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Extreme weather impacts do not improve conflict
predictions in Africa
Sidney Michelini 1,2✉, Barbora Šedová1, Jacob Schewe1 & Katja Frieler1

Quantitative climate and conflict research has thus far considered the role of biophysical

extreme weather impacts in conflict dynamics only to a limited extent. We do not fully

understand if and if so how, extreme weather impacts can improve conflict predictions.

Addressing this gap, we use the Generalized Random Forest (GRF) algorithm to evaluate

whether detailed information on extreme weather impacts improves conflict forecasts made

with well known conflict predictors such as socio-economic, governance, and history of

conflict indicators. We integrate data on biophysical extreme weather impacts such as

droughts, floods, crop production shocks, and tropical cyclones from the Inter-Sectoral

Impact Model Intercomparison Project 2a (ISIMIP2a) project into predictive models of

conflict in mainland Africa between 1994 and 2012. While we find that while extreme

weather impacts alone predict violent conflicts modestly well, socio-economic and conflict

history indicators remain the strongest individual predictors of conflicts. Finally, fully specified

forecast models including conflict history, governance, and socio-economic variables are not

improved by adding extreme weather impacts information. Some part of this can be explained

by spatial correlations between extreme weather impacts and other socioeconomic and

governance conditions. We conclude that extreme weather impacts do not contain any

unique information for forecasting annual conflict incidence in Africa, which calls into

question its usefulness for early warning.
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Introduction

Most quantitative work on climate and conflict focuses on
temperature or precipitation (see the studies considered
in Burke et al. 2015 for example). Thus, we have limited

knowledge about the role biophysical impacts of extreme weather
(e.g., droughts, floods, crop production shocks) play in conflict
dynamics. This matters because extreme weather impacts are
known to be getting worse as the climate changes (Cissé et al.
2022; Coumou and Rahmstorf, 2012; Lange et al. 2020; Lehmann
et al. 2015). Concentration of people in vulnerable areas and
persistent poverty will likely increase the number of human tra-
gedies resulting from these more frequent biophysical hazards
associated with climate change (Cappelli et al. 2021).

What research exists on the relationships between extreme
weather events and armed conflict, tends to highlight its com-
plexity (Beaumont and Coning, 2022; Siddiqi, 2014). For instance,
the same devastating 2004 tsunami that served as a “powerful
catalyst in [already ongoing] diplomatic talks” in Acheh (Gaillard
et al. 2008), proceeded an escalation of the civil war in Sri Lanka.
As Ide (2023) reports from a study on ongoing conflicts, “changes
in the strategic environment for conflict parties is by far the most
relevant causal pathway connecting disasters to conflict dynam-
ics.” At the same time Ide (2023) also documents dozens of cases
where serious disasters had no impact on conflict dynamics.

Improving forecasts of future conflicts does not require
extreme weather impacts to play an important role in conflict
dynamics in all cases. If extreme weather impacts affect conflict
dynamics only under certain conditions, and these conditions are
identifiable, then these events might improve future conflict
predictions. Thus, extreme weather impacts may be quite useful
for short-term conflict forecasting due to their potential to change
social, humanitarian, political, and environmental conditions in a
relatively short time frame (e.g., days for cyclones or floods, or up
to a few years for droughts) (Schleussner et al. 2016).

This paper asks: Can information about extreme weather
impacts improve conflict predictions? This question is motivated
by an investigation of whether extreme weather impacts (and
climate variables more generally) can help us to better understand
and predict conflict patterns. We use extreme weather data from
state-of-the-art climate impact models that give us high resolu-
tion drought, flood, crop production shock, and tropical cyclone
data. We then explicitly test, using the non-parametric General-
ized Random forest (GRF) model (Athey et al. 2019), whether
adding extreme weather impacts (i.e., droughts, floods, crop
production shocks, and tropical cyclones) to forecasts made using
well known conflict predictors improves the forecasting accuracy.
We follow up our main question by investigating what types of
predictive information extreme weather impacts might contain.
For example: Do extreme weather impacts help us to predict
conflict outbreaks? Or just conflict incidence?

In contrast to causal analyses, which typically isolate the effect
of one variable on the outcome of interest, predictive analyses use
a number of variables to generate guesses about unobserved
outcomes. When these predictions are about the future, the
predictive analysis becomes forecasting. Prediction enables us to
estimate a larger number of parameters than causal inference
(Hegre et al. 2017). We can estimate the total amount of addi-
tional predictive information contained in a set of extreme
weather impacts instead of trying to isolate the effect of a single
one (e.g., just floods). Thus, we can quantify the importance of
extreme weather impacts, as a group, on conflict. This is a major
advantage over previous literature that has almost always looked
only at specific extreme weather impacts or climatic variables in
isolation (Breckner and Sunde, 2019; Buhaug et al. 2021; Burke
et al. 2018; Perry, 2013; Von Uexkull et al. 2016). We can also
account for the heterogeneous, non-linear ways in which climate

change and extreme weather impacts are known to impact con-
flict, conditioned upon factors such as agricultural dependency,
political marginalization, etc. (Breckner and Sunde, 2019; Buhaug
et al. 2021; Goyette and Smaoui, 2022; Ide et al. 2021; Von
Uexkull et al. 2016). Finally, prediction avoids focusing on vari-
ables that causally affect the outcome of interest in statistically
significant ways, but are not good predictors of conflict and likely
do not contain enough information about conflict to be mean-
ingful. For example, Schutte et al. (2021) documents such a
phenomenon where drought and temperature anomalies are
causally linked to asylum migration, but are poor predictors of
these same asylum flows.

The few scholarly attempts to incorporate climate impact
modeling into understanding future conflict risks, have focused
on generating projections far into the future along Representative
Concentration Pathway (RCP) and Shared Socioeconomic Path-
way (SSP) scenarios (de Bruin et al. 2022). Perhaps closest to our
paper, Hoch et al. (2021) assessed the role of hydro-climatic
indicators as drivers of armed conflict in Africa and found their
importance is limited. However, this paper solely considers a
hydrological model (Sutanudjaja et al. 2018), employs a small
number of socioeconomic covariates, and is primarily focused on
how adding hydrological indicators impacts future conflict pro-
jections along SSP-RCP scenarios. Witmer et al. (2017) conducts
a similar analysis using temperature from Harris et al. (2014), and
reports that the ultimate effect of rising temperature on conflicts
depends on population growth and political rights. Crucially, this
analysis only includes four socioeconomic and governance vari-
ables in it’s future scenarios; non-violent media reports, infant
mortality rates, population, and political rights. Because these
studies are interested in long-term conflict projections, they can
only consider a small number of climate impacts and socio-
economic and governance variables. This limits their ability to
address our central question of whether extreme weather impacts
as a group improve conflict predictions when added to a fully
specified conflict prediction model.

