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Cloud cover and expected oil returns
Xianfeng Hao1 & Yudong Wang 2✉

Satellites can “sense” oil inventory, but cloud cover prevents observation, which reduces the

flow of information into the oil market and creates uncertainty about information availability.

The effects of the availability of such information on oil prices need to be thoroughly

explored. Therefore, using time-series prediction, this paper examines the effects of the

availability of satellite-based information on oil returns. The cloud cover above the floating

roof tanks in major oil storage areas is measured to predict oil returns through regression

approaches. The empirical results indicate that higher cloudiness in a week leads to lower oil

returns in the following week. The predictive ability of cloudiness is significant from both in-

sample and out-of-sample perspectives. The ability of cloudiness measures to predict oil

returns can be explained by information uncertainty and information flow channels. The

findings have important implications for asset pricing and risk management using big data.
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Introduction

W ith the development of computer science, investors are
beginning to utilize satellite images to improve their
investment decisions. For example, satellite images of

floating roof tanks (FRTs) are used to estimate oil inventory.
Orbital Insight, a major alternative data vendor, provides satellite-
based oil inventory data that help sophisticated investors for-
mulate their trading strategies. This study investigates how the
availability of satellite-based oil information affects future oil
returns through time-series return prediction.

Cloud cover above FRTs prevents their observation and
reduces the availability of satellite data on oil inventory. This
paper uses cloud cover data over FRTs in eight major oil storage
areas in the U.S. The FRTs are located using high-resolution
historical maps and the You Only Look Once version 5
(YOLOv5) object detection model to generate cloud cover data.
These data are collated using the Moderate Resolution Imaging
Spectroradiometer (MODIS) cloud detection tool aboard NASA’s
Terra spacecraft1. The data pertaining to different storage areas
are combined to obtain an aggregate cloudiness measure. Thus,
eight area-specific cloudiness measures and one overall cloudiness
measure are generated.

A simple predictive regression is employed to examine the
ability of cloudiness to predict oil returns. During the sample
period from January 2014 to December 2021, a significant and
negative predictive relationship between cloudiness and oil
returns is found for seven of the eight cloudiness measures. The
aggregate cloudiness measure displays significant predictive
ability that cannot be explained by existing predictors related to
information uncertainty or oil market activity, such as oil
inventory, volatility indices, or economic policy uncertainty. Out-
of-sample evidence supports the ability of cloudiness to predict
oil returns.

Three types of contrast tests are conducted. The first test is
executed using data from February 2007 to December 2013, when
no satellite-based information was available to market partici-
pants. This test examines whether such a cloudiness proxy is
appropriate to measure the availability of satellite information. If
the data can be used to predict returns for this period, the pre-
dictive ability may be linked to weather-related factors rather
than to the availability of satellite data alone. The remaining two
tests are executed using data from January 2014 to December
2021, the same period used for the main test. The second contrast
test uses cloud cover above FRTs that do not store crude oil. The
third test uses nighttime cloudiness above FRTs to predict oil
returns. Satellite-based estimates of nighttime oil inventory are
unavailable. The results of these tests imply that oil return pre-
dictability is related to satellite-based estimates of oil inventory.
The results of three placebo tests show a much weaker or non-
significant predictive ability of cloudiness measures for oil
returns, indicating that the oil market indeed responds to
satellite-based information.

A portfolio allocation framework is used to investigate the
economic value of the ability to predict oil returns from satellite
data. Specifically, an investor with mean–variance preferences
allocates wealth between risky oil futures and risk-free Treasury
bills. The weight of the risky asset in the portfolio is determined
ex ante by the return forecasts. The results support the economic
significance of forecasting portfolio gains from cloudiness mea-
sures. For example, under the appropriate constraints on oil
futures, a portfolio constructed on the basis of forecasts using the
aggregate cloudiness measure achieves annualized gains of 261.9
basis points in certainty-equivalent returns.

Cloudiness predicts oil returns through two potential channels.
One is information uncertainty. The empirical results show that
aggregate cloudiness has a significant and positive effect on future

oil inventory. Specifically, a 1-point increase in aggregate clou-
diness leads to a 0.398% increase in U.S. oil inventory in the
following week. When cloud cover above the FRTs is heavy,
market participants are uncertain about oil inventory. Such
uncertainty can be resolved only after an Energy Information
Administration (EIA) announcement. The theoretical model
proposed by Gao et al. (2022) suggests that when oil-related
uncertainty increases, firms rationally maintain higher oil
inventories as a cushion against potentially large and adverse
supply shocks. Because of the precautionary savings effect, the
availability of oil as a production input decreases when aggregate
demand is low and leads to low oil returns.

The second channel is information flow. A simple predictive
regression of oil volatility on lagged volatility, lagged cloudiness,
and their interaction term reveals that high cloudiness is sig-
nificantly related to lower future oil volatility than is low clou-
diness. Information releases increase volatility because investors
are more likely to trade when they receive more information, and
trading volume is positively related to volatility (Ederington and
Lee, 1993; Kalev et al., 2004; Rangel, 2011; Bollerslev et al., 2018;
Engle et al., 2020). High cloudiness means that less satellite-based
information flows into the oil market, leading to low volatility.
Uninformed investors are at risk of adverse selection and require
a lower risk premium as compensation in such a situation (Wang,
1993). In addition, the coefficient of the interaction of lagged
volatility and cloudiness indicates that the likelihood of persis-
tently high oil volatility is significantly higher after cloudy days
than it is after clear days. A possible explanation is that market
participants tend to rely heavily on past information when
cloudiness renders satellite information less available.

Background literature and contribution
Literature on the relationship between weather and asset
prices. This paper investigates the effects of cloudiness on oil
price dynamics. Thus, it is related to the literature on the influ-
ence of cloudiness on other assets’ returns. Saunders (1993) finds
that local weather systematically affects New York Stock
Exchange prices. Hirshleifer and Shumway (2003) find that
morning sunshine in the city of a country’s leading stock
exchange is significantly correlated with stock returns and that
the mechanism is based on investors’ mood. In contrast,
Loughran and Schultz (2004) find little evidence that cloudy
weather in the city where a firm is based affects its returns,
illustrating that cloudy conditions near a firm’s headquarters do
not provide profitable trading opportunities. Novy-Marx (2014)
uses predictive regression and finds that the weather in Man-
hattan, global warming, and El Niño can significantly predict
portfolio returns based on anomalies. Lanfear, Lioui, and Siebert
(2019) document that hurricanes making landfall in the U.S. have
a strong abnormal effect on stock returns and lead to illiquidity
across portfolios based on anomalies. The investor mood
mechanism advocated by Hirshleifer and Shumway (2003) can-
not explain empirical findings, because the hubs over which cloud
cover is measured are not major oil-trading locations. New
channels linking cloudiness to asset returns, namely, information
uncertainty and information flow, are uncovered in this paper.

