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Measuring the recycling potential of industrial
waste for long-term sustainability
Qudsia Kanwal1, Xianlai Zeng 1 & Jinhui Li 1✉

Industrial waste is the byproduct of many industrial processes. Estimating the recycling

potential of industrial waste can help solve the anthropogenic circularity conundrum. Here we

employed the Environmental Kuznets Curve (EKC) to verify GDP as a route to "amplified

resource efficiency". The results provide substantial evidence for an inverted U and N rela-

tionship between the hypothesized GDPPC and industrial waste generation. During

2011–2025, the recycling potential in China showed a downward trend. China is projected to

experience a dramatic increase in the production of industrial hazardous waste until the

successful implementation of industrial hazardous waste prevention measures reverses the

current trends. The turning point of the EKC between industrial waste generation and eco-

nomic development is around US$8000, while the comprehensive utilization is 102.22 million

tons. The EKC inflection points established by the study are correlated with the waste

category’s turning point. The revised EKC claims that technological change may accelerate

the turning points; thus, the graph shifts downward and right. The study recommends

investing in new technology development to help the industry produce virgin and recycled

industrial waste for a circular economy. Recycling potential evaluation also assists us to

achieve our Sustainable Development Goals (SDGs).
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Introduction

In the Anthropocene era, material flow from the lithosphere to
the anthroposphere caused the rapid depletion of geological
minerals and serious pollution of the ecological environment,

resulting in the dramatic generation of solid waste. The majority,
<90%, of material is sinking finally as waste, yet it could poten-
tially be recycled (Zeng and Li, 2018). Industrial waste is one
offspring of anthropogenic metabolism as the global population
has grown and become more urban and affluent in the past
century. China’s industrial waste generation, which includes
tailings, sludge, slag, and coal tar, increased tenfold between 1998
and 2018 and is expected to double by 2025 (Hoornweg et al.,
2013; Kanwal et al., 2022). China, for example, generated around
3.5 billion tons (t) of industrial waste in 2019, accounting for
~30% of all solid waste generated globally (Kanwal et al., 2021;
Kanwal et al., 2022). Global average special waste (i.e., industrial
waste) is expected to rise to 12.73 kg/capita/day (Kaza et al., 2018;
Wang et al., 2000). These statistics introduce significant chal-
lenges which may be addressed by estimating the recycling
potential of industrial waste.

Industrial wastes and byproducts are increasingly used as
structural fillers. Secondary materials used in construction
include recovered rocky or earthy waste materials and industrial
byproducts. Slags from the steel industry (used in coastal pro-
tection, highways, and parking lot foundations), ashes from
municipal solid waste incineration (used in road construction,
noise barriers), and construction and demolition waste (used in
foundations, road construction) are only a few examples (Ayres
and Ayres, 2002; Dijkstra et al., 2019). Industrial waste quantifi-
cation and recycling are necessary components of a system-
oriented industrial ecology to determine the existence of "new
anthropogenic elements".

It is well known that China experienced sustained, rapid
industrialization from the late 1970s when economic reform was
introduced. Gross Domestic Product Per Capita (GDPPC) has
grown nearly 10% yearly. Rapid economic growth enhances living
standards and social welfare while creating severe environmental
problems. According to the central baseline scenario modeled
using the OECD ENV-Linkages model, global Gross Domestic
Product (GDP) is predicted to quadruple between 2011–2060. As
a result, global average per capita income will reach current
OECD levels by 2060 (around US$ 40,000) (OECD, 2019).
Although waste generation in OECD countries will peak by 2050
and in Asia–Pacific countries by 2075, waste will continue to rise
in Sub-Saharan Africa’s fast-growing cities. Based on current
trends, it is estimated that by 2100, solid waste generation will
reach 11 million tons per day, more than three times today’s rate
(Hoornweg et al., 2013).

There is a correlation between economic growth and munici-
pal/electronic trash; nevertheless, these growths are truly corre-
lated with generation quantity; as a result, an increase in GDP is
the cause of an increase in industrial waste generation (D’Adamo
et al., 2020). The EKC approach is applied in this study because of
its ability to determine the correlation between each social-
economic driving factor and solid waste generation. According to
the EKC hypothesis, metal consumption peaks and declines
throughout economic development. Metals are necessary for
economic growth, human progress, and a prerequisite for
expanding renewable energy. Metals’ anthropogenic use has
increased significantly, particularly in emerging economies. As
defined by GDPPC, affluence has been recognized as the primary
economic driver of domestic metal consumption. On the other
hand, domestic metal consumption declines as affluence increa-
ses, implying that high-income economies are becoming more
resource-efficient (Bechle et al., 2011).