A small body of scholarship attempts to combine climatic
predictors more broadly into conflict prediction, without using
sophisticated climate modeling. For example, Schleussner et al.
(2016) rely on insurance data from Wirtz et al. (2014) and find
that only the most extreme disasters (>10% of gross domestic
product or GDP) increase the risk of armed conflict outbreaks
globally, but that climate-related disasters increase armed-conflict
risks in ethnically fractionalized countries. Perry (2013) finds
drought and flood frequency increase accuracy in conflict pre-
diction models, however this is based on static indicators of
droughts and floods frequencies. Looking just at one country,
Linke et al. (2022) find adding weather variability and vegetation
health to a conflict prediction model based on survey data that
included “29 demographic and contextual variables” actually
made the predictions worse. Looking at both Indonesia and
Colombia, Bazzi et al. (2022) report that “predictive accuracy
improves little when we add time-varying factors, including
natural disasters, ..., fluctuations in rainfall, [and] temperature.”

The under-consideration of extreme weather impacts extends
to the broader quantitative literature on climate and conflict in
general. In a pair of influential literature reviews, Burke et al.
(2015) and Hsiang and Burke (2014) show, although not inten-
tionally, that the vast majority of scholarship on climate and
conflict focuses primarily on temperature and precipitation.1

When other extreme weather impacts are considered, it is often
only a single type of impact such as droughts (Von Uexkull et al.
2016), floods (Ide et al. 2021), or crop production shocks (Vesco
et al. 2021). Furthermore, the focus on causal analysis in this
literature prevents adequate consideration of the total impacts of
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extreme weather impacts as a group, as well as the complex
interactions between such impacts and socioeconomic, govern-
ance, and conflict history indicators.

By integrating extreme weather impact data into a non-
parametric conflict model, our paper contributes to the existing
quantitative literature on climate and conflict as well as the
literature on conflict forecasting. We further the literature on
conflict forecasting by explicitly testing whether extreme
weather impacts add predictive information to well-known
conflict forecasts, which can inform future modeling and policy
making. We do this by integrating historical impact simulations
forced by observational weather as generated within the second
phase of the Inter-Sectoral Impact Model Comparison Project
(ISIMIP2a) (Schewe et al. 2019) to capture extreme weather
impacts such as weather driven crop production shocks (Arneth
et al. 2017; Bondeau et al. 2007), droughts (Gosling et al. 2017;
Mester et al. 2021), tropical cyclones (Geiger et al. 2018), and
river flooding (Yamazaki et al. 2011) up to 5 years before conflict
occurrence on a 0.5° × 0.5° resolution into conflict prediction
models. While a few analyses have partially integrated biophy-
sical climate impact modeling into conflict forecasting, we are
the first to explicitly test whether extreme weather impacts from
climate impact models improve conflict predictions made using
a full suite of socioeconomic, governance, and conflict history
predictors. We find that, while extreme weather impacts can
predict conflict alone, they do not improve upon predictions
made using well-known conflict predictors. This finding
advances the literature on conflict forecasting and reconciling
this finding with previous studies that did find an effect will be
important (Schleussner et al. 2016).

We also advance the broader quantitative literature on climate
and conflict by showing that extreme weather impacts, even when
heterogeneity is properly accounted for, contain very little
information about conflict incidence in the following year. There
is broad agreement in this literature that the impacts of climate
change on conflict will be largely indirect and heterogeneous
(sometimes this involved discussion about “scope conditions”)
(Mach et al. 2019; von Uexkull and Buhaug, 2021). This has led to
numerous, successful attempts to find conditional relationships
between climate and conflict (Buhaug et al. 2021; Schleussner
et al. 2016; Vesco et al. 2021; Von Uexkull et al. 2016). Our
findings from Africa between 1994 and 2012 suggest that such
information has limited use for forecasting purposes.

The paper proceeds as follows. The “Data” section describes
the data sources we use. The “Methods” section explains the
algorithm, methodology, and evaluation metrics. The “Results”
section presents the results and follow up analysis. We reflect on
the meaning of our findings and point out opportunities for
future work in the “Discussion” section.

Data
This analysis rests on linking well known predictors of conflict
with the outputs from cutting edge climate impact models of
extreme weather events, which we refer to in this paper as
extreme weather impacts. Compared to previous models relying
primarily on temperature or precipitation from climate models,
climate impact models represent a step closer to the lived reality
of someone on the ground. Previous work hypothesized that
precipitation or temperature changes might impact conflict
through agricultural shocks or floods (Dube and Vargas, 2013;
Von Uexkull et al. 2016), but we go one step further by using
actual crop production and flood modeling.

Every variable in our data set is described in detail in Section 1
titled “Data Sources” of the Supplementary Information. Fur-
thermore, Section 5 of the Supplementary Information titled

“Data visualization” contains maps of each variable at different
administrative levels across time.

Outcome variables. We build a series of predictive models to test
whether extreme weather impacts add predictive power to
socioeconomic variables, governance indicators, and conflict
history when predicting conflict incidence. Conflict incidence is a
binary variable that answers the question, was there a conflict
event recorded in a given place during a given year? To construct
this variable we use geo-located conflict event data which comes
from both the Uppsala Conflict Data Program (UCDP) and the
Armed Conflict Location and Events Data Project (ACLED). To
ensure our results are robust to specification and coding differ-
ences between the two data sources (which can be significant)
(Eck, 2012; Rød et al. 2023), we use data from both. UCDP only
records battles that are linked to a conflict in which more than 25
people die in a single year (Sundberg and Melander, 2013), while
ACLED records battles, riots, protests, violence against civilians,
strategic violence, and explosions regardless of how much life is
lost (ACLED, 2019; Raleigh et al. 2010). We reduce these six
ACLED categorizations to three to represent three theoretically
separate forms of conflict by combining riots and protests into a
single group as well as combining violence against civilians,
strategic violence, and other events.2

The main challenge with our datasets is coverage. Both ACLED
and UCDP now cover a large number of countries, but ACLED
only goes back far enough (1997) for mainland Africa. Most of
our extreme weather impacts data ends by 2012. Our conflict
history predictor group primarily consists of lagged conflict data
from the previous five years. So we begin our analysis for ACLED
in 2002 because this is the first year with five years of conflict data
lags available. Thus we analyze the years 2002–2012 for ACLED
data, which gives us 11 years of data. UCDP goes back to 1989, so
we analyze the years 1994–2012 for UCDP which gives us 19
years of data. We separately analyze UCDP prediction for the
period 2002–2012 so that the results can be compared with those
from ACLED. Visualizations of the conflict outcomes can be
found in Section 5.2 of the Supplementary Information titled
“Conflict Data Maps.”

Administrative levels. Having defined our conflict variable, we
next need to define the spatial units of analysis. For this, we draw
upon the Database of Global Administrative Areas (GADM),
which provides us with polygons of different administrative levels
(GADM, 2018). We conduct our analyses at different adminis-
trative levels, i.e., country as well as two sub-national adminis-
trative levels, to capture different types of conflict patterns (Bazzi
et al. 2022; Blair et al. 2017; van Weezel, 2018; von Uexkull and
Buhaug, 2021). Nations are coded as level zero. Level one is the
first sub-national level in a given country. Level two, the second
subnational level, is the most granular level that we use. This gives
us 6269 polygons at the most granular (second) administrative
level. Using three separate, predefined spatial aggregation levels
reduces the risk that our results are driven by aggregation bias.
Visual inspections of the maps found in Section 5 titled “Data
Visualization” of the Supplementary Information revels that a
number of variables have significantly different spatial distribu-
tions and values when aggregated at different administrative
levels.

