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Eye in outer space: satellite imageries of container
ports can predict world stock returns
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Forecasting stock returns is challenging. Traditional economic data that are available to all
investors are published with lags and suffer from the problem of frequent revisions. Con-
sequently, they often fail to forecast stock returns. For this reason, investors are increasingly
interested in seeking alternative data. This paper forecasts stock returns using satellite-based
information on shipping containers, which can capture economic activity in real-time. The
container coverage area in each port is identified from 83,672 satellite images via the U-Net
method and used as a proxy for the number of containers. Forecast combination over uni-
variate predictive regression is used to generate return forecasts. The results indicate that the
number of containers in ports can significantly predict stock index returns in 27 out of 33
countries at a daily frequency for the 2019-2021 period. An investor making use of satellite
data on marine ports can, on average, receive an annualized return of 16.38%. The pre-
dictability can be explained by the predictive relationship between port container numbers
and economic activity. In future studies, satellite data can be applied to monitor and forecast

other economic indicators.
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Introduction

conomic theory holds that asset returns are functions of the

state variables of the real economy and that the real econ-

omy displays business-cycle fluctuations. If the quantity and
price of aggregate risk are linked to economic fluctuations, one
can expect return predictability to exist (Campbell and Shiller,
1988; Fama and French, 1989; Campbell and Cochrane, 1999).
However, in practice, forecasting stock returns remains notor-
iously difficult, although many economic variables have been
developed for this purpose in the literature. The predictors
examined include dividend-price ratio, dividend yield,
earnings—price ratio, dividend-payout ratio (Campbell and
Shiller, 1988), stock volatility (Guo, 2006), book-to-market ratio
(Kothari and Shanken, 1997; Pontiff and Schall, 1998), T-Bill rate
(Campbell, 1987), term spread (Fama and French, 1989), and
inflation rate (Fama and Schwert, 1977). Welch and Goyal (2008)
systematically examine the forecasting performance of popular
economic indicators in published papers and find no evidence
that any of them can significantly beat the no-predictability
model (historical average). Goyal et al. (2021) further confirm this
finding based on the reexamination of the forecasting perfor-
mance using new predictors developed in recent literature.

Apart from challenging modeling issues, there are three rea-
sons for the failure of macroeconomic data to forecast stock
returns. First, macroeconomic indicators such as the consumer
price index (CPI) and gross domestic production (GDP) are
always published with delays, even if the government data are
credible. Therefore, one has to execute real-time predictions of
future returns using lagged macroeconomic data instead of
current-period data. The use of lagged data undermines fore-
casting performance. Second, many macroeconomic indicators
undergo revisions after initial publication. Using unrevised data
in real-time biases the forecasting results. Third, traditional eco-
nomic data are publicly available, and there is virtually no cost
apart from basic data processing equipment to acquire the
information. When this new information enters the market, it is
instantaneously integrated into the price if the number of
investors trading on it is sufficient (Jensen, 1978). As a result, the
predictive value of announcement-based economic data is
extraordinarily short-lived due to its public accessibility. In
addition, macroeconomic data are published at monthly or
quarterly frequencies, making it difficult to forecast stock returns
at daily or weekly frequencies. Therefore, frequent data that
contain economic information that is not easily available through
simple searches in real-time can be expected to improve the
forecasting of stock returns.

Recent technological advances in artificial intelligence and big
data have revolutionized information collection. Hedge funds
have turned to satellite technology to gain a real-time information
advantage in understanding economic activity. They use satellite
imagery to obtain information on mines, ports, plantations, or
farmland before making investments. Several recently established
companies provide satellite-based forecasts of economic indica-
tors. For example, Orbital Insight, Planet Labs, Spire Global, and
Space Know track industrial facilities, real estate properties, foot
traffic activity, oil refineries, petrochemical plants, and auto
manufacturing centers to generate information about commercial
properties. In 2016, 70 of the 74 clients of Orbital Insight, the
biggest geospatial analytics company, were hedge funds (see
https://orbitalinsight.com). Institutional investors increasingly
attempt to glean investment insights from such imagery.