A stream of literature discusses the impacts of weather and
climate change on food commodity prices because a warm
climate directly reduces crop yield (e.g., Bradbear and Friel, 2013;
Agnello et al., 2020). This paper is different from previous studies
because the cloudiness above oil tanks has almost no influence on
crude oil supply or demand fundamentals. Alternatiely, it finds
the channels of information uncertainty and information flow to
explain the effects of cloudiness on oil returns. Some studies
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investigate climate change as a factor affecting asset prices (e.g.,
Hong et al., 2019; Choi, Gao, and Jiang, 2020; Engle et al., 2020;
Krueger, Sautner, and Starks, 2020). This paper is a departure
from such research because it considers cloudiness to be the key
factor preventing the flow of satellite information. Moreover,
although other studies focus on cross-sectional stock prices, this
study focuses on time-series prediction.

Literature on the relationship between information uncertainty
and asset returns. Cloud cover creates uncertainty about oil
inventory. According to information uncertainty theory, investors
become overconfident when uncertainty is high (Zhang, 2006a;
2006b). The behavioral finance literature argues that over-
confident investors overreact to private news, causing future price
reversals (e.g., Daniel, Hirshleifer, and Subrahmanyam, 1998).
Under a short-sale constraint, this situation is more likely when
investors receive good news than it is when they receive bad news.
Therefore, information uncertainty is negatively related to future
returns. High uncertainty leads to more diverse investor opinions
than does low uncertainty, in turn leading to low stock returns, as
pessimistic valuations cannot be easily expressed under short-sale
constraints (Deither, Malloy, and Scherbina, 2002; Yu, 2011).
Cross-sectional research validates the negative relationship
between information uncertainty (or disagreement) via a
mechanism predicated on the key assumption of a short-sale
constraint (Miller, 1977)2. However, such an assumption does not
apply to commodity futures markets because short sales in futures
transactions are not constrained.

This study is related to information uncertainty, but it
considers different explanations for the effects of uncertainty on
the crude oil and stock markets. The effect of satellite information
uncertainty on oil returns is explained by inventory. For a
storable commodity, inventory is an important tool for hedging
against information uncertainty. This study contributes to the
literature by revealing the statistical and economic significance of
predicting asset returns from cloudiness measures through the
use of a time-series forecasting framework.

Literature on the application of satellite images to asset pri-
cing. Satellite data are increasingly being used by research in
economics and finance to, for example, monitor aggregate eco-
nomic activity (e.g., Henderson, Storeygard, and Weil, 2012) and
predict asset prices. For example, using parking lot vehicle counts
extracted from satellite imagery, Katona et al. (2018) discover that
unequal access to satellite data increases information asymmetry
among market participants. Using satellite-based estimates of the
normalized number of cars in retail parking lots, Zhu (2019) finds
that aggregate signals from such datasets can predict unan-
nounced earnings. The introduction of alternative data improves
price efficiency by reducing the cost of information acquisition.
Mukherjee, Panayotov, and Shon (2021) show that introducing
satellite estimates leads to a smoother response of oil prices to
government inventory announcements, implying that satellite-
based estimates can serve as an alternative to government data.
The findings of Mukherjee, Panayotov, and Shon (2021) are
corroborated by this paper, which reveals that cloud cover above
oil tanks affects future oil returns. As an extension, a cloudiness
measure is constructed to predict oil returns, broadening the
application of satellite data in asset pricing studies.

Data
Satellite imagery, cloudiness, and oil inventory
Satellite images for oil market analysis. Satellite-based oil inven-
tory data are increasingly used for oil market analysis. Optical
satellites can “sense” oil inventory by observing the shadows of

FRTs, which are used for storing crude oil. The floating roofs rise
and fall with the level of liquid in the tanks to reduce the risk of
product loss and increase safety. A higher floating roof indicates
more oil in a tank.

On sunny days, each FRT has two shadows: an outer shadow
projected by the tank wall onto the ground and an inner shadow
projected by the tank wall onto the floating roof. From the solar
altitude, one can compute the height of oil in an FRT from the
difference between the areas of these two shadows and estimate
the oil inventory accordingly. However, this methodology is not
suitable for fixed roof tanks (FXRTs) because they do not have an
inner shadow.

When satellite images of FRTs are available, market investors
can estimate oil inventory without waiting for the EIA’s
announcements. However, cloud cover above FRTs prevents
satellite observation. Therefore, the response of oil prices to
government announcements is stronger on cloudier days because
of the lack of satellite images and the heavy reliance of investors
on such announcements (Mukherjee, Panayotov, and Shon,
2021).

Cloudiness measures. FRTs must be located before the cloudiness
above them can be measured. Oil stored in the U.S. is distributed
across five Petroleum Administration for Defense Districts
(PADDs)3. Of these five PADDs, the Cushing (PADD2) and Gulf
Coast (PADD3) PADDs account for more than 70% of U.S. oil
inventory because of the strong demand for storage in their
locations. This paper only considers the oil tanks in these two
PADDs to balance the costs of requesting satellite imagery and
the value of the information therein.

All oil tanks in the Cushing and the Gulf Coast PADDs are
identified from map imagery by a YOLOv5 model, a mainstream
deep learning method. The identified tanks are located in eight
storage areas: Cushing, Oklahoma (COK); Houston, Texas
(HTX); Texas City, Texas (TTX); Beaumont, Texas (BTX);
Corpus Christi, Texas (CTX); Lake Charles, Louisiana (LLA);
Baton Rouge, Louisiana (BLA); and the Mississippi River in
Louisiana (MRL).

The distribution of FRTs within a storage area can change over
time as new tanks are built, and old tanks are abandoned. Hence,
yearly high spatial resolution maps from ArcGIS Online from
2014 to 2021 are used to update the geographic coordinates of the
oil tanks for each year.

Cloud cover is measured using a cloud mask product from
MODIS, a NASA tool utilizing two satellites, the first of which
was launched in 1999. MODIS provides daily high-precision
images of up to 250 m spatial resolution. This cloud mask product
is widely used for cloud cover observation. The MODIS cloud
mask data are collected from NASA’s Level 1 and Atmosphere
Archive and Distribution System. MODIS is installed on two
satellites––Terra and Aqua. Following Zhang and Wang (2010),
Hu (2011), and Purbantoro et al. (2019), Terra data are used
because they are less affected by the sun’s glint than Aqua data.

The satellite-based cloud mask data are analyzed as confidence
levels calculated from a combination of clear-sky confidence
levels from all tests performed and saved as two binary digits
indicating longitude and latitude. The symbol “00” denotes a
confident cloudy day (confidence ≤0.66), “01” denotes a probably
cloudy day (0.95≥ confidence > 0.66), “10” denotes a probably
clear day (0.99≥ confidence > 0.65), and “11” denotes a confident
clear day (confidence > 0.99). Cloud mask values are extracted
from the raw data using the script provided by NASA in the
MODIS Cloud Mask User’s Guide. Cloudiness symbols are
arbitrarily transformed into numerals from 0 to 3. Specifically,
0, 1, 2, and 3 represent the confident clear, probably clear,
probably cloudy, and confident cloudy days, respectively. The
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cloudiness in each storage area is analyzed as the weighted
average over all FRTs, where the weight is the footprint of each
tank4.