Common predictor groups. For each of these observations, we
measure socio-economic data, governance indicators, conflict
history, and extreme weather impacts. Socio-economic data,
governance indicators, and conflict history are our three common
predictor groups which we use as a baseline to evaluate whether
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extreme weather impacts contain additional predictive informa-
tion about future conflict.

Our conflict history predictor group is assembled from the
same data sources, UCDP and ACLED, that we used to construct
our conflict outcomes (Eck, 2012; Sundberg and Melander, 2013).
Instead of using binary conflict incidences (i.e., conflict/no
conflict), we use the number of recorded conflict events and
total number of deaths for each of our four conflict types (i.e.,
UCDP battles, ACLED battles, ACLED riots and protests, and
ACLED other) for each of the previous 5 years. For UCDP, we
also include the number of battle deaths and the number of
civilian deaths for each of the past 5 years. Furthermore, we have
the estimated total number of people displaced by conflict, as well
as the estimated number of people newly displaced by conflict, at
the national level in the previous year (Desai et al. 2018).
Visualizations of the conflict history variables can be found in
Section 5.2 of the Supplementary Information titled “Conflict
Data Maps,” alongside the mapping of the outcome variables.

Our socio-economic data consists of crop production levels
(Hurtt et al. 2020), infant mortality rates (CIESIN, 2005), land use
(Hurtt et al. 2020; Ramankutty et al. 2008), population size
(Goldewijk et al. 2017), area (GADM, 2018), population density
(GADM, 2018; Goldewijk et al. 2017), urbanization (Goldewijk
et al. 2017), GDP (Kummu et al. 2018), and GDP per capita
(Kummu et al. 2018). Crop production levels are an average of the
past 5 years’ annual soy, maize, wheat, and rice yields (Arneth
et al. 2017; Bondeau et al. 2007). Infant mortality is a static
indicator of the number of deaths per 10,000 live births in 2000
(CIESIN, 2005). Land use comes from two sources. One calculates
the percent of area being used for crop production in 2000
(Ramankutty et al. 2008). The second calculates the average
amount of land used for pastureland, irrigated cropland, rain fed
cropland, and total crop land over the past 5 years as well as the
percentage change in each type of land use over the past 15 years
(Hurtt et al. 2020). Similarly, population data includes the 5 year
moving averages and 15 years growth patterns for both
population levels and urbanization rates (Goldewijk et al. 2017).
Area is the area of each administrative unit (GADM, 2018).
Population density is population per square kilometer. GDP and
GDP per capita are 5-year moving averages and 15-year growth
rates for both total and per capita output (Kummu et al. 2018).
Taken together, these give a reasonable socioeconomic profile of
each of the administrative units in our data set. Visualizations of
the socioeconomic variables can be found in Section 5.1 of the
Supplementary Information titled “Socioeconomic Data Maps.”

We have three sources of governance indicators. The World
Bank’s World Governance Indicators are reported at the national
level. They include government effectiveness, rule of law, control
of corruption, political stability, regulatory quality, and voice and
accountability (Kaufmann et al. 2011). We also have a measure of
liberal democracy, which is an annual, country level index
(Gerring et al. 2021). Our only subnational governance indicator
is a count of the number of ethnic groups with a “homeland” in a
given administrative area. Because the point of this analysis is to
determine if extreme weather impacts add information to other
common conflict predictors, the paucity of subnational data
should not limit the analysis because subnational governance data
availability is limited in general, not just for our analysis.
Visualizations of the governance data can be found in Section 5.3
of the Supplementary Information titled “Governance Data
Maps.”

Extreme weather impacts. We have several types of extreme
weather impacts data: floods, droughts, tropical cyclones, crop
production shocks, and disaster-induced displacement. With the

exception of disaster induced displacement, we borrowed heavily
from the extreme weather impacts data found in Lange et al.
(2020), which is itself based on the ISIMIP project (Frieler et al.
2017; Schewe et al. 2019). One advantage of using ISIMIP2a data
is that the simulations are harmonized and comparable across all
the different impact categories. This means, however, that we
cannot switch crop simulation from ISIMIP2a for other crop
simulations. Thus, we are limited by the data availability of ISI-
MIP2a, and cannot extend our study beyond 2012.

To measure flooding, we use results from the global flood
model CaMa-Flood (Yamazaki et al. 2011), driven by runoff
simulated by the global hydrological model WaterGAP2 (Mueller
Schmied et al. 2016), which was in turn driven by historical
meteorological inputs from the Princeton Global Forcing dataset
version 2 (PGFv2) (Sheffield et al. 2006) in the framework of the
Inter-Sectoral Impact Model Intercomparison Project (Frieler
et al. 2017), phase 2a (Schewe et al. 2019). Inundated areas at a 2.5
arc min horizontal resolution were derived assuming that each
pixel is protected against a 100-year return level flood, or
according to the regional flood protection standard indicated in
the FLOPROS database (Scussolini et al. 2016).3 Essentially, our
flood models tell us where there was a flood, and where there was
a flood with enough water that it would only happen every 100
years under preindustrial conditions. We then aggregate this grid
cell-level data to administrative unit levels. We do this both by
taking the averages by land area and by population. Using
averages instead of totals allows us to compare across adminis-
trative areas with different sizes and populations. What we end up
with is a measure of the average exposure of each person, and
each populated location, in an administrative area to floods and
major floods for each of the past 5 years.

We define droughts as the number of months in a year where
soil moisture is below the 10th percentile (Gosling et al. 2017;
Mester et al. 2021) in a given month in a given grid cell. The
percentiles are calculated using historical data from each grid cell.
This means that results can be compared across space, because
what in one place would be a lot of soil moisture would be very
little in another. As with floods, we aggregate from the grid cell to
administrative unit polygon by averaging the drought exposure
by population and populated area. So, for each of the past 5 years
we know the average drought exposure of each person, and each
populated location, in an administrative unit. Section 5.4 titled
“Extreme Weather Events Data Maps” shows that drought
exposure has a shifting spatial pattern across time. This is
because the percentile metrics our drought indicator is based on
compare each place to it’s own long-term average.

We separate tropical storms by intensity, recording areas that
experienced 34, 64, and 96 knot tropical storms (Geiger et al. 2018).
Again, we aggregate from the grid cell to administrative unit polygon
by averaging the exposure to each type of storm exposure by
population and populated area. So, for each of the past 5 years we
know what fraction of the population, and populated territory, was
exposed to different intensities of tropical storms. Figures 52–57 in
Section 5.4 titled “Extreme Weather Events Data Maps” shows that
tropical cyclone exposure was primarily concentrated on Madagas-
car and Africa’s southeast coast.

