
The distribution pattern and diffusion process of COVID-19 can be
characterized by multifractal spectrums. The key points of the
analyzed results are as follows (Table 4). Firstly, the spatial pattern
of COVID-19 in Chinese mainland is mainly characterized by
global aggregation and local diffusion. Though the epidemic

Table 3 Different stages of spatial diffusion process and scale growth process of COVID-19 in Chinese mainland.

Stages Spatial diffusion Periods Scale growth Periods

Stage 1 Initial stage Before Jan 19 Initial stage Before Jan 19
Stage 2 Rapid diffusion stage Jan 19-26 Acceleration stage Jan 19–Feb 5
Stage 3 Hierarchical diffusion stage Jan 27-Feb 9 Deceleration stage Feb 6-14
Stage 4 Contraction stage After Feb 10 Late stage After Feb 14

Table 4 Main points of fractal-based spatial analysis for COVID-19 pandemic in Chinese mainland.

Item Feature Inference

Log-log plot Straight-line trend Fractal pattern
Fractal parameters D0 > D1 > D2 Multifractal scaling
Global multifractal spectrum, D(q) curve Inverse S-shaped curve Multifractal diffusion
Local multifractal spectrum, f(α) curve Right-leaning unimodal curve Global aggregation, and local diffusion
Fractal dimension growth curves Quasi S-shaped curves Prevention and control measures are effective
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infections spread nationwide, few cities were hit severely. In the
global multifractal dimension spectrum, the convergence value of
D(q) increased significantly over time when q < 0, suggesting the
local diffusion of COVID-19 infections (Fig. 4a). However, the local
singularity spectrum f(α) always takes on a right-leaning unimodal
curve, implying a global aggregation pattern (Fig. 4b). The epidemic
infections in central regions were more severe than in marginal
regions. Secondly, the spatial diffusion pattern of COVID-19 in
Chinese mainland shows stage characteristics, suggesting the posi-
tive effects of prevention and control measures taken by the gov-
ernment. According to the fractal dimension growth curves, it can
be divided into 4 stages: the initial stage, the rapid diffusion stage,
the hierarchical diffusion stage and the contraction stage, from the
single point of burst, multi-points spread to the overall outbreak,
and finally full containment. And the spatial correlation degree
decreased with time. In general, the spatial diffusion of COVID-19
has been contained in a short term. The rapid diffusion stage is the
transition period of epidemic diffusion. A series of spatial isolation
measures implemented in China has played an important role in
the control of COVID-19.

Multifractal scaling has two major application directions in
complexity exploration. One is to study nonlinear dynamical
processes, and the other is to study spatial patterns of scale-free
heterogeneous distributions. The former is based on time series
(e.g., Ihlen, 2013; Jiang et al., 2019; Kantelhardt et al., 2002;
Tarquis et al., 2017; Tessier et al., 1996), while the latter relies
heavily on cross-sectional datasets (e.g., Appleby, 1996; Chen,
2014a; Chen and Wang, 2013; Frankhauser et al., 2018; Huang
and Chen, 2018; Long and Chen, 2021; Murcio et al., 2015; Song
and Yu, 2019). Therefore, there are two categories of multifractals
studies in literature: one is multifractal time series analysis, and
the other is multifractal spatial analysis (Table 5). This paper
belongs to the second category, aiming at exploring the spatial
complexity of the spread of COVID-19 by using multifractals.
Based on the spatial analysis results of consecutive days, the
evolution characteristics of COVID-19 diffusion are also revealed
by fractal dimension time series. Multifractal spatio-temporal
analysis is one of the features of this work. However, the sample
paths of confirmed cases of COVID-19 in Chinese mainland do
not support multifractal time series analysis due to the following
reasons. First, the sample paths we obtained are too short; second,
data caliber has been adjusted midway; third, the sequences have
definite S-shaped growth curve trend, and this trend suggests no
multifractal structure in the time series (Fig. 6b).