Oil market data
Oil price data. The price data analyzed are those of West Texas
Intermediate (WTI) crude oil. Daily data are collected from the
EIA website5. Weekly returns from the difference between the log
price on the current Tuesday and the Tuesday of the previous
week are used to isolate the effect of inventory announcements in
the predictive models. This weekly return is equivalent to the
cumulative sum of daily returns from Wednesday of the previous
week to the current Tuesday. The sample period used in the main
empirical analysis is January 2014 to December 2021 considering
the availability of satellite-based oil information6.

Control variables. Six economic variables are considered as
competing predictors of oil returns. Their lagged terms are
incorporated into the predictive regression as control variables to
investigate the in-sample predictive ability of the proposed
cloudiness measures. These six variables are the economic policy
uncertainty (EPU) from Baker et al. (2016), the CBOE stock
volatility index (VIX), the macroeconomic uncertainty (MU)
from Bekaert et al. (2022), the unexpected oil inventory change
(OI) from Mukherjee et al. (2021), WTI oil returns (OR), and
asymmetric oil returns (AR) proxied by the positive
component of OR.

The descriptive statistics of the cloudiness and economic
variables and their pairwise Pearson correlations are presented in
the online appendix. The magnitudes of all of the correlations are
less than 0.1, suggesting weak correlations. These findings suggest
that the proposed cloudiness measures and existing oil predictors
provide markedly different information.

Methodology
In-sample test. A simple predictive regression is used to examine
the ability of cloudiness above FRTs to predict oil returns:

rtþ1 ¼ αðiÞ þ βðiÞK K
ðiÞ
t þ εðiÞtþ1; ð1Þ

where rt denotes oil returns, K ðiÞ
t is the measure of cloudiness

above the ith oil storage area, K ðAÞ
t denotes the average cloudiness

across the eight considered areas i:e:;K ðAÞ
t ¼ 1

8∑
8
i¼1 K

ðiÞ
t

� �
, and

εðiÞt is the error term. The parameter estimates of Model (1) are
obtained using the ordinary least squares (OLS) method. Because
the relationship between cloudiness and oil returns is expected to
be negative, a one-sided test is conducted to test the null
hypothesis of H0 : β

ðiÞ
K ≥ 0 against the one-sided alternative of

H1 : β
ðiÞ
K <0. The Newey and West (1987) adjusted t statistic,

which is robust to heteroskedasticity and autocorrelation, is
employed to test for statistical significance.

It is necessary to investigate whether the predictive information
offered by cloudiness measures overlaps that offered by existing
oil return and uncertainty variables. Therefore, the control
variables are incorporated to form a predictive regression as
follows:

rtþ1 ¼ αðiÞ þ βðiÞK K
ðiÞ
t þ ∑

N

j¼1
βðjÞcontrolx

ðjÞ
t;control þ εðiÞtþ1; ð2Þ

where xðjÞt;control is the jth control variable and N is the total number
of control variables.

Out-of-sample test. As shown in Welch, Goyal (2008), it is dif-
ficult to find a predictive model that significantly outperforms the

benchmark of a historical average model assuming no predict-
ability in an out-of-sample exercise. Therefore, to analyze out-of-
sample performance, a univariate predictive regression employing
a variable of interest other than the intercept is used:

rtþ1 ¼ αþ βxt þ εtþ1; ð3Þ
where rt+1 denotes weekly returns, which are the average daily
returns from Wednesday of week t (EIA announcement day) to
Tuesday of week t+ 1. The return forecasts from the univariate
predictive regression are computed as follows:

r̂tþ1 ¼ α̂t þ β̂txt ; ð4Þ
where α̂t and β̂t denote the parameter estimates of α and β based
on the information available before week t, respectively. Specifi-
cally, α̂t and β̂t can be obtained by regressing frigt2 on the constant
and corresponding predictor fxigt�1

1 using OLS. Then, the
expected returns in week t + 1 can be obtained from Eq. (4) using
α̂t , β̂t , and xt.

Forecast accuracy is evaluated using the out-of-sample R2 value
R2
OoS

� �
following Campbell and Thompson (2008). R2

OoS indicates
the proportional reduction in the mean squared prediction error
of a model relative to that of a historical average benchmark and
is calculated as follows:

R2
OoS ¼ 1�∑T

t¼Mþ1 rt � r̂t
� �2

∑T
t¼Mþ1 rt � �rt

� �2 ; ð5Þ

where r̂t and rt are the return forecast from the given model and
realized return at time t, respectively; �rt denotes the historical
average forecast; T denotes the total number of return observa-
tions; and M denotes the initial sample length for parameter
estimation. A positive R2

OoS value implies that a model has greater
predictive ability than the historical average benchmark. The
Clark and West (CW, 2007) statistic is used to test whether R2

OoS
is significantly different from 0.

The forecast encompassing test of Rapach, Ringgenberg, and
Zhou (2016) is executed to investigate the uniqueness of the
information provided by cloudiness measures. The test is based
on the optimal combination of a predictive regression forecast
and a benchmark forecast:

r̂*tþ1 ¼ λr̂itþ1 þ 1� λð Þ̂rbenchtþ1 ; ð6Þ
where r̂itþ1 denotes the return forecast produced by the ith
predictive regression model of interest and r̂bencht is the return
forecast generated by the benchmark model. The parameter λ is
the weight assigned to the forecast in the model of interest, where
0 ≤ λ ≤ 1. If λ= 1, the optimal combination includes the return
forecasts from only the model of interest, indicating that the
information contained therein encompasses the information of
the forecasts from the benchmark model. If λ > 0, the optimal
combination considers the forecasts of the given model and the
benchmark model. In this case, the forecast of the benchmark
model does not encompass the forecast of the model of interest,
which thus provides useful information for forecasting excess
returns beyond that provided by the benchmark model. To test
the significance of the weight estimate λ̂, the Harvey, Leybourne,
and Newbold (HLN, 1998) approach with the test of the null
hypothesis of λ = 0 against the one-sided alternative λ > 0 is used.