One key narrative about how climate could impact conflict is
through its impacts on agricultural production (Dube and Vargas,
2013; Von Uexkull et al. 2016). To capture the climate related
portion of this, we use a crop model to determine where and
when there are climate-related shocks to crop production (Arneth
et al. 2017; Bondeau et al. 2007). We define crop production
shocks as the number of times in the past 5 years that crop yields
deviate positively or negatively by more than 20 percent
compared to long term averages. Positive and negative deviations
are counted separately.
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Disaster induced displacement is the number of internally
displaced people due to “natural” disasters within a country
(Desai et al. 2018). These are reported at a national level. Unlike
with conflict related disasters, only the number of newly displaced
people due to “natural” disasters are reported. While most of the
disasters included in this data set are weather and climate related,
it does include people displaced by extreme events, such as
earthquakes, that are not extreme weather events.

One advantage of using the GRF is that colinearity within
predictor groups is not an issue. If, for example, our drought lag
indicators heavily correlate with each other, it should not
significantly affect the model performance because we are only
interested in the total amount of information contained in each
predictor group. Asking about the combined information of a
number of extreme weather impacts is what allows us to have so
many predictors in each group. Furthermore, we do not have to
assume that there is no correlation between the groups. For
example, if extreme weather impacts and governance indicators
are correlated, this does not challenge the validity of our results.

Methods
Our methodology operates on the logic that if predictions made
with the information sets A and B combined perform better than
predictions made with information set A alone, then B adds
predictive information to A. As an example, if predictions made
using both socioeconomic indicators and extreme weather
impacts predict future conflict incidence better than predictions
made with socioeconomic indicators alone, we would say that
extreme weather impacts contain additional information about
future conflict compared to socioeconomic indicators.

Generalized Random Forest (GRF). While there has been a large
scientific debate about the role of climate, climate stress, and
climate change in shifts in conflict dynamics (Mach et al. 2019),
nearly everyone agrees that the relationship between climate and
conflict is extremely complex (Beaumont and Coning, 2022). To
address this, we use a non-parametric machine learning model to
generate our forecasts because it is best suited to capture the
many conditionalities in the relationship between extreme
weather impacts and conflict (Perry, 2013).

We made all of our predictions using the GRF, which is a
random forest model specially built to avoid inflating the
predictive performance of the algorithm due to overfitting. A
random forest is a supervised machine learning model con-
structed by aggregating the results from a large number (in our
case 2000) randomized decision trees. For each decision tree, the
data is continuously split into two groups based on a predictor
and cutoff. The predictor and cutoff are selected to best sort the
two groups based on the outcome of interest. For example, the
data might be split into places with a GDP per capita (predictor)
above and below $4321 (cutoff) because this is the split that best
separates places in conflicts from places at peace. The process is
then repeated on each of the two newly formed groups separately,
and this is repeated until the resulting groups are sufficiently
small. This process generates a set of rules (predictor and cutoff
values) by which predictions can be made. If a place, upon
following each of the rules in a tree generated, ends up at a final
node where 58% of the places are in conflict, then the tree returns
a prediction that there is a 58% chance that the place will be in
conflict. One issue with decision trees is that they can be highly
unstable (i.e., if one rule changes, the whole tree changes). To
address this, many decision trees are made from randomly drawn
subsets of a large data set and their predictions are averaged. The
resulting algorithm is the random forest (Athey et al. 2019; Biau
and Scornet, 2016).

The main advantages of the GRF for our purposes are “honesty”
and cross-validation. “Honesty” means part of the training data is
used to determine which variable is the most important cleavage
and another part of the training data is used to determine which
threshold of that variable should be used to split the data into two
groups. This is designed to reduce overfitting, which improves the
predictive power on the validation set. Cross validation means that
each of the trees in the forest is built on one part of the data and
generates predictions for the other part. Essentially this means that
each data point serves both as a training and validation set, which
allows us to use all of the data in training the algorithm without
biasing our estimates of the out-of-sample predictive power
(Athey et al. 2019).

Evaluating predictions. To evaluate our continuous predictions
from the GRF models, and compare between predictors, to
compare our continuous predictors to our binary outcomes
(conflict/no conflict). We employ two different metrics to do this;
the area under the Receiver Operator Characteristic (ROC) curve
and the area under the Precision Recall (PR) curve, which are two
of the most common ways to evaluate conflict prediction in early
warning models (Rød et al. 2023). Both metrics require con-
verting our continuous predictions to binary outcomes using a
threshold above which we predict conflict and below which we do
not. This implies a trade off between the true positives rate
(predicted conflict, conflict occurred) and false positives rate
(predicted conflict, peace occurred). A higher threshold will mean
a lower false rate (i.e., fewer “false alarms” where predicted
conflict does not occur), but also a lower true positive rate (i.e.,
less of the conflicts that do occur will be predicted). A lower
threshold will have the opposite effect. This trade off can be
graphed and that graph is called the ROC curve. The area under
that curve is one of our metrics.

The PR curve works the exact same way, except that this curve
plots the precision versus recall instead of the true positive versus
false positive rate. The precision is defined as the fraction of
projected conflicts that actually occur and the recall is the fraction
of the conflicts that occur that were predicted. A higher threshold
will increase the precision by reducing the number of false
positives (i.e., “false alarms”), but reduce the recall because there
will be more false negatives (i.e., more conflicts that do occur will
go unpredicted). As with the ROC curve, this trade off can be
visualized and that visualization is called a PR curve. The area
under the PR curve is the second of our metrics.

While they are constructed in very similar ways, the ROC and
PR curves have a few different properties. While an ROC curve
treats all predictions the same, a PR curve responds much more
to correctly predicting conflict (Branco et al. 2017). At the most
granular administrative level, only about 5% of places have
conflict which is pretty low. Combined with the relative ease of
identifying locations with a very low risk of conflict, this makes
PR curves more useful for these cases because they privilege
getting correctly predicted conflicts over correctly predicted peace
(Davis and Goadrich, 2006).

ROC curves, by contrast, are easier to compare across
outcomes. If you randomly make predictions, the area under
the ROC curve will, on average, be 0.5. This is true no matter
what the percentage of conflict in the data set. PR curves by
contrast have a “guessing rate” equal to the percentage of conflicts
in the data set. Thus, it is easier to compare ROC curve scores
between different outcomes (i.e., ACLED groups and UCDP) and
specifications that have different fractions of place-years with
conflicts (See the “Conflict Fractions” section of the Supplemen-
tary Information for the fraction of places in conflict for each
conflict outcome and administrative level).
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Results
Our analysis relies on comparing the performance of predictive
models accounting for conventional conflict indicators (i.e.,
governance, socio-economic, and history of conflict) to models
that in addition account for extreme weather impacts in conflict
forecasts. Our dataset covers mainland Africa between 1994 and
2012 for UCDP and between 2002 and 2012 for ACLED. We
conduct the same analysis separately at the national and first two
subnational levels to account for different types for conflict pat-
terns. We forecast conflict incidence one year ahead (i.e., will
there be a conflict in this administrative area next year?), which
enables us to see whether extreme weather impacts improve upon
forecasts using the conventional conflict predictors.4

Key findings. We set out to determine whether extreme weather
impacts improve conflict forecasts made from models with
other known conflict predictors, applying GRF. Figure 1
addresses this directly by comparing the performance of fore-
casts made using all four variable groupings to those made
made leaving out each grouping, across all three administrative
levels. Both the ROC and PR curves show that neither extreme
weather impacts nor socioeconomic indicators add information
to forecasts made using all of the other variables, and thus
extreme weather impacts do not improve upon known conflict
forecasts.5 A deeper dive into why this is, reveals that extreme
weather impacts add no information to socioeconomic indica-
tors and almost no information to governance variables or
conflict history, which is driving the result. This can be seen in
Section 2 of the Supplementary Information titled “Full Pre-
dictive Results,” where, extreme weather impacts do not add
information to socioeconomic indicators regardless of the
specific conflict outcome, administrative level of analysis, or
performance metric.