Epidemic spatial diffusion and its dynamics analysis are
important subjects of geographical spatial analysis, and has been
studied for many years. Most of these studies have described the
spatio-temporal pattern of the epidemics by spatial autocorrela-
tion analysis and kernel density estimating (Meng et al., 2005;
Wang et al., 2008; Fang et al., 2009; Kang et al., 2020). Never-
theless, a critical problem with these methods is their sensitivity
to the spatial scale (Negreiros et al., 2010; Zhang et al., 2019). The
novelty of this work lies in that it reveals the spatio-temporal

characteristics of COVID-19 plague transmission in Chinese
mainland by means of multifractal scaling analysis. The spatial
diffusion of COVID-19 is a complex process, showing irregular
and scale-free features. Given this, fractal analysis is a powerful
tool for spatio-temporal modeling of spatial epidemic diffusion
from the perspective of scale-free analysis. Multifractal scaling
analyses provide two sets of parameters and spectrums, forming a
complete understanding of the spatial diffusion pattern of
COVID-19 from general to detail. Our research is not yet com-
plete and there is great room for improvement. The shortcomings
of this study are as below: first, our analysis is based on the
COVID-19 dataset from real-time authorized reports, so that the
incubation period is not considered. But it has little impact on the
overall trend of epidemic evolution. Second, the log-log plots
display a poor-developed fractal structure of COVID-19, which
may be caused by the data quality. This study takes the
prefecture-level cities as basic spatial units, so that the scaling
range for fractal dimension estimation is short. On the other
hand, the spatial epidemic diffusion is not bounded by the
administrative boundary. If there are more accurate location
datasets of the confirmed cases, including county-level city or
even towns, further detailed spatial analysis can be performed.
What is more, the lack of in-depth time series analysis is also a
deficiency of this article.

Conclusion
Modeling the spatial diffusion process and pattern of COVID-19
in Chinese mainland can provide valuable experience for future
theoretical and positive studies, and for further improvement of
future public health system emergencies. In this work, multi-
fractal scaling model is employed to characterize the spatial dif-
fusion pattern of COVID-19 pandemic, based on the cumulative
number of confirmed cases from the authority reports. The main
conclusions can be drawn as follows. First, the spatial pattern of
COVID-19 in Chinese mainland bears multifractal character-
istics. This suggests that the spread of the COVID-19 epidemic
depends on the urban system, which has been proved to have a
multifractal structure. Moreover, the spatial distribution pattern
of human population may be the geometric support of the mul-
tifractal distribution of COVID-19. Population takes on multi-
fractal distribution in geographical space. Most of the population
is located in the southeastern part of China. Accordingly, most of
the COVID-19 pandemic are located in the southeast China. The
spatial diffusion pattern of COVID-19 has well coincidence
relations with the spatial pattern of population in China, both in
the geographical distribution and structural hierarchy. Second,
the spatial pattern of COVID-19 in Chinese mainland is char-
acterized by global clustering with local diffusion. This suggests
that China has effectively contained the COVID-19 pandemic in
a short term and has significant performance in this epidemic
prevention and control. In terms of multifractal spectrums of
local parameters, large-scale infections were confined in central
regions, i.e., Wuhan city and its surrounding region. The

Table 5 A comparison between two types of multifractal studies: multifractal time series analysis and multifractal spatial
analysis.

Type Temporal multifractal analysis Spatial multifractal analysis

Research object Temporal process Spatial distribution
Data Time series data Spatial datasets
Method Wavelet Transform (WT), De-trended Fluctuation Analysis

(DFA); Phase Space Reconstruction (PSR), etc.
Box-counting method (BCM); Sandbox method (SBM); Fixed
radius method (FRM); Fixed mass method (FMM), etc.

Parameters Global and local parameters Global and local parameters
Scaling Temporal scaling Spatial scaling
Space Phase space Real space
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epidemic situation in other regions was in a controllable state.
However, the multifractal spectrums of global parameters show
that there was small-scale disordered diffusion of COVID-19
pandemic in lots of local places during this study period. Third,
the spatial diffusion process of COVID-19 in Chinese mainland
fell into 4 stages. The fractal dimension growth processes take on
sigmoid curves. The capacity dimension growth curve reflects the
change of space filling process of COVID-19, the information
dimension growth curve reflects the change of spatial difference
of COVID-19, and the correlation dimension growth curve
reflects the change of spatial dependence of COVID-19. The
space filling curve increased first and became stable rapidly. The
spatial difference and dependence curves increased first and then
decreased and finally become stable. By the three curves, the
spatial diffusion process of COVID-19 can be divided into four
stages: initial stage, rapid diffusion stage, hierarchical diffusion
stage, and the contraction stage.

Data availability
The datasets generated or analysed during this study are available
in Supplementary Information files.
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