This study can provide a scientific basis for resolving the
contradiction between the rapid development of the social
economy and the degradation of the ecological environment due
to the enormous quantity of industrial solid waste, and thus serve
as a guide for ecological environment management decisions
regarding waste management in China.

Due to the lack of empirical study on the recent evolution of
income distribution and environmental pollution, this essay
explores the problem of growing income inequality and envir-
onmental degradation (waste generation) to reassess the Kuznets
theory from a Chinese viewpoint. The novelty/significance of this
research is:

● Currently, we focus on fiscal development and industrial
waste generation nexus.

● Despite being part of industrial ecology, waste sector
research is patchy. "The United Nations Sustainable
Development Goal 12 focuses on waste management and
is part of the anthropogenic circularity debate.

● To our knowledge, this is the first observational analysis
modeling the Kuznets curve: the income–pollution link
across China while also accounting for additional control
variables such as population, comprehensive utilization,
and mineral rent (% of GDP) and therefore, our analysis
results in more appropriate policy prescriptions.

This paper is based on a comprehensive analysis of China’s
industrial hazardous waste recycling potential (see Fig. S1).
The article proceeds as follows. The first two sections describe
the conceptual underpinnings of EKC and its integration with the
STIRPAT model, current knowledge, methods, and data
employed. The third segment discusses the factors contributing to
industrial waste and formulates theories for testing. The fourth
section explains the conclusions and the fifth section policy
implications.

Literature review
Environmental Kuznets Curve (EKC). Grossman and Krueger’s
(1995) EKC theory defines the dynamic link between income per
capita and the environment (Grossman and Krueger, 1995;
Kasioumi and Stengos, 2020). Environmental quality deteriorates
during the early phase of economic growth, forming an inverted
U-curve. However, the pattern reverses after reaching a particular
per capita income threshold (Bank, 1992).

Since the early 1990s, a slew of experiments has looked into
two Kuznets-related hypotheses: the inverted U-curve hypothesis
and the EKC, to see any potential links (between growth and
income redistribution and growth and the environment)
(Panayotou, 1993a). Real GDP and GDPPC are the most
commonly utilized economic measures in EKC literature,
including panel data (Ge et al., 2018; Narayan and Narayan,
2010; Ozcan, 2013) and cross-sectional data (Ahmad et al., 2017;
Hill and Magnani, 2002). Nevertheless, the findings of these
surveys, carried out mainly in the early 2000s, remain
inconclusive (Ota, 2017). Therefore, research using a new time
frame and methodology is needed.

Several host studies were conducted to investigate the EKC. Li
(2016) conducted an observational analysis of economic devel-
opment and environmental pollution in Gansu province. The
findings revealed that Gansu and the west zone have more
complex economic conditions and environmental pollution (Li,
2016). Research on pollution and economic growth of Beijing,
Tianjin, and Hebei has shown that these cities are already on the
left side of the EKC curve: and a greater emphasis on inverted
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U-shaped green construction must be made (Dal Mas et al., 2021;
Yuan, 2019).

Since then, observational research into the effect of GDP on
potentially mitigating environmental pollution based on the
Kuznets curve has progressed. Various countries or territories,
sampling periods, pollutants, data sets, and methodologies were
used (Boubellouta and Kusch-Brandt, 2020; Dodds et al., 2013;
Lieb, 2003; Ota, 2017; Purcel, 2020b; Sarkodie and Strezov, 2019;
Van Alstine and Neumayer, 2010). The research linking EKC to
materials and industrial waste is smaller than municipal waste
and air pollution. Precedent research uses a geographically
weighted regression (GWR) model to consider spatial hetero-
geneity to explain the interactions between environmental
performance and economic growth in China (Kim et al., 2018;
Madden et al., 2019). Mazzanti and Zoboli (2009) examined
empirical evidence for decoupling economic growth and
municipal waste output by observing an inverted U-shaped curve
to gross domestic savings as a proportion of GDP (Ercolano et al.,
2018; Khajuria et al., 2012; Mazzanti and Zoboli, 2009; Mazzanti
and Zoboli, 2005). Based on the EKC hypothesis, a study
investigates the relationship between environmental pollution
and economic growth in Chinese provinces. Waste gas, waste-
water, and solid waste as environmental indicators and GDP are
used as economic indicator. All these pollutants are U-shaped; it
can be explained by an ever-cleaner industrial structure, rapidly
increasing investment in environmental protection, and tighter
environmental policy (Tao et al., 2008; Xuemei et al., 2011;
Yanrong et al., 2011).