This result surprised us, because extreme weather impacts do
predict conflict by themselves fairly well. Figure 2 compares the
performances of forecasts of each of our four predictor groups by
themselves. It shows that, while extreme weather impacts are not
such a strong a predictor of future conflict as the other predictor
groupings, they perform much better than if the model were
merely guessing.

Our findings on the performances of the three commonly
known predictors of conflict are in line with previous literature,
which shows that places in conflict tend to stay in conflict (Hegre
et al. 2016; McGuirk and Burke, 2020; Mueller and Rauh, 2022;
Perry, 2013). We find previous conflict not only to be a strong
predictor of future conflict on its own, but Fig. 1 shows that it
contains the most unique information about future conflicts.
Furthermore, governance indicators predicted future conflict well
on their own, and improved upon forecasts made using the other
indicators. Much of the economic literature on conflict focuses on
socio-economic factors driving conflict (Dube and Vargas, 2013;
McGuirk and Burke, 2020). Our results concur with this trend by
showing that on their own, socioeconomic indicators are about as
good as previous conflict at predicting future conflict incidence.
However, we find that socioeconomic indicators add no unique
information to forecasts made using other groups of predictors.

We also consider the possibility that extreme weather impacts
might only add important information to predicting conflict
onset or conflict ending. To check this, we split our dataset into
two groups; places with a conflict in the past 5 years and places
with no conflict in the past 5 years. We then evaluated whether
our results were the same for each group, and found they were.
While the overall model performance differs between places with
a history of peace and those with a history of conflict, our central
results hold. In both cases, extreme weather impacts added no
predictive power to models made using conflict history,
governance, and socioeconomic predictors.

Fig. 1 Area under ROC (left) and PR (right) curves from forecasts of conflict incidence in Africa at different administrative levels: unique predictive
power of indicator groups. The figures show model performances—ROC and PR curve results—of conflict predictions made using a Generalized Random
Forest (GRF) algorithm with different indicator groups at different administrative levels from the most aggregate (level 0 is the national level) to the most
granular (level 2). The figures highlight the effect of removing each of the four indicator groups—extreme weather events (ewi-red), conflict history (conf-
green), socioeconomic indicators (socecon-blue), and governance (gov-gold)—from a predictive model with all of the indicator groups. The difference
between a model with all indicator groups and a model with all except one captures the unique information found in that indicator group. Battles from the
Uppsala Conflict Data Program (UCDP) are used as an outcome variable.
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Potential correlations. Combining the results from Figs. 1 and 2,
we see that extreme weather impacts do have forecasting infor-
mation, but that information is somehow also contained in the
other indicators groups. This raises the question: are these
groupings correlated? To check this, we regressed each variable
on each of the other variable groups and reported the R2. We then
repeated the exercise three times, controlling for place specific
means, time trends, and both. Table 1 shows the R2 from

regressing the most important socioeconomic predictors of con-
flict onto extreme events, both before and after controlling for
place specific means. This results shows are from the second
administrative level. The full results for all predictor groups,
levels, and specifications can be found in the Supplemental
Information section titled “Correlations Between Predictor
Groups.”

Table 1 reveals two things. First, extreme weather impacts do
not have a strong predictive relationship with the most important
predictors of conflict, i.e., socioeconomic indicators. Second, what
predictive power there is goes away after controlling for place-
specific fixed effects, which indicates that extreme weather
impacts partially co-occur with specific socioeconomic spatial,
time-invariant patterns. Extreme events tell us very little about
changes in socioeconomic indicators over time. Controlling for
place specific fixed effects, extreme weather impacts explain
almost none of the variation in socioeconomic indicators. This is
important because many theories about how climate shocks
impact conflict involve climate related changes in socioeconomic
conditions (for example, Dube and Vargas, 2013).

We follow this by asking how much do our predictions vary
across time and space? In the Supplementary Information Section
4.2 titled “Spatial versus Temporal Variation,” we report the
fraction of variation in our models’ prediction of future conflict
risks can be explained by year and place fixed effects alone. We
find that almost none of the variation in predicted conflict risk
can be explained by annual fixed effects. By contrast, in all cases
more than half of the variation in predicted conflict risk can be
explained entirely by it’s spatial components, and in some cases as
much as 90% can be explained by spatial patterns alone. This is
particularly true for socioeconomic variable where, in almost all
cases more than 90% of the information used by the model for
prediction was spatial. Even in the case of extreme weather
events, which do vary quite a bit over time, most of the important

Fig. 2 Area under ROC (left) and PR (right) curves from forecasts of conflict incidence in Africa at different administrative levels: individual predictive
power of indicator groups. These figures show the individual model performances—ROC and PR curve results—of conflict incidence predictions made
using a Generalized Random Forest (GRF) of four indicator groups: conflict history (conf-green), governance indicators (gov-gold), extreme weather events
(ewi-red), and socioeconomic indicators (socecon-blue). The predictions are conducted at different administrative levels from the most aggregate (level 0
is the national level) to the most granular (level 2). Battles from the Uppsala Conflict Data Program (UCDP) are used as an outcome variable.

Table 1 R2 from regressing leading socioeconomic predictors
of conflict on extreme weather event.

Variable EWI− R2 EWIPl− R2

Area 0.02 NA
IMR 0.15 NA
GDPPC 0.15 0.03
Popgrowth 0.02 0.01
Maize 0.05 0.01
Land use 0.04 NA
Cropland 0.06 0.01
Rainfed 0.06 0.01
GDPPCgrowth 0.04 0.05
Pasturesgrowth 0.02 0.02
Irrigated 0.07 0.01
Croplandgrowth 0.05 0.04
Wheat 0.05 0.01
Rainfedgrowth 0.03 0.04
Ethnicitycount 0.04 NA

The variable column shows the most important predictors of conflict at the most granular
subnational level in descending order. The extreme weather impacts (EWI) column shows the
R2 value from regressing each indicator on the extreme events, which tells us the percent of the
variance that can be explained by extreme events. The place-specific fixed effects (EWIPl)
column shows the percent of the remaining variation can be explained by extreme events after
controlling for place specific means. Ethnicity count, area, infant mortality rates, and land use
have missing values because they are static indicators.
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information used by the model for forecasting came from it’s
spatial variation. In other words, where extreme weather events
tend to occur tells us more about conflict than when they occur.