We use information from satellite images of container ports to
predict global stock market returns. Economic globalization
depends on the rapid and efficient movement of goods via con-
tainerization. Globally, 90% of non-bulk dry cargo is now shipped
by container. The number of containers at a port can be regarded
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as an indicator of macroeconomic information. The rationale is
that an increase in the number of containers stacked in the port
implies decreased demand for shipping service, and thus predicts
lower economic activity. Stock prices are expected to fall
accordingly. We extract real-time information from the Sentinel-
2 images for the top 48 container ports (as ranked by throughput)
from the European Space Agency (ESA).

Our database contains 83,672 temporally and spatially matched
multispectral daytime 10 m/pixel images from Sentinel-2 satel-
lites. The database covers the period from January 1, 2017, to
November 1, 2021. To segment the container areas, we train the
U-Net model (Ronneberger et al., 2015) with 3711 hand-labeled
images in 2017. In this way, we can obtain a series of container
coverage areas at a daily frequency for each of the 48 ports under
consideration. The container area series are used to predict daily
stock returns on 33 stock indices in major countries. Our results
indicate that the combined container area information reveals
significant return predictability for most of the 33 markets for the
period from 2019 to 2021. Investment strategies based on the
container information generate an economically considerable
profit, with an annualized return of 16.38% and a Sharpe ratio of
1.19. Extended analysis shows the close links between the pre-
dictive power of satellite-based data and the macroeconomy.

The ability of our satellite-based container information to
predict stock returns can be explained by its ability to anticipate
economic activity. Global marine trade links production activity
and the consumption of goods and is thus highly informative
about economic activity. We investigate the predictive ability of
the number of containers in relation to the growth of industrial
production. Our results suggest a negative predictive relationship
in 27 out of 28 countries at the horizon of four months, and this
predictive ability is statistically significant in 15 cases. The sig-
nificantly negative predictive relationship is also found when
regressing the world average growth rate of industrial production
on the past change in container numbers. The number of con-
tainers has a greater ability to predict industrial production
during the COVID-19 period, echoing the stronger return pre-
dictability after the pandemic.

We compare the information content of our satellite-based
container number data with popular shipping data, such as the
freight rates indicator (Kilian, 2009) and container throughput
(Dohrn and Maatsch, 2012; Dohrn, 2019; Kilian et al., 2021). We
find that the global number of containers significantly predicts
these two shipping indicators. Our data lead the traditional
indicators for the horizons of 2 months. The strong relationship
between our container indicator and existing indicators is not
affected by the COVID-19 pandemic.

The advantages of satellite imagery as a data source for eco-
nomic studies have been documented in the literature. Several
studies use satellite image data to measure economic variables
including GDP growth (Henderson et al, 2012), economic
inequity (Chen and Nordhaus, 2011), income distribution (Mirza
et al, 2021), sustainable development (Burke et al.,, 2021), and
rural household poverty (Jean et al, 2016; Watmough et al,
2019). Most of these studies use satellite data on a night light,
which makes it possible to compare economic activity across
different areas. For a single area, night light data show minor
variance over time, and thus they are not appropriate for time
series prediction analysis. Recent studies reveal that the satellite
imagery from Orbital Insight of parking lots can anticipate
retailer sales performance that is not yet announced and mute
price reactions to earnings announcements (Katona et al., 2018;
Zhu, 2019). Unlike these studies, which rely on ready-made
forecasts from commercial satellite companies, we build our own
database from public satellite data. This is an important
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Fig. 1 Global distribution of container ports. Location of top 48 container ports ranked by throughput (TEU) data in 2020 obtained from the Institute for
Shipping Economics and Logistics (ISL). TEU stands for the 20-foot equivalent container. The darkness of each point represents its throughput (units: 10

million TEUs), where the port with the higher throughput is darker.

difference because the high cost of commercial satellite data
makes them inaccessible to many retail investors. The return
predictability based on public satellite data is useful to many more
market participants and has stronger economic implications.