Similarly, research on panel data from 258 prefecture-level
cities in China from 2003 to 2016 uses an extended stochastic
effect on population, wealth, and technology (STIRPAT) regres-
sion model with the difference-in-difference (DID) approach to
research the impact of waste collection policy and MSW’s main
socioeconomic variables and the environmental hypothesis of
EKC measure. A substantial N, U, or inverted N-shaped curve
was observed between the MSW generation and economic growth
at the national level. However, the traditional EKC hypothesis has
no evidence to support it (Cheng et al., 2020; Gui et al., 2019). For
the first time for e-waste of 174 countries, the EKC hypothesis
was tested using ordinary least square regression. It includes

population, urbanization, industrialization, and electricity access.
The results strongly support the hypothesized inverted-U
relationship between GDPPC and e-waste per capita worldwide
(Boubellouta and Kusch-Brandt, 2021).

However, no preceding research accounts for the industrial
waste generation concerning EKC variables. Thus, this EKC-
China study covers gaps by offering an essential roadmap to
estimate Chinese industrial waste recycling potential.

Data, method, and modeling
Data and variables. To ensure data consistency, we established
EKCs using GDP as the economic indicator and tailings (total
tailings, Fe tailings, Cu tailings, and Au tailings), smelting slag
(ISS, NFSS, RM), coal ash, coal gangue, and industrial byproduct
gypsum as environmental indicators between 1993- 2018. This
paper’s data are derived from the World Bank development
indicator, the National Statistical Bureau of China. Table 1 con-
tains descriptive information, including the mean and standard
deviation. Table 2 shows the regression and covariance coeffi-
cients of various indicators. Our descriptive statistics analysis
highlights the need to deal with our data’s heterogeneity.

Independent variables. We use GDPPC as an independent
variable based on previous studies related to environmental
economics. GDPPC square and cube are applied to the regression
model to test the EKC hypothesis. Suppose the GDPPC coeffi-
cient is positive and statistically significant, and the GDPPC
square and cube coefficient is negative and significant. Thus
inverted U-shaped relationship between GDPPC and industrial
waste per capita is obtained; hence, the EKC hypothesis is tested.

Dependent variables. The dependent variable in our study is the
industrial waste generation expressed in million tons per annum.
Industrial waste has witnessed exceptionally high growth world-
wide over the past few years (Kanwal et al., 2022). Industrial
waste from various processes, such as sludge, kiln mud, slags, and
ashes, is referred to as industrial waste (JeyaSundar et al., 2020).
This variable comprises ten waste categories; based on field sur-
veys, literature reviews, and governmental websites.

Table 1 Descriptive statistics.

Variables Unit Mean Max Min Std. Dev

GDPPC US$ 8.00 × 103 1.03 × 104 5.62 × 103 1.55 × 103

Comprehensive utilization Million tons 5.12 1.86 × 101 3.10 × 10−1 4.97
Mineral rent % GDP 7.99 × 10−1 2.82 3.74 × 10−1 7.88 × 101

Population 10,000/person 1.36 × 109 1.39 × 109 1.33 × 109 2.10 × 107

Financial Growth One hundred million Yuan 8.18 × 102 6.82 × 103 9.98 × 102 1.33 × 102

Table 2 Covariance matrix.

Variables GDPPC/US$ Population
(10,000/person)

Comprehensive utilization
(Million tons)

Mineral rent
(% GDP)

Financial Growth (One
hundred million Yuan)

GDPPC/US$ 1.04 × 107

Comprehensive utilization
(Million tons)

1.65 × 1012 3.38 × 1017

Mineral rent
(% GDP)

1.42 × 104 9.04 × 108 4.65 × 101

Population
(10,000/person)

2.07 × 103 1.56 × 108 6.48 9.13 × 10−1

Financial Growth
(One hundred million Yuan)

1.02 × 106 1.78 × 1011 1.13 × 103 1.71 × 102 1.04 × 105

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-023-01942-1 ARTICLE

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |          (2023) 10:471 | https://doi.org/10.1057/s41599-023-01942-1 3



Control variables. Time-series analysis is based on the mathe-
matical EKC model of historical data. It inevitably leads to
uncertainty as we do not know whether the historical trends in
recycling potential can persist. Nonetheless, contextual factors
impact potential demand changes (Schipper et al., 2018).
Among these subjective factors, demographic variations, Com-
prehensive utilization rate, and Mineral rents (% of GDP) sig-
nificantly influence a particular country’s waste resource
potential.