Empirical results
In-sample predictive ability. Table 1 reports the results of Model
(1), including the parameter estimates and in-sample R2, inter-
preted as percentages. The period of weekly sample used in the
in-sample analysis is from January 7, 2014, to December 21, 2021.
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The coefficients are significant and negative for seven of the eight
cloudiness measures related to oil storage areas. Notably, the
aggregate cloudiness measure K ðAÞ

t exhibits strong predictive
ability in the negative direction for oil returns, as evidenced by its
t statistic of −2.611, which is statistically significant at the 1%
level. The in-sample R2 of the univariate K ðAÞ

t model is 1.275%.
Table 2 shows the results of Model (2). A significant and

negative predictive relationship is evident for six of the eight
cloudiness measures. That is, the predictive ability of the
individual cloudiness measures remains almost unchanged after
the incorporation of the control variables. The coefficient of KðAÞ

t
is −0.038, with a t statistic of −2.748, which is statistically
significant at the 1% level. Thus, for predicting oil returns, these
cloudiness measures provide information markedly distinct from
that provided by the control variables.

When investigating in-sample predictability, it is important to
determine the statistical significance of the predictive regression
coefficient of interest. The heteroskedasticity and autocorrelation
affect the statistical inference about the significance of parameter
estimates. The OLS residuals of the univariate K ðAÞ

t model have a
significant autocorrelation of 0.105 and a significant autoregres-
sive conditional heteroskedasticity (ARCH) effect, according to
the Engle (1982) test. The Newey and West adjusted t statistic
used in the previous analysis accounts for the effects of
autocorrelation and heteroskedasticity of oil returns on statistical

inferences of significance. To check the robustness of the
statistical inferences, four tests are employed. The first uses
p values based on the wild bootstrap procedure of Rapach,
Ringgenberg, and Zhou (2016) to account for the nonnormal
distribution. From 2,000 simulations, the p value of the K ðAÞ

t
model is 0.003. The second test uses the approach of Stambaugh
(1999) for addressing autocorrelation. The adjusted slope
coefficient of the K ðAÞ

t series is −0.040, with a p value of 0.011.
The third test is the Wald test of Kostakis, Magdalinos, and
Stamatogiannis (2015), which accommodates the regressor’s
degree of persistence (unit root, local-to-unit root, near
stationary, or stationary). The resulting slope coefficient for the
IVX-Wald statistic is −0.039, with a p value of 0.024. The final
test employs the weighted least squares (WLS) following Johnson
(2019), in which the weights are the standard deviations of oil
returns computed on the basis of a 50-week rolling window. WLS
estimators are more efficient than OLS estimators for hetero-
skedastic data. The t statistic corresponding to K ðAÞ

t is −2.581,
suggesting the significance of predictive ability. The results of
these tests indicate the robustness of the main findings regarding
the ability of cloudiness measures to predict oil returns.

Placebo tests are conducted to further understand the
predictive ability of cloudiness. These tests are executed on the
aggregate cloudiness measure K ðAÞ

t because it reflects the overall
availability of satellite information on oil inventory. The first test

Table 1 In-sample predictive regression results, univariate models.

K(BLA) K(BTX) K(CTX) K(COK) K(HTX) K(MRL) K(LLA) K(TTX) K(A)

α 0.011
(0.561)

0.059***
(2.840)

0.059*
(1.363)

0.028*
(1.558)

0.104***
(2.386)

0.059***
(2.402)

0.081**
(2.087)

0.059*
(1.435)

0.113***
(2.581)

βK −0.004
(−0.553)

−0.021***
(2.763)

−0.021*
(−1.409)

−0.010*
(−1.573)

−0.036***
(−2.447)

−0.021***
(−2.500)

−0.028**
(−2.168)

−0.021*
(−1.503)

−0.040***
(−2.611)

R2(%) 0.031 0.633 0.522 0.457 1.120 0.866 1.190 0.714 1.275

This table reports the in-sample estimation results for the predictive regression rtþ1 ¼ αðiÞ þ βðiÞK K
ðiÞ
t þ εðiÞtþ1 , where rt denotes oil price returns, K

ðiÞ
t is a cloudiness indicator above the i-th oil storage district,

KðAÞ
t denotes the aggregate cloudiness measure, and εðiÞt represents the error term. The parameters are estimated via the ordinary least squares. The one-sided test is used for the null hypothesis

H0 : βðiÞK � 0 against one-sided alternative H1 : β
ðiÞ
K <0. The numbers in the parentheses are the t-statistics based on the Newey-West robust errors. The in-sample R2 values are multiplied by 100 to

interpret as percentages. The asterisks *, **, and *** denote statistical significance at 10%, 5%, and 1% levels, respectively.

Table 2 In-sample predictive regression results, control variables.

K(BLA) K(BTX) K(CTX) K(COK) K(HTX) K(MRL) K(LLA) K(TTX) K(A)

α 0.013
(0.681)

0.063***
(2.935)

0.043
(1.102)

0.025*
(1.463)

0.090***
(2.478)

0.057***
(2.590)

0.080***
(2.656)

0.061*
(1.570)

0.108***
(2.731)

βEPU 0.017
(1.285)

0.017
(1.316)

0.017
(1.284)

0.017
(1.274)

0.017
(1.293)

0.018
(1.336)

0.017
(1.329)

0.017
(1.320)

0.017
(1.324)

βVIX −0.013
(−1.033)

−0.014
(−1.112)

−0.014
(−1.053)

−0.013
(−1.036)

−0.014
(−1.069)

−0.014
(−1.079)

−0.015
(−1.135)

−0.014
(−1.062)

−0.014
(−1.106)

βMU −0.009
(−0.652)

−0.009
(−0.649)

−0.009
(−0.636)

−0.009
(−0.649)

−0.010
(−0.666)

−0.009
(−0.641)

−0.009
(−0.641)

−0.010
(−0.664)

−0.009
(−0.647)

βOI −0.006
(−1.031)

−0.005
(−0.981)

−0.005
(−0.975)

−0.005
(−0.990)

−0.005
(−0.959)

−0.006
(−1.005)

−0.006
(−1.022)

−0.006
(−0.990)

−0.005
(−0.961)

βOR −0.012
(−0.743)

−0.013
(−0.784)

−0.012
(−0.737)

−0.012
(−0.749)

−0.012
(−0.774)

−0.012
(−0.736)

−0.012
(−0.765)

−0.012
(−0.759)

−0.012
(−0.777)

βAR 0.022
(1.144)

0.022
(1.165)

0.022
(1.133)

0.022
(1.153)

0.022
(1.143)

0.021
(1.115)

0.022
(1.134)

0.022
(1.155)

0.022
(1.148)

βK −0.005
(−0.683)

−0.022***
(−2.857)

−0.015
(−1.143)

−0.010*
(−1.489)

−0.031***
(−2.500)

−0.020***
(−2.699)

−0.028***
(−2.689)

−0.021*
(−1.630)

−0.038***
(−2.748)

R2(%) 7.598 8.276 7.820 7.929 8.391 8.355 8.690 8.314 8.700

This table reports the in-sample estimation results for the predictive regression, rtþ1 ¼ αðiÞ þ βðiÞK K
ðiÞ
t þ∑N

j¼1 β
ðjÞ
controlx

ðjÞ
t;control þ εðiÞtþ1 , where where rt denotes oil price returns, KðiÞ

t is a cloudiness indicator
above the i-th oil storage district, KðAÞ

t denotes the aggregate cloudiness measure, and εðiÞt represents the error term, xðjÞt;control is the j-th economic variable, and N is the total number of such control
variables. The parameters are estimated via the ordinary least squares. The one-sided test is used for the null hypothesis H0 : βðiÞK � 0 against one-sided alternative H1 : β