We can thus explain some of how the predictive power of
extreme weather impacts gets entirely subsumed by the other
predictors. Extreme weather impacts tend to spatially overlap
with other socioeconomic variables. In fact, all of the variation in
different socioeconomic indicators explained by extreme weather
impacts was spatial variation (as opposed to temporal variation).
It appears that places with higher exposure to extreme weather
impacts are socioeconomically different from those with lower
rates. While this could be pure coincidence, we suspect it to be the
result of many causes, both known and unknown. For example,
places with higher exposure to extreme weather impacts in the
present, might be closer or further from important bodies of
water, have different colonial histories, or simply be spatially
clustered in ways that overlap with socioeconomic clusters. In
another case, tropical storms and tropical cyclones are clustered
on the island of Madagascar and parts of southeastern mainland
Africa. For many reasons, these places are socioeconomically
different than, say, central Mali. This does not mean that all of the
information contained in extreme weather impact patterns is
actually just socioeconomic. Political ecologists have argued for
decades that social and ecological phenomenon co-evolve
(Benjaminsen and Svarstad, 2021; Robbins, 2019). Instead, we
can say that socioeconomic predictors and extreme weather
impacts contain some of the same spatial information about
future conflict. We see this as a powerful confirmation of the
importance of using non-parametric methods, where possible, to
explicitly test the additional predictive power of proposed
predictors.

Discussion
Employing cutting edge climate impact modeling, we explicitly
test whether extreme weather impacts add information to conflict
prediction models made with many of the underlying conditions
known to be important for conflict. To conduct this test we first
assemble a data set with a large number of socioeconomic, gov-
ernance, and conflict history predictors commonly used for
conflict prediction. We then combine this with data from state-
of-the-art climate impact models that capture floods, droughts,
tropical cyclones, and crop production shocks. We also include
data on disaster induced displacement. We then generate our
forecasts using a GRF algorithm that is specifically designed to
capture non-linear, conditional relationships between the
underlying variables and give unbiased estimates of their pre-
diction power. We use such non-parametric methods in response
to the body of work on climate and conflict arguing that climate-
related conflict impacts must be conditional upon local circum-
stances (Buhaug et al. 2021). We find that the information on
extreme weather impacts from our climate models do not add
predictive power to our comprehensive set of known predictors.

Our results concur with some previous literature (Bazzi et al.
2022; Linke et al. 2022; Perry, 2013) that find no predictive power
for climatic variables, and differ from findings by Schleussner
et al. (2016), who show that “natural” disasters tend to co-occur
with conflict outbreaks in ethnically fractionalized countries.
There are several differences between the studies that could
explain the diverging findings. Schleussner et al. (2016) and other
conflict onset research, tend to work on much shorter time spans
(monthly instead of annually) and by definition are explaining a
smaller set of cases (new conflicts) as compared to our study.
While we do test our results to ensure they are similar when only
places with a history of peace or conflict are considered (see
section “Key findings”), we emphasize that it is quite possible for

extreme weather impacts to help predict conflict onset in a spe-
cific number of vulnerable cases without increasing overall pre-
dictive power. For example, an extreme event might simply cause
a shift in when a conflict breaks out, but not if it occurs at all (e.g.,
a conflict that would have occurred anyways might break out a
month earlier or later).

Furthermore, our analysis focuses on sub-national levels
whereas Schleussner et al. (2016) focuses only on the country
level. The existence and outbreaks of national conflicts might
have a qualitatively different set of causes or dynamics than those
occurring at the regional level. We address this by also reporting
national level findings. One benefit of conducting the same
analysis at different administrative levels is that it reduces the risk
that the results are driven by aggregation bias. This is particularly
true because our results are similar across administrative levels.
Our national level results are consistent with the results from
more granular administrative units with more observations.
However, the GRF requires a lot of data to properly work. With
only 11 years observations for 49 countries, this is not a lot of data
for fitting a non-parametric machine learning model. For this
reason, we primarily rely on our sub-national level analysis,
where we have more observations. This is less of a problem for
Schleussner et al. (2016) who use event coincidence analysis,
which requires less data to work well. Finally, it is quite common
in the literature to find no meaningful overall effect of climate
impacts on conflict outcomes. Even Schleussner et al. (2016) and
Von Uexkull et al. (2016), who focus their analyses on their
positive findings, report no overall effects of climate impacts on
future conflict. Our use of GRF in this paper is designed to see
whether these highly conditional relationships increase our
knowledge of future conflicts.

Our results are informative, but we cannot definitive say that
extreme weather will never improve conflict predictions of some
type. We freely acknowledge that by looking at a different region,
considering a different time period (as data availability increases),
using a different set of climate impact models, predicting a dif-
ferent type of conflict outcome, or some combination of the above
might find different results (Rød et al. 2023). It is also possible
that weighting the predictive model to focus more on conflict
cases would improve predictive power. We leave this to future
research.

Beyond our specific findings, we also set a standard for what
would be required for a positive result. Extreme weather events
data from a climate impact model, which we have called “extreme
weather impacts,” that is not related to socioeconomic data, must
be shown to improve predictions made with the full suite of other
known climate predictors, preferably using a non-parametric
model that can account for the complexity of the relationship.
This is crucial because extreme weather impacts do predict
conflict on their own. Other works has also shown that under
select conditions extreme weather impacts predict some future
conflict outcomes (Schleussner et al. 2016; Von Uexkull et al.
2016). Some of these exercises may be useful for knowledge
building. Before incorporating extreme weather impacts, or any
climate indicators, into forecasting or prediction models, it should
be explicitly tested (as we have here) if they add predictive
information to currently know predictors.

Future research solely interested in understanding the rela-
tionship between climate and conflict might take these results as
evidence that extreme weather impacts are not very important
factors for understanding conflict, particularly when they do not
line up with more important socioeconomic and political drivers
of conflict. This is consistent with some previous works (Mach
et al. 2019; Selby et al. 2017; Slettebak, 2012; von Uexkull and
Buhaug, 2021). This is particularly true because socioeconomic
predictors and extreme weather impacts were found to contain
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some of the same spatial information about conflict patterns. Our
findings are also consistent with other works showing that
weather and climatic events are poor predictors of migration,
despite being causally linked (Schutte et al. 2021).

Future research primarily interested in forecasting conflict
should interpret our results as a recommendation against inte-
grating extreme weather impacts into forecasts on conflict inci-
dence. Predicting where conflicts risks are high is much easier
than predicting when new conflicts will break out (Mueller and
Rauh, 2022). Extreme weather impacts have important spatial
patterns, as do socioeconomic variables, and they capture at least
some of the same spatial information about future conflict
instance. Thus is true even when the variables are constructed in
such a way as to ensure there is no causal relationship between
them. Thus, in the case of conflict incidence forecasting, extreme
weather impacts may have little to contribute.