Comprehensive utilization rate. The comprehensive utilization
stage consists of resource recovery and recycling; for example, the
crude oil removed during the treatment stage and the sludge can
be used in various ways (Dal Mas et al., 2021). Using EKC ana-
lysis, an estimate of China’s industrial waste production, primary
treatment, extensive recycling, and disposal process was carried
out using 2011- 2018 as the time boundary.

Mineral rents (% of GDP). The economic potential of industrial
waste is calculated in terms of Mineral rents. The difference
between the production value for a mineral stock at world prices
and its total production costs (Text S1). The values range from
1.45–16.4 million tons (% of GDP) (2020) (SI excel sheet).
Thereby, we use Mineral rents as a control variable to estimate
recycling potential. We also assumed that the rise in demand is
projected to exceed the Chinese mineral and metal demand, as
China has already taken an indispensable position in the mineral
industry.

Population. We used the population variants depicted in several
World Bank publications (Nations, 2015; Zhang et al., 2017) to
forecast recycling potential. Hence, we used 1993 as the base year.
Previous research indicates that the growing population increases
consumer demand, resulting in environmental degradation.
However, a shift in environmental impact per capita is possible
(Al Mamun et al., 2014; Boubellouta and Kusch-Brandt, 2020;
Ohlan, 2015; Salman et al., 2019). From 2004–2006, there was a
positive relationship between population and municipal waste
generation per capita in 547 Italian municipalities (Abrate and
Ferraris, 2010; Hanif and Gago-de-Santos, 2017). Based on this,
we anticipate that population growth would positively impact
industrial waste generation.

Financial growth. Given that China is already at a crossroads in
expanding financial reform and reducing environmental pollu-
tion, it is critical and worthwhile to examine the relationship
between financial development and environmental performance
in China (Maneejuk et al., 2020; Zhao et al., 2019) (Awasthi et al.,
2018). The existing research uses an "investment in environ-
mental pollution treatment" as a financial sector indicator.
Therefore, we chose this measure as financial depth. It is
expressed as the ratio of total investment to the GDP in per-
centage terms. Data is collected from China Statistical Yearbook
(Book).

Methodology. The Environmental Kuznets Curve (EKC) is used
in this study to assess the relationship between social-economic
factors and industrial hazardous waste generation and calculate
Chinese future recycling potential. By quantitatively assessing the
IHW generation trend at a macro level, our study may provide a
comprehensive picture of IHW generation and feedback on the
Chinese government’s efficiency.

EKC modeling. The EKC model is based on the quadratic
relationship between GDPPC and the environment. Many

factors influence the relationship between the two, so in this
paper, we adopt a trinomial equation to establish the quantita-
tive relationship between GDPPC and the generation of indus-
trial wastes. GDPPC is plotted along the horizontal axis, while
industrial waste generation is plotted along the vertical axis.
After determining the model, we use Origin to perform data
fitting analysis.

We chose polynomial regression models (Grossman and
Krueger, 1991; Miyama and Managi, 2014; Panayotou, 1993b)
because of their robustness in dealing with non-linear data and
unobserved distinct heterogeneity variation. Using a quadratic
function allows testing the standard EKC hypothesis (i.e., the
hypothetical bell-shaped connection between pollution and
growth). Furthermore, a quadratic functional form enables an
EKC with an N or M shape (Terrell, 2020). In contrast, a higher
polynomial order specification, such as the cubic function, allows
for multiple pattern modeling (Purcel, 2020a). The formulation of
the model is well supported by literature (Enchi Liu et al., 2020;
Jie Gu et al., 2020; Kim et al., 2018; Lazar et al., 2019; Tao et al.,
2008; Xuejiao Huang et al., 2020; Xuemei et al., 2011). The model
takes the following form:

Rp ¼ ψ þ α0γ
1 þ δ ð1Þ

Rp ¼ ψ þ α0γ
1 þ α1γ

2 þ δ ð2Þ

Rp ¼ ψ þ α0γ
1 þ α1γ

2 þ α2γ
3 þ δ ð3Þ

where Rp is the recycling potential index for industrial waste, ψ is
the intercept value, γ is the economic development index
(GDPPC), α0, α1, α2 is the parameter to be estimated, δ is the
random error term. The paper uses third-order polynomial fitting
curves to have a higher fit, and R2 and F tests show excellent
results. The alpha coefficients determine the precise functional
form as follows:

α ≠ 0, α0= α1= 0: the linear relationship between industrial
waste and growth

α0 < 0, α1 > 0, α2= 0: U-shaped industrial waste growth nexus
α0 > 0, α1 < 0, α2= 0: inverted U-shaped industrial waste

growth nexus
α0 > 0, α1 < 0, α2 > 0: N-shaped industrial waste growth nexus
α0 < 0, α1 > 0, α2 < 0: inverted N-shaped industrial waste

growth nexus

An EKC-STIRPAT Model. STIRPAT is a well-known model in
ecology; it is a mathematical expansion of the classic IPAT model.
The model employs driving factors to assess the impact (I) of
human activity on the environment (Wang et al., 2017). There are
three basic specifications: population (P), affluence (A), and
technology (T), usually in non-logarithmic form (Wang et al.,
2013). Although this is important for theoretical
work, researchers typically estimate using its logarithm version
(STIRPAT).

ln I ¼ aþ b ln P þ c lnAþ d lnT þ e ð4Þ
Here, representative pollutants industrial hazardous waste emis-
sions were selected as I indicators, and the indicators of the social
economy were selected as P (Population/10000 persons), A
(Affluence GDPPC), and T (Energy intensity by GDP) indicators,
while e denotes an error.

Since the relationship between GDP and environmental
degradation might be non-linear, the STIRPAT model has been
used to investigate the EKC hypothesis between GDP and
emissions (CO2) or other environmental indicators. This has yet
to be tested for solid waste. Combining the EKC hypothesis with
the STIRPAT model could give a powerful technique for
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investigating the relationship between GDP and waste quantity in
each industrial hazardous waste category.

Results
Interrelationship among strategic elements to support EKC.
The schematic view of the model is illustrated in Fig. 1 (produced
with Vensim PLE 9.0 software). Considering the feedback loop
between waste generation variables and GDP is valuable. The
model allows us to evolve industrial waste recycling potential in
non-trivial ways: including economics, comprehensive utilization,
mineral rent, waste generation intensity, and environment.
Industrialization also leads to the accumulation of waste pollu-
tants. Growing ecological footprints and poor environmental
cleanup bring about indirect EKC support. Without proper reg-
ulation, the link between the environment and development may
constantly be positive. Moreover, Fig. 1 implies that China’s
desire for a healthy climate increases the government’s pressure
to regulate industry-based waste effectively.

Model equations. Numerous EKC research formulae, including
linear, quadratic, and cubic, ensure the chosen model’s accuracy.
Polynomial regression analysis revealed the following findings
based on the GDPPC and the "three wastes" emission data sta-
tistics (Table S1).

Model analysis. In order to ensure the cross-compatibility of
waste generation data and to develop forecasts for waste
recycling potential, this analysis assumes that waste generation
grows predominantly due to two variables. GDPPC growth: As
a country develops economically, its per capita waste genera-
tion rises. GDPPC, with a purchasing power parity adjustment
to 2011, shows economic growth. Population growth: as a
country’s population increases, its total waste output rises
proportionally. Figure 2 depicts the observed relationship
between GDPPC and waste generation. The correlation
between GDPPC and waste generation (tons/person/year) was
calculated using a regression model. Total tailings and total slag
(1993–2018) showed an inverted N shape, while different types
of tailings, such as coal ash, coal gangue, etc., showed an
inverted U shape. The independent variable in the best-fitting
model is the natural logarithm of GDPPC (see STIRPAT
model), while the dependent variable is per capita waste gen-
eration in tons/person/year.

The Chinese EKC for the industrial waste generation curve is
in the upward phase of the inverted U. Subsequently, large
quantities of industrial waste, such as coal tar, different types of
tailings, and slag, have increased quickly in recent years. At the
same time, it demonstrates the influence of the Chinese GDPPC
and the absence of timely environmental policy implementation.
Numerous Kuznets curves were fitted to environmental and
economic data to get regression coefficients R2 (Fig. 2). The
model’s R2 for the trinomial equation is 0.86; the F test shows
significance. Because the regression value is close to 1, the degree
of curve fitting is more significant, and the analytical error is
small. We compare our value to the volume of e-waste collected
and the GDP Purchasing Power Standards, and the findings
indicate that the best fit for the data is possible (Awasthi et al.,
2018; D’Adamo et al., 2020).