ðiÞ
K <0. The numbers in the

parentheses are the t-statistics based on the Newey-West robust errors. The in-sample R2 values are multiplied by 100 to interpret as percentages. The asterisks *, **, and *** denote statistical
significance at 10%, 5%, and 1% levels, respectively.
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considers the sample period from February 2007 to December
2013, during which no satellite-based data were available to
investors. The results in Table 3 suggest that K ðAÞ

t has no
predictive ability for this period. The second test investigates the
predictive ability of K ðAÞ

t based on the cloudiness above FXRTs. In
this test, the sample period is the same as that used for our main
test, namely, January 2014 to December 2021. Observations of
FXRTs do not provide any oil storage–related information. Thus,
the differences in the cloud cover of FXRTs provide compelling
evidence for the necessity for the cloudiness above FRTs in oil
return prediction. Cloudiness above FXRTs displays significant
predictive ability, but its predictive power is weaker than that of
cloudiness above FRTs, as evidenced by the weak significance of
the slope coefficients. This is expected because FRTs and FXRTs
are stored adjacently, and the cloudiness above them is similar.
The third test uses the cloudiness above FRTs at night, when tank
shadows are not visible, during the period from January 2014 to
December 2021. The results again indicate that the predictive
ability of cloudiness disappears, suggesting the importance of
daytime observations. In summary, these three contrast test
results confirm that daily cloud cover over oil storage facilities
provides more predictive information than does cloud cover over
other locations.

Out-of-sample predictive ability
Forecasting results. The data for the first 50 weeks (i.e., from
January 7, 2014 to December 16, 2014) are used for the initial
parameter estimation to generate first forecast. Thus, weekly data
from December 23, 2014 through December 21, 2021 are
employed for forecast evaluation. Table 4 shows the out-of-
sample performance of K ðAÞ

t and that of competing predictors.
The K ðAÞ

t model yields a R2
OoS of 0.889%, with a CW statistic of

2.185, which is statistically significant at the 5% level. In contrast,
little evidence of predictive ability is observed among the com-
peting predictors.

Table 4 also reports the results of the forecast encompassing
test. When using the historical average benchmark, the weight
of the K ðAÞ

t model is 1, whereas the weights of the five
competing models are 0, and the weight of the AR model is
0.118. Furthermore, the HLN statistics indicate that the
estimate of λ for the K ðAÞ

t model is significantly different from
0, whereas the λ coefficients for the remaining models are
nonsignificant. When using the K ðAÞ

t model as the benchmark,
the weights of all of the competing models are 0 or close to 0.

Therefore, the forecasts from the K ðAÞ
t model encompass the

forecasts from the benchmark model and the model based on
existing predictors.

Alternative multivariate analysis methods. The proposed K ðAÞ
t

indicator is a simple aggregate of the eight cloudiness measures.
However, two alternative methods for dealing with multivariate
information are considered: forecast combinations and the dif-
fusion index method. This analysis is helpful for further under-
standing the predictive ability of satellite image information and
serves as a robustness test of our findings on return predictability.
Forecast combinations use the weighted average of forecasts from
individual models, with the key inputs being the model weights.
Following Rapach, Strauss, and Zhou (2010), a simple equally
weighted combination is employed, which uses weights of 1/N,
where N is the number of models. The diffusion index method
uses several factors drawn from a pool of predictors. For sim-
plicity, the first principal component of the eight cloudiness
variables is used as the predictor.

The out-of-sample results obtained using these two multi-
variate methods are significant and positive, with R2

OoS values of
0.821% and 0.751%, respectively. The forecast encompassing test
results suggest that the combination and diffusion index forecasts
provide content that is markedly different from that of the
benchmark forecast. The quality of our finding on the return
predictability of cloudiness information is thus not sensitive to
the multivariate method employed.

Long-horizon prediction. The above analyses demonstrate the
ability of K ðiÞ

t to predict oil returns over a week. The predictive
ability for longer horizons is investigated using the following

Table 3 The placebo test results.

Earlier period results
(2007M2-2013M12)

Results based on
fixed roof tanks

Results based on
Nighttime
cloudiness

α −0.012
(−0.517)

0.137**
(1.653)

0.015
(0.560)

βðAÞK 0.005
(0.527)

−0.047**
(−1.694)

−0.006
(−0.543)

R2(%) 0.066 1.910 0.046

This table reports the in-sample estimation results for the predictive regression
rtþ1 ¼ αðiÞ þ βðAÞK KðAÞ

t þ εðiÞtþ1 , where rt denotes oil price returns, KðAÞ
t denotes the aggregate

cloudiness measure, and εðiÞt represents the error term. The second column reports the estimation
results during the earlier period when the application of satellite data in investing is not prevalent
(2007M2-2013M12). The third column shows the results using KðAÞ

t based on fixed roof tanks.
The last column shows the results using KðAÞ

t based on nighttime cloudiness. The parameters are
estimated via the ordinary least squares. The one-sided test is used for the null hypothesis
H0 : βðAÞK � 0 against one-sided alternative H1 : β

ðAÞ
K <0. The numbers in the parentheses are the

t-statistics based on the Newey-West robust errors. The in-sample R2 values are multiplied by
100 to interpret as percentages. The asterisks *, **, and *** denote statistical significance at 10%,
5%, and 1% levels, respectively.

Table 4 Out-of-sample results.

Out-of-sample R2 Forecast
encompassing test
Benchmark:
historical average

Forecast
encompassing
test
Benchmark: K(A)

model

R2
OoS CW λ MHLN λ MHLN

EPU −8.964 −0.796 0 −0.795 0 −0.787
VIX −3.711 −0.097 0 −0.097 0 −0.105
MU −6.054 −1.045 0 −1.044 0 −1.021
OI −0.586 −0.089 0 −0.088 0 −0.077
OR −6.304 −0.587 0 −0.586 0 −0.607
AR −5.103 0.903 0.118 0.902 0.089 0.761
K(A) 0.889 2.185** 1.000 2.182** NA NA

This table reports the out-of-sample forecasting results of the univariate predictive
regressions, rtþ1 ¼ αþ βxt þ εtþ1 , for, where xt is a weekly variable of interest, rt+1 represents
the weekly returns on WTI spot oil, and εt+1 is the error term assumed to be independent
and identically distributed. K(A) is the aggregate cloudiness measure, and the names of the
economic variables are listed in Table 1. The forecast quality is evaluated by the out-of-
sample R2 R2OoS