The application of satellite data is also found in a few finance
literature. Katona et al. (2018) use parking lot traffic signals
extracted from satellite imagery and find that unequal access to
satellite data increases information asymmetry among market
participants. Zhu (2019) finds that satellite-based estimates of
normalized car counts in parking lots of retailers predict earnings
that are not yet announced. Mukherjee et al. (2021) show that
after the introduction of satellite-based imagery data, oil price
responses to government announcements of oil inventory are
smoother. As a contribution, we directly show that the satellite-
based estimates of the number of containers predict world stock
returns, enriching the literature on the application of satellite data
in empirical asset pricing studies.

The remainder of this paper is organized as follows: Section
“Data” shows the details of satellite data processing and the stock
returns data. Section “Forecasting results” reports the forecasting
results. The section “Understanding the source of return pre-
dictability” gives some explanations about the source of return
predictability. Section “Discussion” performs discussions on the
application of satellite data. The last section concludes the paper.

Data

The identification of containers in ports. We collect publicly
available and freely distributable satellite imagery from the Sentinel-2
mission. The dataset consists of 83,672 RGB images of 48 major ports
from January 1, 2017, to November 1, 2021. Figure 1 provides the
global distribution of those container ports. The details about satellite
imagery processing and model training are given in Appendix.

The identification of containers in the ports can be treated as a
semantic binary segmentation task, which is an increasingly
popular domain in computer vision. A semantic binary
segmentation task takes an image as input and outputs binary
classification results for each pixel in the image. In this task, the
two classes are “container” and “non-container.” Note that
containers are usually stacked in several layers to save floor space.
However, the number of layers cannot be recognized precisely
from the Sentinel-2 satellite images due to the limitation of

resolution. We arbitrarily assume that different container stacks
have the same number of layers. In this way, we count the
number of pixels in each satellite image that are classified as
“container” and take this as the proxy of the number of
containers in the port. Changes in the number of containers
can reflect the dynamics of global economic activities.

Specifically, we use U-Net (Ronneberger et al, 2015), a
conventional deep-learning model for semantic segmentation
tasks, to identify containers from satellite images. As a variant of
convolutional neural networks (CNN), U-Net uses a unique
U-shaped architecture and skip connections to capture multi-
scale contour information. U-Net has been shown to be efficient
in cell segmentation tasks (Ronneberger et al., 2015). After
multiple iterations and improvements (Dolz et al., 2018; Zhou
et al., 2020), it shows excellent performance in medical imagery
semantic segmentation tasks like CT pancreas segmentation
(Oktay et al., 2018) and cancer detection (Huang et al., 2021). In
recent years, U-Net has become a major image segmentation
method in various research areas, especially satellite image
segmentation. For example, researchers have used U-Net to
locate photovoltaic solar energy-generating units from space
(Kruitwagen et al., 2021) and to forecast seasonal arctic sea ice
(Andersson et al., 2021).

We construct a unique training set for our U-Net model.
Traditional satellite or aerial data set image semantic segmenta-
tion tasks rely on precise standard datasets. For example, the
Massachusetts roads data set provides images covering more than
2600 square kilometers and precisely labels the shape of every
road in each image. However, because of the lack of research into
container identification in satellite images, a standard dataset for
container recognition is not yet available. Therefore, it is
necessary for us to reconstruct a dataset oriented toward our
task. Specifically, we pick out all Sentinel-2 satellite images in
2017, the earliest year in our dataset. After abandoning images
with 5% or greater cloud coverage, we label the remaining 3711
images by hand. We identify “container” or “non-container”
areas of each image, and use this as our dataset for U-Net model
training. As we use data from 2017 to train the model, and then
identify images and predict stock returns after that period, this
procedure avoids forward-looking bias due to the application of
future information.
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Table 1 Experiment results of the U-Net model.