STIRPAT model. This paper defines lnPRV, lnPPV, lnARV,
lnAPV, lnTPV, and lnTRV as dependent variables I. lnGDP, lnP,
lnT (Energy intensity by GDP) are defined as independent vari-
able PAT. It can be seen that the R2 of all four groups of equations
is more significant than 0.957, indicating that the regression
results are credible. The three indexes with the greatest impact are
as follows: lnPRV (11.845), lnARV (−0.0069), and lnTRV
(0.19062) (Fig. 3). Perhaps the most important lesson to be
learned from the obtained estimates is that reducing the amount
of industrial waste generated is a collaborative effort, as envir-
onmental measures taken by one municipality in the region affect
the concentration levels of the pollutant in neighboring munici-
palities. The implications of the above model are to evaluate
anthropogenic environmental impacts and constitute a valuable
instrument for policy decision-making directed at controlling
hazardous pollutants.

EKC analysis and variable fitting. Economic development
probably gives rise to environmental degradation, promoting
economic prosperity with environmental protection. The EKC
principle states that as the economy grows, so do emission
indicators and the human population. Figure 4 shows the turning
point for each variable, like comprehensive utilization in 2019 has
a turning value of 102 million tons (Table S2). The waste cate-
gory’s turning point corresponds to the study’s determined EKC
inflection points. The revised EKC claims that technological
change may accelerate the turning points; thus, the EKC graph
shifts downward and right.

The EKC turning points. During 2000–2018, the economy
in China rapidly grew with an average increasing rate of 7.6%
[Fig. S3A]. For each measure of financial development, there is a
range of GDPPC for which the total elasticity of financial
development on industrial waste discharge per capita is negative
[SI Fig. S3B]. In other words, financial development benefits
environmental quality at a particular degree of development. One
explanation for this observation is that financial development’s
effects on technological progress are critical for improving energy
efficiency and lowering the waste emission intensity (i.e., the ratio
of waste generation to GDP), which is not linear and depends on
the economy’s specific characteristics.

The Chinese economy proliferated due to policies that allowed
industrialization to dominate the economy. The turning point of
the EKC between industrial waste generation and economic
development in China is US$ 8066 (2018) (Fig. 4). The waste
generation will continuously reduce as GDPPC increases if
China’s economic growth is maintained. The underlying
empirical research paid close attention to turning points in the
waste generation-economic development nexus. Existing research

Fig. 1 Diagram of the model’s causal loops. Bold lines represent a ±
feedback mechanism among variables.
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shows that turning point values depend on various factors,
including economic growth, the variables used to proxy for
environmental quality, and the model used (Lazar et al., 2019;
López-Menéndez et al., 2014; Sulemana et al., 2017). In our

analysis, the presence of divergent GDP values for turning points
are insulated from these sources of heterogeneity for the same
pollutant (industrial waste generation) and after controlling for
the same domestic (population, comprehensive utilization) and
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Fig. 2 Industrial waste generation and GDPPC nexus graph. It shows the GDPPC relationship, which steadily rises and correlates to industrial waste
generation. The curves show quadratic regression models fitted to the data.
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external mineral rent (% of GDP) factors. As a result, disparities
in these turning points may well reproduce structural hetero-
geneity within our sample country.

Chinese EKC. The relationship between social economy and
industrial waste pollution varies based on the country’s level of
development (Levinson, 2002). However, this EKC pattern was
most likely triggered by the following: The structure of the Chi-
nese economy has shifted away from energy-intensive heavy
industry to a more market-oriented service-based economy,
which has aided China in ameliorating rather than exacerbating
pollution. Additionally, corporations are committed to investing
in new and enhanced technologies to increase cost-effectiveness
(Luo et al., 2014; Panayotou, 1993b). One of the most notable
implications of this trend has been an increase in resource effi-
ciency (comprehensive utilization) within the industrial sector,
which has resulted in a 50% reduction in industrial energy
intensity during the 1990s (Liu and Diamond, 2005). In addition,
environmental awareness has increased among citizens (Luo
et al., 2014). Environmental protection regulations have been
enacted and efficiently implemented, another primary reason for
impelling EKC (He and Wang, 2012; Kijima et al., 2011).

Numerical model for industrial waste recycling potential. Indus-
trial waste is recycled based on generation volume and unit
economic value (Yu et al., 2020). Equation 4 illustrates the
quantitative model.