� �
defined as the percent reduction of MSPE of the given model relative to the

MSPE of the historical average benchmark, R2OoS ¼ 1�MSPEmodel=MSPEbench , where
MSPEmodel ¼ ∑T

t¼Mþ1 rt � r̂t
� �2

=ðT �MÞ and MSPEbench ¼ ∑T
t¼Mþ1 rt ��rt

� �2
=ðT �MÞ, where rt, r̂t

and �rt are the realized returns and return forecasts recursively generated from the given
model and the benchmark model, respectively. T is the total number of samples, and M
denotes the initial in-sample length for parameter estimation. The full sample period is from
January 2014 to December 2021 and the out-of-sample evaluation period starts from
January 2015. The R2OoS figure is multiplied by 100 to denote percentage values. The
statistical significance relative to the prevailing mean model is examined using the Clark and
West (2007) test statistic reported in the third column. The forth column reports the
estimated weight λ on the predictive regression of interest in a convex combination forecast,
composed of the forecasts from the corresponding univariate model and historical average
forecasts. The seventh column reports the estimated weight on weight λ on the predictive
regression of interest in a convex combination forecast, composed of the forecasts from the
given univariate model and the K(A) model forecasts. The statistical significance is reported
based on the Harvey, Leybourne, and Newbold (1998) statistics (MHLN). The null
hypothesis of the HLN test is that the weight on the given model forecasts is zero against the
alternative hypothesis that the weight is larger than zero. The asterisks *, **, and *** denote
significance at 10%, 5%, and 1% levels, respectively.
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regression:

rtþ1:tþh ¼ αþ βðAÞK K ðAÞ
t þ εtþ1; ð7Þ

where rtþ1:tþh denotes the average returns from week t+ 1 to week
t+ h. Forecast horizons of 2 to 6 weeks are considered. The results
indicate that the slope coefficient βðAÞK is significant and negative for
2- and 3-week horizons. For horizons longer than 3 weeks, the
predictive ability of KðAÞ

t disappears7. The reason for this may be that
the uncertainty of information due to cloud cover resolves within a
short period, especially given that satellite images from any clear day
allow for the quick release of inventory information.

Alternative benchmark model. Historical average forecasts gener-
ated through predictive regression based only on a constant are the
most popular benchmark for testing forecasts of asset returns. Such
historical average models assume constant excess returns and
therefore no predictability. This benchmark is also consistent with
the weak-form efficient market hypothesis of Fama (1970). The
autocorrelation of oil spot returns used in the main empirical ana-
lysis is 0.110, which has a small magnitude but is statistically sig-
nificant at the 5% level. This significant autocorrelation does not
imply that the incorporation of a lagged dependent variable can
improve out-of-sample forecasting performance, as the inclusion of
autoregressive terms accounts for more past information but
introduces parameter estimation error, harming out-of-sample per-
formance. Nevertheless, a lagged dependent variable is useful for
inferring the predictive ability of cloudiness measures relative to a
benchmark model. This section compares the forecasting perfor-
mance of a VAR(1,1) model with lagged returns and the aggregate
cloudiness measure K ðAÞ

t with that of an AR(1) model with only
lagged returns. The in-sample estimation results of the VAR model
indicate that the coefficient of K ðAÞ

t is −0.038, with a t statistic of
−2.605 significant at the 1% level. Using out-of-sample data, the
mean squared prediction error of the VAR model is 0.837% lower
than that of the AR model (i.e., R2

OoS = 0.837%), with a CW statistic
of 2.294% significant at the 5% level. Thus, changing the benchmark
model does not change the main finding of the significant predictive
ability of the cloudiness measure, considering the R2

OoS of 0.889% of
the univariate KðAÞ

t model.

Forecasting futures returns for portfolio allocation. Oil investors
are concerned about futures returns because of their high
liquidity and low associated transaction costs. Therefore, this
section investigates the ability of the proposed cloudiness mea-
sures to forecast oil futures returns and uncover the implications
for portfolio allocation. The data on futures Contract 1 are
available on the EIA website.

Table 5 shows the results of in-sample and out-of-sample
forecasting performance. The in-sample predictive ability of six of
the eight measures is significant, consistent with the results for oil
spot returns. K ðAÞ

t has a slope coefficient of −0.041, with a t
statistic of −2.727, which suggests significant predictive ability.
The out-of-sample R2

OoS value indicates that four of the eight
measures significantly outperform the historical average bench-
mark model. Notably, the aggregate cloudiness model has a
significant and positive R2

OoS of 1.108%. In summary, the results
using futures return data confirm the robustness of the results
based on spot returns.

Following the related literature (e.g., Rapach, Strauss, and
Zhou, 2010), a portfolio comprising a risky asset (i.e., oil futures)
and a risk-free asset (i.e., Treasury bills) is considered to evaluate
the economic significance of return predictability. In this
framework, the portfolio return is computed as follows:

rt;p ¼ ωtrt;c þ rf ; ð8Þ
where rt,c and rf denote crude oil futures returns and the 3-month
Treasury bill rate as a proxy for the risk-free rate, respectively.
The investor is assumed to use mean–variance utility when
allocating wealth and computing the optimal weights for the
futures contract as follows:

Ut ωt

� � ¼ E rt;p
� �

� γ

2
var rt;p

� �
; ð9Þ

where E(·) and var(·) are expectation and variance operators and
γ is a risk aversion coefficient. The ex ante weight of oil futures is
obtained by maximizing utility as follows:

ω*
t t�1j ¼ r̂t;K

γσ̂2t
; ð10Þ

where r̂t;K and σ̂2t are the return and volatility forecasts,
respectively. For simplicity, a 50-week rolling window is used to

Table 5 Forecasting oil futures returns.

K(BLA) K(BTX) K(CTX) K(COK) K(HTX) K(MRL) K(LLA) K(TTX) K(A)

Panel A: In-sample predictive regression results
α 0.016

(0.838)
0.063***
(2.938)

0.062
(1.411)

0.024
(1.473)

0.102**
(2.385)

0.066***
(2.618)

0.089**
(2.233)

0.058
(1.411)

0.117***
(2.683)

βK −0.006
(−0.829)

−0.022***
(−2.897)

−0.022*
(−1.464)

−0.009
(−1.468)

−0.035***
(−2.454)

−0.023***
(−2.740)

−0.031**
(−2.323)

−0.021*
(−1.483)

−0.041***
(−2.727)

R2(%) 0.077 0.818 0.634 0.377 1.226 1.239 1.604 0.797 1.540
Panel B: Out-of-sample forecasting results
R2OoS −0.244 0.457 −0.008 −0.152 0.836 0.900 1.084 0.010 1.108
CW 0.060 2.005** 0.743 0.431 2.095** 2.205** 2.120** 1.049 2.326**
λ 0.038 0.896 0.493 0.294 0.941 0.848 1 0.507 0.959
MHLN 0.060 2.002** 0.742 0.431 2.092** 2.202** 2.117** 1.047 2.323**