Data availability
The Supplementary Information Section contains source links,
descriptions, and maps illustrating spatial and temporal variation
for each variable. No data were generated during this study and
all of the analyzed data are publicly available. The code to
assemble the data, the processed datasets, the code used for the
analysis, and the results can all be found here. Furthermore, the
corresponding author remains available to respond to reasonable
requests.
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Notes
1 While the specific conclusions of Hsiang and Burke (2014), and the general
conclusions of Burke et al. (2015) that followed it the next year, have been heavily
criticized (Buhaug et al. 2014), the studies considered within the meta-analysis still
reflect the types of variables considered in the literature.

2 “Other events” is an ACLED category.
3 For further information about the flood simulations, see Mester et al. (2021).
4 A full description of our conflict variables can be found in the “Data” section or the
Supplementary Information section on “Data Sources.”

5 The fact that the shown predictive power of “all” is less than that of “all - ewi” indicates
that the extreme events did not contain any additional information about future
conflict and caused overfitting.

References
ACLED (2019) Armed Conflict Location & Event Data Project (ACLED) Code-

book. Armed Conflict Location & Event Data Project
Arneth A et al (2017) ISIMIP2a simulation data from agricultural sector
Athey S, Tibshirani J, Wager S (2019) Generalized random forests. Ann Stat

47:1148–1178
Bazzi S et al. (2022) The promise and pitfalls of conflict prediction: evidence from

Colombia and Indonesia. Rev Econ Stat 104:764–779
Beaumont P, Coning CD (2022) Coping with complexity: toward epistemological

pluralism in climate-conflict scholarship. Int Stud Rev 24:viac055
Benjaminsen TA, Svarstad H (2021) Political ecology. Springer International

Publishing, Cham https://link.springer.com/10.1007/978-3-030-56036-2
Biau G, Scornet E (2016) A random forest guided tour. TEST 25:197–227
Blair RA, Blattman C, Hartman A (2017) Predicting local violence: evidence from a

panel survey in Liberia. J Peace Res 54:298–312
Bondeau A et al(2007) Modelling the role of agriculture for the 20th century global

terrestrial carbon balance Glob Chang Biol 13:679–706
Branco P, Torgo L, Ribeiro RP (2017) A survey of predictive modeling on

imbalanced domains. ACM Comput Surv 49:1–50
Breckner M, Sunde U (2019) Temperature extremes, global warming, and armed

conflict: new insights from high resolution data. World Dev 123:104624
Buhaug H, Croicu M, Fjelde H, von Uexkull N (2021) A conditional model of local

income shock and civil conflict. J Politics 83:354–366
Buhaug H et al. (2014) One effect to rule them all? A comment on climate and

conflict. Clim Chang 127:391–397

Burke M et al. (2018) Higher temperatures increase suicide rates in the United
States and Mexico. Nat Clim Chang 8:723–729

Burke M, Hsiang S, Miguel E (2015) Climate and conflict. Annu Rev Econ
7:577–617

Cappelli F, Costantini V, Consoli D (2021) The trap of climate change-induced
“natural” disasters and inequality. Glob Environ Chang 70:102329

CIESIN (2005) Global subnational infant mortality rates, v1 (2000). NASA
Socioeconomic Data and Applications Center (SEDAC)

Cissé G et al (2022) Health, wellbeing and the changing structure of communities.
In: Pörtner HO et al (eds) Climate change 2022: impacts, adaptation and
vulnerability. Contribution of Working Group II to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change, chap. 7. Cam-
bridge University Press, Cambridge

Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clime Chang
2:491–496

Davis J, Goadrich M (2006) The relationship between precision-recall and ROC
curves. In: Proceedings of the 23rd international conference on Machine
learning - ICML ’06. ACM Press, New York, New York, p 233–240

de Bruin SP et al. (2022) Projecting long-term armed conflict risk: an under-
appreciated field of inquiry? Glob Environ Chang 72:102423

Desai B, Ginnetti J, Sémnani S, Anzellini V (2018) Global report on internal
displacement 2018. Tech. Rep. International Displacement Monitoring
Center, Geneva

Dube O, Vargas JF (2013) Commodity price shocks and civil conflict: evidence
from Colombia. Rev Econ Stud 80:1384–1421

Eck, K. In data we trust? A comparison of UCDP GED and ACLED conflict events
datasets. Cooperation Conflict 47:124–141

Frieler K et al. (2017) Assessing the impacts of 1.5 ∘C global warming - simulation
protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISI-
MIP2b). Geosci Model Dev 10:4321–4345

GADM (2018) Database of Global Administrative Areas, version 3.6. The Uni-
versity of California

Gaillard J-C, Clavé E, Kelman I (2008) Wave of peace? Tsunami disaster diplomacy
in Aceh, Indonesia. Geoforum 39:511–526

Geiger T, Frieler K, Bresch DN (2018) A global historical data set of tropical
cyclone exposure (TCE-DAT). Earth Syst Sci Data 10:185–194

Gerring J et al (2021) V-Dem Codebook v11.1. Varieties of Democracy (V-Dem)
Project. Varieties of Democracy

Goldewijk KK, Beusen A, Doelman J, Stehfest E (2017) Anthropogenic land use
estimates for the Holocene - HYDE 3.2. Earth Syst Sci Data 9:927–953

Gosling S et al (2017) ISIMIP2a simulation data from water (global) sector. GFZ
Data Services. https://doi.org/10.5880/PIK.2017.010

Goyette J, Smaoui M (2022) Low agricultural potential exacerbates the effect of
temperature on civil conflicts. Ecol Econ 192:107250

Harris I, Jones P, Osborn T, Lister D (2014) Updated high-resolution grids of
monthly climatic observations - the CRU TS3.10 Dataset. Int J Climatol
34:623–642

Hegre H et al (2016) Forecasting civil conflict along the shared socioeconomic
pathways. Environ Res Lett 11:054002

Hegre H, Metternich NW, Nygård HM, Wucherpfennig J (2017) Introduction:
forecasting in peace research. J Peace Res 54:113–124

Hoch JM et al. (2021) Projecting armed conflict risk in Africa towards 2050 along
the SSP-RCP scenarios: a machine learning approach. Environ Res Lett
16:124068

Hsiang SM, Burke M (2014) Climate, conflict, and social stability: what does the
evidence say? Clim Chang 123:39–55

Hurtt GC et al (2020) Harmonization of global land use change and manage-
ment for the period 850-2100 (LUH2) for CMIP6. Geosci Model Dev
13:5425–5464

Ide T (2023) Catastrophes, confrontations, and constraints: how disasters shape the
dynamics of armed conflicts. MIT Press

Ide T, Kristensen A, Bartusevičius H (2021) First comes the river, then comes the
conflict? A qualitative comparative analysis of flood-related political unrest. J
Peace Res 58:83–97

Kaufmann D, Kraay A, Mastruzzi M (2011) The worldwide governance indicators:
methodology and analytical issues. Hague J Rule Law 3:220–246

Kummu M, Taka M, Guillaume JHA (2018) Gridded global datasets for Gross
Domestic Product and Human Development Index over 1990-2015. Sci Data
5:180004

Lange S et al (2020) Projecting exposure to extreme climate impact events
across six event categories and three spatial scales. Earths Future
8:e2020EF001616