RPIW ¼ ∑TGWa ´ EVa ð5Þ
where RPIW refers to the industrial waste recycling potential
(unit: US$), and TGWa refers to the total generated amount (unit:
million tons) of industrial wastea. EVa refers to the unit economic
value (Chinese Yuan) of different waste categories. This model is

well supported by literature (Yu et al., 2020). Table S3 shows the
recycling potential in a million tons/yuan from 2011–2017. Then
we forecast it till 2025 using integrated ARMA in NumXL soft-
ware. Figure 5 shows a trend from 2011–2025, and the recycling
potential shows a downward trend supporting EKC. For instance,
total tailings support an inverted N-shaped. This estimation
derives the probability distribution of the waste intensity factor
statistically and extrapolates trash tonnages across China. This
downtrend of recycling potential is due to the few valuable
resources in industrial waste.

We compare our projections result with previously published
papers. Hoornweg et al.,2013 stated that extending those forecasts
to 2100 for various published population and GDP scenarios
demonstrates that global ‘peak waste’ will not occur this century if
current trends continue (Dyson and Chang, 2005; Hoornweg
et al., 2013). Li et al. 2020 estimated that the overall volume of
discarded foundry sand in the United States declined from
2.2–7.1 million tons in 2004 to 1.4–4.7 million tons in 2014 (Li
et al., 2020). Similarly, minerals included in non-hazardous
industrial waste (NHIW) account for 100 million tons, with an
annual power potential of ~200 billion kWh from 1990 to 2016.
Both are predicted to increase by around 50% between 2017 and
2050 (Chen et al., 2021).

Robustness check. The sensitivity analysis with a deviation (±5%)
is used to test the robustness of the EKC Model. Figure 6 shows
that all the variables in EKC Model have different influence
directions, as mentioned in the above model, so the estimation of
the model is robust and reliable. We also validated our prediction
with Integrated ARMA. Sarkodie and Strezov, 2018 used auto-
regressive distributed lag (ARDL) analysis to validate the inverted
N-shaped EKC hypothesis (Barış-Tüzemen et al., 2020; Sarkodie
and Strezov, 2018).

Fig. 3 The STIRPAT model has been used to investigate the EKC hypothesis between GDP and emissions (industrial waste) or other environmental
indicators. Here, lnA denotes the log of affluence, lnT the log of technology, and lnP the log of population.
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Discussion
The amount of waste generated and economic activity deter-
mines industrial waste recycling potential toward anthro-
pogenic circularity. This paper closes the gap by establishing a
sound framework to analyze industrial waste-related trends
within a WKC conceptual framework encompassing the policy

evaluation stage. The WKC theory was tested, and adding
control variables demonstrated its robustness. The GDPPC,
coal ash, and coal gangue showed an inverted U-curve, while
total tailings, slag, and the industrial byproduct gypsum showed
an inverted N-curve. The Chinese data set reflects signs of
decoupling (reversal of industrial waste discharge per capita),
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Fig. 4 Continued.
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indicating that the EKC of industrial waste per capita is still
inverted N-curve due to the comprehensive utilization rate. The
annual growth of China’s GDPPC in the 5 years leading up to
the study appeared to play a significant role in the rise of
industrial waste.

Thus, Chinese EKC exists in industrial waste, i.e., industrial
waste generation increases as GDPPC rises and then starts
declining at a certain level of GDPPC. However, this study
determined the turning point at a high GDP level of US$
8066 ± 1836 per capita. The turning point estimated in this
work is consistent with Sarkodie and Strezov, who found US
$7078 in 2018 (Sarkodie and Strezov, 2018). In EKC, the
recycling rates generally remain high throughout. Thus, the
proportion of industrial waste impacted recycling potential
positively. The paper presents sound conclusions and recom-
mendations. Building on the current literature overview, future
work might include a meta-analysis to better understand the
industrial waste-economic nexus via the EKC. Ecological
changes cannot depend solely on the environment’s auto-
maticity in economic development. Advanced technologies will
increase resource utilization, resulting in industrial waste
reduction. Thus, the relationship between Chinese GDPPC and
industrial waste is constantly changing. The model indicates

that industrial waste generation increases in lockstep with
GDPPC growth.

Policy implications to achieve a circular economy. Economic
liberalization and other growth-oriented measures are not a
replacement for environmental policy. Economic growth depends
on inputs (environmental resources) to outputs (product waste)
(Arrow et al., 1995). EKC’s structure is determined by various
factors, including the economic institutions that govern human
activity. Only highly developed countries are expected to reach a
turning point. Policy management, control, and monitoring will
become increasingly important for long-term sustainable growth.
From 2016–2020, China’s yearly growth rate is predicted to be
less than seven percent (Zhang et al., 2016), a much slower pace
than in the previous three decades. The Chinese government’s
primary economic goal has switched from expansion to growth-
balancing economic activity and environmental protection.
Empirical evidence from EKC requires policymakers to under-
stand if economic and sustainable development are stirring
simultaneously.