This table reports the in-sample estimation results for the predictive regression rtþ1 ¼ αðiÞ þ βðiÞK K
ðiÞ
t þ εðiÞtþ1 , where rt denotes oil price returns, K

ðiÞ
t is a cloudiness indicator above the i-th oil storage district,

KðAÞ
t denotes the aggregate cloudiness measure, and εðiÞt represents the error term. The parameters are estimated via the ordinary least squares. The one-sided test is used for the null hypothesis

H0 : βðiÞK � 0 against one-sided alternative H1 : β
ðiÞ
K <0. The numbers in the parentheses are the t-statistics based on the Newey-West robust errors. The in-sample R2 values are multiplied by 100 to

interpret as percentages. The out-of-sample forecast quality is evaluated by the out-of-sample R2 R2OoS
� �

defined as the percent reduction of MSPE of the given model relative to the MSPE of the historical
average benchmark, R2OoS ¼ 1�MSPEmodel=MSPEbench , where MSPEmodel ¼ ∑T

t¼Mþ1 rt � r̂t
� �2

=ðT �MÞ and MSPEbench ¼ ∑T
t¼Mþ1 rt ��rt

� �2
=ðT �MÞ, where rt, r̂t and �rt are the realized returns and return

forecasts recursively generated from the given model and the benchmark model, respectively. T is the total number of samples, and M denotes the initial in-sample length for parameter estimation. The
full sample period is from January 2014 to December 2021 and the out-of-sample evaluation period starts from January 2015. The R2OoS figure is multiplied by 100 to denote percentage values. The
statistical significance relative to the prevailing mean model is examined using the Clark and West (2007) test statistic reported in the third column. The λ is the weight on the predictive regression of
interest in a convex combination forecast, composed of the forecasts from the corresponding univariate model and historical average forecasts. The statistical significance is reported based on the
Harvey, Leybourne, and Newbold (1998) statistics (MHLN). The null hypothesis of the MHLN test is that the weight on the given model forecasts is zero against the alternative hypothesis that the weight
is larger than zero. The asterisks *, **, and *** denote significance at 10%, 5%, and 1% levels, respectively.
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forecast volatility. Thus, differences in portfolio performance
depend on the return model. Three risk aversion coefficients are
considered: γ= 1, 3, and 6. Using a limited interval for the
weights is reasonable even though futures transactions theoreti-
cally allow for unlimited long and short positions. Three weight
constraints are considered and imposed on the futures contract:
(a) −1 < ω*

t t�1j < 1, indicating no financial leverage and at most a

100% short sale; (b) −1 < ω*
t t�1j < 0, precluding a long position

and indicating at most a 100% short sale; and (c) −2 < ω*
t t�1j < 2,

indicating at most 100% financial leverage and a 200% short sale.
Table 6 presents portfolio performance evaluated on the basis

of two popular measures: the certainty equivalent return (CER)
and the shape ratio (SR). The values reported are CER and SR
gains, which are respectively defined as the difference between
the CER and SR of portfolios based on the model of interest and
the benchmark model. The CER differences are multiplied by
1,200 to obtain an annualized percentage value. The SR
differences are multiplied by

ffiffiffiffiffi
12

p
to obtain an annualized

value. The results indicate that portfolio performance depends
on the risk aversion coefficient and weight constraints. Never-
theless, the CER and SR gains are prominent in all considered
cases. For example, under the reasonable weight restriction of
−1 < ω*

t t�1j < 1, the annualized CER gains are 422, 261.9, and
111.9 basis points for the risk aversion coefficients of 1, 3, and 6,
respectively; the respective annualized SR gains are 0.194, 0.251,
and 0.231. In summary, the portfolio performance results
support the economic significance of predicting oil returns from
the aggregate cloudiness measure.

Discussion
Information uncertainty channel. Inventory provides a useful
instrument for hedging against oil risk. Accordingly, oil inventory
increases during periods of high information uncertainty.
Therefore, high information uncertainty negatively affects future
oil prices. The following predictive regression is used to test this
hypothesis:

yoi;tþ1 ¼ αðiÞ þ β ið Þ
oi þ βðiÞtrendK

ðiÞ
t

� �
yoi;t þ δðiÞK KðiÞ

t þ εðiÞtþ1; ð11Þ

where K ðiÞ denotes the cloudiness measure for the ith storage area,
K ðAÞ denotes the aggregate cloudiness measure, and yoi, t is the
change in oil inventory. Lagged oil inventory is incorporated to
account for autocorrelation. The null hypothesis of δðiÞK ≤ 0 is
tested against the one-sided alternative of δðiÞK > 0. The results are
reported in Table 7. The estimate of δðAÞK is 0.0034, with a mar-
ginally significant t statistic of 1.645 This evidence supports oil
inventory as a channel explaining how KðAÞ

t can predict oil
returns.

Information flow channel. The other plausible explanation for
the predictive ability of cloud cover is based on volatility. When
the sky above FRTs is cloudy, less satellite-based information
flows into the oil market. Consequently, investors may hesitate to
trade, reducing trading volume and, by extension, volatility. In
addition, on very cloudy days, investors may tend to heavily rely
on past volatility information, resulting in high volatility persis-
tence. This hypothesis is tested using the following predictive
regression:

logRVtþ1 ¼ αðiÞ þ βðiÞRV þ βðiÞtrendK
ðiÞ
t

� �
´ logRVt þ δðiÞK K

ðiÞ
t þ εðiÞtþ1; ð12Þ

where RVt denotes the realized volatility (RV) computed as the
sum of the squared daily returns from Wednesday of the previous
week to the current Tuesday. Following Paye (2012), log RV is
used instead of the original series, because the RV series exhibits
strong leptokurtosis, which can lead to biased inferences about
parameter significance in OLS estimation; in contrast, the dis-
tribution of log RV is nearly normal (Andersen et al., (2001);
Andersen et al., (2001)). The null hypothesis of is tested against
the one-sided alternative of The OLS results are reported in
Table 8. The estimate of βtrend is 0.161. The corresponding Newey
and West (1987) adjusted t statistic (robust to heteroskedasticity
and autocorrelation) is 1.725, indicating significance at the 5%
level. The coefficient of K ðAÞ

t is −1.396, with a t statistic of −1.699,
which is also significant at the 5% level. Therefore, KðAÞ

t negatively
predicts oil volatility, providing evidence of a volatility channel
from cloudiness to oil returns.

Table 6 Portfolio results.