Lehmann J, Coumou D, Frieler K (2015) Increased record-breaking precipitation
events under global warming. Clim Chang 132:505–515

Linke AM, Witmer FD, O’Loughlin J (2022) Weather variability and conflict
forecasts: dynamic human-environment interactions in Kenya. Political
Geogr 92:102489

Mach KJ et al. (2019) Climate as a risk factor for armed conflict. Nature
571:193–197

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-023-01996-1 ARTICLE

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |          (2023) 10:522 | https://doi.org/10.1057/s41599-023-01996-1 9

https://doi.org/10.5281/zenodo.8189172
https://link.springer.com/10.1007/978-3-030-56036-2
https://doi.org/10.5880/PIK.2017.010


McGuirk E, Burke M (2020) The economic origins of conflict in Africa. J Political
Econ 128:3940–3997

Mester B, Willner SN, Frieler K, Schewe J (2021) Evaluation of river flood extent
simulated with multiple global hydrological models and climate forcings.
Environ Res Lett 16:094010

Mueller H, Rauh C (2022) The hard problem of prediction for conflict prevention. J
Eur Econ Assoc 20:2440–2467

Mueller Schmied H et al. (2016) Variations of global and continental water balance
components as impacted by climate forcing uncertainty and human water
use. Hydrol Earth Syst Sci 20:2877–2898

Perry C (2013) Machine learning and conflict prediction: a use case. Stability 2:56
Raleigh C, Linke A, Hegre H, Karlsen J (2010) Introducing ACLED: an armed

conflict location and event dataset: special data feature. J Peace Res
47:651–660

Ramankutty N, Evan AT, Monfreda C, Foley JA (2008) Farming the planet: 1.
Geographic distribution of global agricultural lands in the year 2000. Glob
Biogeochem Cycles. https://doi.org/10.1029/2007GB002952

Robbins P (2019) Political ecology: a critical introduction. Wiley
Rød EG, Gåsste T, Hegre H (2023) A review and comparison of conflict early

warning systems. Int J Forecast. https://doi.org/10.1016/j.ijforecast.2023.01.001
Schewe J et al. (2019) State-of-the-art global models underestimate impacts from

climate extremes. Nat Commun 10:1–14
Schleussner C-F, Donges JF, Donner RV, Schellnhuber HJ (2016) Armed-conflict

risks enhanced by climate-related disasters in ethnically fractionalized
countries. Proc Natl Acad Sci USA 113:9216–9221

Schutte S, Vestby J, Carling J, Buhaug H (2021) Climatic conditions are weak
predictors of asylum migration. Nat Commun 12:1–10

Scussolini P et al. (2016) FLOPROS: an evolving global database of flood protection
standards. Nat Hazards Earth Syst Sci 16:1049–1061

Selby J, Dahi OS, Fröhlich C, Hulme M (2017) Climate change and the Syrian civil
war revisited. Political Geogr 60:232–244

Sheffield J, Goteti G, Wood EF (2006) Development of a 50-year high-resolution
global dataset of meteorological forcings for land surface modeling. J Clim
19:3088–3111

Siddiqi A (2014) Climatic disasters and radical politics in Southern Pakistan: the
non-linear connection. Geopolitics 19:885–910

Slettebak RT (2012) Don’t blame the weather! Climate-related natural disasters and
civil conflict. J Peace Res 49:163–176

Sundberg R, Melander E (2013) Introducing the UCDP georeferenced event
dataset. J Peace Res 50:523–532

Sutanudjaja EH et al. (2018) PCR-GLOBWB 2: a 5 arcmin global hydrological and
water resources model. Geosci Model Dev 11:2429–2453

van Weezel S (2018) Predicting conflict events in Africa at subnational level. SSRN
Electron J. https://doi.org/10.2139/ssrn.3019940

Vesco P, Kovacic M, Mistry M, Croicu M (2021) Climate variability, crop and
conflict: exploring the impacts of spatial concentration in agricultural pro-
duction. J Peace Res 58:98–113

von Uexkull N, Buhaug H (2021) Security implications of climate change: a decade
of scientific progress. J Peace Res 58:3–17

Von Uexkull N, Croicu M, Fjelde H, Buhaug H (2016) Civil conflict sensitivity to
growing-season drought. Proc Natl Acad Sci USA 113:12391–12396

Wirtz A, Kron W, Löw P, Steuer M (2014) The need for data: natural disasters and
the challenges of database management. Nat Hazards 70:135–157

Witmer FD, Linke AM, O’Loughlin J, Gettelman A, Laing A (2017) Subnational
violent conflict forecasts for sub-Saharan Africa, 2015-65, using climate-
sensitive models. J Peace Res 54:175–192

Yamazaki D, Kanae S, Kim H, Oki T (2011) A physically based description of
floodplain inundation dynamics in a global river routing model. Water
Resourc Res 47:1–21

Acknowledgements
We thank Nicolai Hans and Lisa Berghäuser for their work in creating the dataset used in
this project. We are also grateful to Halvard Buhaug, Ottmar Edenhofer, Nico Bauer, and
Lisa Binder, whose discussion contributions were invaluable. Furthermore, we thank the
participants at EAERE 2021 annual conference, the Max Plank Institute Summer School
on the Political Economy of Conflict and Redistribution, and the 2021 autumn school at
TU-Freiberg. We also acknowledge the work of many individuals and organizations who
collect, report, and analyze data on conflict events. Without these efforts and personal
risks, our work would not exist. Finally, we want to acknowledge Sarah Insel, Martin
Park, Maria Aberspach, Isabel Guttmann, Maria Löwinger and the rest of the admin-
istrative and building maintenance teams whose work enables our research.

Funding information
The project emerged as part of the Weathering Risk initiative funded by the German
Federal Foreign Office grant No. 404-468.40/6. Both this monetary support, as well as the
feedback from our partners at Adelphi who work on this project with us, is greatly
appreciated. Funding from the EU Horizon 2020 program and ISIMIP/ISI-Access also
contributed to this work. Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Ethical approval
This article does not contain any studies with human participants performed by any of
the authors.

Informed consent
This article does not contain any studies with human participants performed by any of
the authors.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1057/s41599-023-01996-1.

Correspondence and requests for materials should be addressed to Sidney Michelini.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

ARTICLE HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-023-01996-1

10 HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |          (2023) 10:522 | https://doi.org/10.1057/s41599-023-01996-1

https://doi.org/10.1029/2007GB002952
https://doi.org/10.1016/j.ijforecast.2023.01.001
https://doi.org/10.2139/ssrn.3019940
https://doi.org/10.1057/s41599-023-01996-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Extreme weather impacts do not improve conflict predictions in Africa
	Introduction
	Data
	Outcome variables
	Administrative levels
	Common predictor groups
	Extreme weather impacts

	Methods
	Generalized Random Forest (GRF)
	Evaluating predictions

	Results
	Key findings
	Potential correlations

	Discussion
	Data availability
	References
	References
	References
	Acknowledgements
	Funding information
	Competing interests
	Additional information