An adequate waste management system will minimize
mismanaged waste and generate financial returns by recycling
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Fig. 4 EKC turning point for different control variables. The existence of EKC in industrial waste can also be checked graphically.
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and reusing materials. The Circular Economy can contribute to
several different SDGs. Continued efforts are needed in all
countries to improve waste collection, recycling, and reuse. The
sustainability bottleneck is necessary to respond to China’s
complexities and unique challenges of different waste flows.
Offering targeted incentives to the private sector and improving
national regulations are two factors that may contribute to
developing the legal and institutional structure for proper waste
management. Our findings help policymakers and academics
devise research methods and evaluate the recycling potential of
industrial waste.

Based on the preceding study, China’s industrial waste
management might employ many CE practices to help achieve
some SDG 12 goals. In the context of China, the responsible
management of chemicals and waste (Target 12.4), the reduction
of waste generation (Target 12.5), and the expansion of
technological capacity (Target 12.6) are being pursued. In
addition, lifecycle methods (Targets 12.4–12.6) and economic
and social challenges merit additional consideration in promoting
SDG 12. As an added measure, we must disseminate recycling
procedures and technology that eliminate chemical emissions
harmful to the environment. This would help get us closer to
target 12.4 ("By 2020, achieve environmentally sound manage-
ment of chemicals and all wastes throughout their life cycle.").
Urgent initiatives are required for the successful execution of the
Chinese Circular Economy Action Plan and the achievement of
UN SDG Target 12.4:

● Facilitate collaboration and involvement of all key actors
along the whole life cycle of chemicals and materials with
transparent supply chain management towards a unified

vision based on the 12 principles of circular chemistry at
the national, continental, and global levels.

● Implement funding for new technology research to assist
the industry in producing virgin and recycled industrial
waste efficiently suitable for a circular economy model.

● Waste must be included in future nexus studies to
understand better these ties, especially in feedback and
dynamics from interconnections between different SDGs.

● Focusing on SDG 13 (Climate Action) is crucial for
effective industrial waste recycling. According to Climate
Action Tracker, initiatives that invest in green energy
infrastructures, such as energy efficiency and low and zero-
carbon energy supply technologies, have the highest impact
on cutting emissions, regardless of whether the economy
recovers optimistically or pessimistically by 2030.

● Guarantee that everyone can access appropriate, safe,
affordable solid waste collection services. Often, uncollected
waste is dumped in waterways or burned in the open air,
resulting in direct pollution and contamination.

● Optimizing waste collection, source segregation, treatment
technology, and landfill diversion is vital. Using the
Internet of Things to manage and monitor waste saves
CO2 emissions. This will help mitigate climate change.

Here some policy suggestions are tentatively made. Green
development of traditional industries should focus on the
inherent requirements of "green, circular, and low-carbon"
development. Using the "polluter pays" principle, pollution fees
(taxes) are levied to increase non-green. Use the guiding role of
the capital market to build a green financial system. Briefly, China
should develop a plan to maximize the benefits of waste

Fig. 5 Recycling potential of industrial waste in the Chinese system. Recycling potential up to 2017 was calculated on collected data (Table S3). The
projected forecast is based on the current trend (followed by EKC downtrend). Future recycling capacity of industrial waste will be determined by a range
of socioeconomic factors that are difficult to predict.
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comprehensive utilization technology transfer and resource
recovery technology.

Limitations. Our analysis yielded novel insights into the sig-
nificant determinants of industrial waste and contributed to the
EKC’s analytical discussion. Due to the limitation of the original
data, the time series samples are only taken from 1993–2018

(and, for fewer cases, 2011–2018). Thus, the sample size is small;
the empirical analysis is often more relevant if we use quarterly
or monthly data. When additional data sets spanning many
years become accessible, we allow prospective studies to use
more extensive data sets covering a more extended period.
Additionally, we urge future experiments to use various expla-
natory variables and other techniques to account for time-
invariant characteristics.
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Fig. 6 A tornado diagram is used to compare the relative importance of factors. All unknown parameters are at their base values, as indicated by the grey
vertical line. The width of the bars represents the degree of uncertainty associated with each parameter (ranging from lower to upper limit). The blue
segments of the bars indicate result values that increase the base case. In contrast, the orange segments indicate result values that decrease the base case.
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plementary Information file.
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