CER gains Sharpe ratio gains

Constraint γ = 1 γ = 3 γ = 6 γ = 1 γ = 3 γ = 6

−1 <ω < 1 4.220 2.619 1.119 0.194 0.251 0.231
−1 <ω < 0 2.459 1.986 0.706 0.118 0.204 0.170
−2 <ω < 2 7.490 2.238 0.539 0.241 0.231 0.202

This table reports the out-of-sample forecasting performance for the predictive regression
rtþ1 ¼ αðAÞ þ βðAÞK KðAÞ

t þ εðAÞtþ1 , where rt denotes oil price returns, KðAÞ
t denotes the aggregate

cloudiness measure, and εðiÞt represents the error term. At each time t, an investor with
mean-variance preference assigns the ex-ante weight ω�

tþ1 tj ¼ r̂tþ1;K

γσ̂2tþ1
to crude oil futures,

where γ denotes risk aversion coefficients; r̂t;K and σ̂2t are the return and volatility forecasts,
respectively. A 50-week rolling window method is employed to compute the volatility
forecasts. Two popular evaluation measures: certainty equivalent return (CER) and Sharpe
ratio (SR) are applied to evaluate portfolio performance. The numbers reported in the table
are annualized CER (SR) gains, defined as the differences between the CER (SR) of given
model relative to that of the benchmark model. The CER differences are further multiplied
by 1,200 to denote annualized percentage value. The SR differences are multiplied by

ffiffiffiffiffi
12

p
to interpret as the annualized value.

Table 7 information uncertainty and oil inventory.

K(BLA) K(BTX) K(CTX) K(COK) K(HTX) K(MRL) K(LLA) K(TTX) K(A)

α −0.002
(−0.389)

−0.008
(−1.582)

−0.009*
(−1.820)

−0.002
(−0.634)

−0.007
(−1.179)

−0.006
(−1.401)

−0.004
(−0.949)

−0.004
(−0.923)

−0.011
(−1.804)

βoi 0.107
(0.296)

0.671
(1.551)

0.532
(1.058)

0.488**
(2.204)

0.362
(0.698)

0.484
(1.464)

0.739**
(2.152)

0.807**
(2.321)

0.766*
(1.712)

βtrend 0.091
(0.714)

−0.104
(−0.698)

−0.057
(−0.331)

−0.044
(−0.532)

0.003
(0.017)

−0.040
(−0.338)

−0.128
(−1.050)

−0.152
(−1.231)

−0.138
(0.862)

δK 0.001
(0.497)

0.003**
(1.670)

0.003**
(1.901)

0.001
(0.801)

0.003
(1.249)

0.002*
(1.509)

0.002
(1.035)

0.002
(1.012)

0.004**
(1.861)

R2(%) 13.68 14.07 14.11 13.66 13.80 13.91 13.78 13.81 14.03

This table reports the in-sample estimation results for the predictive regression, yoi;tþ1 ¼ αðiÞ þ β ið Þ
oi þ βðiÞtrendK

ðiÞ
t

� �
yoi;t þ δðiÞK K

ðiÞ
t þ εðiÞtþ1 ; where yoi,t denotes oil inventory change at time t, where K(i) is the

cloudiness measure for the i-th district, K(A) denotes the aggregate cloudiness, and εt represents the error term. The parameters are estimated via the ordinary least squares. The one-sided test is used
for null hypothesis δðiÞK � 0 against the alternative δðiÞK >0. The numbers in the parentheses are the t-statistics based on the Newey-West robust errors. The in-sample R2 values are multiplied by 100 to
interpret as percentages. The asterisks *, **, and *** denote statistical significance at 10%, 5%, and 1% levels, respectively.
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Satellite data, cloudiness, and information asymmetry. The
availability of satellite-based oil inventory information depends
on the cloud cover over FRTs. This paper demonstrates that such
cloud cover affects oil returns via two channels. In practice,
satellite images are widely applied to aid in investment decisions.
For example, Orbital Insight provides parking lot traffic data
based on satellite images to help clients estimate the sales of retail
firms before earnings announcements. Because of high acquisi-
tion and processing costs, market participants have unequal
access to satellite images. Generally, high-resolution satellite
images are priced by square kilometer, and even a small image
covering just 25 km2 costs more than US$600. Moreover, a
profitable investment strategy requires daily observations of
multiple locations and thus thousands of images per year, leading
to staggering costs. The introduction of satellite information
creates new information asymmetry between sophisticated and
unsophisticated investors. Whether such information asymmetry
is priced into security and commodity markets is not investigated
in the literature. This issue has important implications for asset
pricing and requires further quantitative analysis, as such infor-
mation asymmetry is always analyzed in cross-sectional analyses.

Changes in predictive ability. Predictive ability may change over
time. Mclean, Pontiff (2016) find that the predictive ability of
variables weakens over time after they are taken as return pre-
dictors in academic publications. A potential explanation for such
weakening predictive ability is investor learning. To address this
issue, an interaction term of the cloudiness measure and time t
ðt ´K Að Þ

t Þ is added to Model (1) as an additional explanatory
variable. Because cloudiness negatively predicts oil returns, a
significantly positive coefficient of the interaction term suggests
that the predictive ability weakens over time (Jacobsen et al.,
(2019)). The coefficient is positive but nonsignificant (t statistic =
0.635), indicating no effect of investor learning.

Conclusions
Market participants are applying big data techniques to improve
investment decisions. However, the literature does not pay ade-
quate attention to the asset pricing implications of the availability
of alternative data. Satellite imagery data are typical alternative
data, and cloudiness is a natural proxy for the availability of such
data and thus the flow of such data into the market. Therefore,
this paper investigates the effects of cloudiness over FRTs on oil
returns through time-series prediction.

This study constructs eight measures of the cloudiness above
FRTs in eight oil storage areas in the U.S. The aggregate of these
measures exhibits significant in-sample and out-of-sample

predictive ability for oil returns, and this predictive ability is sta-
tistically and economically significant. Moreover, this predictive
ability cannot be explained by existing predictors, such as uncer-
tainty or oil market variables. The channels from cloudiness to oil
returns include the effects of both oil inventory and oil volatility.

Data availability
The datasets analyzed during the current study are available from
the corresponding author on reasonable request.

Received: 2 March 2023; Accepted: 13 September 2023;

Notes
1 This tool provides daily cloud observations at spatial resolutions of 1 km and 250 m
(nadir).

2 Deither, Malloy, and Scherbina, 2002 relax the short-sale constraint and show that
friction, which prevents the revelation of negative opinions, produces a negative
relationship between forecast dispersion and future returns. The literature documents
that oil price increases significantly and negatively affect real economic activity, but oil
price decreases have nonsignificant effects (e.g., Mork, 1989; Hamilton, 1996). The
“rockets and feathers” literature shows that retail gasoline prices respond quickly to oil
price increases but slowly to oil price decreases (Borenstein, Cameron, and Gilbert,
1997). However, no research investigates the effect of revelations of oil price decreases
on futures markets.

3 “PADD” is a term created by the U.S. government and is the regional definition used
by U.S. government agencies when collecting and publishing industry data.

4 Individual cloudiness measures and their aggregate measure are presented in the
online appendix.

5 www.eia.gov.
6 The graphical representations of oil returns are illustrated in the online appendix.
7 See the results in the online appendix.
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