Input size Number of Accuracy Recall F-score
convolution
layers

120*120 8 0.717 0.809 0.760
13 0.713 0.828 0.766
18 0.714 0.821 0.763
23 0.718 0.871 0.787

240%240 8 0.785 0.847 0.814
13 0.791 0.879 0.832
18 0.787 0.860 0.821
23 0.780 0.840 0.808

480*480 8 0.930 0.958 0.944
13 0.952 0.956 0.954
18 0.959 0.948 0.953
23 0.955 0.961 0.958

600600 8 0.848 0.863 0.855
13 0.841 0.841 0.840
18 0.839 0.859 0.848
23 0.831 0.883 0.855

This table compares the model performance under different groups of hyperparameters,

including the input size of images and the number of convolution layers. The accuracy, recall,

and F-score are evaluated through 10-fold cross-validation.

Bold values represents the maximum value achieved under the corresponding criterion.

We train different U-Net models to find the one that best fits
our task by selecting two hyperparameters: the size of input
images and the depth of the network. First, given the convolution
kernel size (normally 3 x 3), the input size of images influences
the perception ability of the convolution kernel. Second, the
depth of the network, which is usually referred to as the number
of convolution layers in U-Net, determines the level of contour
information that can be used in the model. A deeper layer
generally corresponds to a higher level of information. Table 1
shows the analysis results of those two hyperparameters. We find
that the highest identifying accuracy is achieved when inputting
medium-size images (480 x 480 pixels) to a deeper network
structure (23 convolution layers). The preference for deep layers
echoes the simplicity of the container stack shape because a
deeper network leads to a better capacity for abstraction, which
works best when the object contour is simple. Finally, our selected
model for identification achieves 93.20% accuracy, 92.45% recall,
and 92.81% F-score in the testing set, demonstrating good
performance.

We then measure the container coverage areas, which are our
proxy for container numbers, from each image based on our
training model. It is essential to evaluate if our model performs
consistently for each image. Thus, we visualize and analyze the
global spatial distribution change in the number of containers over
time for a better understanding of model performance in practice.
A simple test is to see whether the identification results for the
spatial distribution of containers in 2017 look similar to the true
spatial distribution in that year. If so, we can conclude that the
model performs consistently well. We do another test using the
exogenous shock caused by COVID-19. Ports in the United States
faced severe congestion due to COVID-19 (Meeks et al., 2021), as
a lack of truck drivers and other laborers caused a huge number of
containers to pile up. If our model performs well, it will capture a
significant growth in the number of containers in 2021.

Figure 2 shows the identification results of our U-Net model
for the Port of Los Angeles, the largest port in the United States.
The first column introduces the Sentinel-2 satellite image, and the
yellow areas indicate seven subregions of the container port. The
subgraphs in the second column show the container distribution
in the training set in 2017, in which the color of each pixel
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indicates the percentage of pixels classified as “container”; a
brighter color represents a higher percentage. The third to last
columns show the recognition results for our model from 2017 to
2021. The results of the two tests can be found in Fig. 2. First, the
similarity of the second and third columns reveals the consistency
of the training labels and recognition results. Second, the
abnormal growth in the number of containers in 2021, as shown
in the last column, is consistent with the port congestion in 2021
(Meeks et al.,, 2021). Both pieces of evidence demonstrate the
stability of our model.

To predict the stock market return, we calculate the daily
average change in the number of containers in the ports (GNC),

which is defined as GNC,, :w, where NC;,
represents the number of containers in port i at time ¢, and s
represents the most recent date before time t for which cloud-free
(clear) satellite imagery is available. Dividing the log difference by
t—s is used to standardize the daily change in the number of
containers, which eliminates the influence of the uneven
distribution of observations over time. Intuitively, an increase
in GNC indicates higher port congestion and lower trading
volume, which heralds future economic downturn and predicts
lower stock returns.

Stock returns data. Our dataset of international stock returns is
related to 33 market-level indices from 28 countries, including 18
developed markets and 12 emerging markets. We collect the daily
stock returns from January 2017 through November 2021 from
the Wind Database. Table 2 presents the details of the stock index
under consideration.

We recursively generate daily stock returns from January 2019
through November 2021, and therefore the data from January
2017 through December 2018 are used as the initial estimation
sample. The selection of this initial estimation sample involves a
trade-off. On the one hand, we require more initial data to get a
more reliable regression estimate in the process of computing the
first return forecast. On the other hand, we also require a longer
out-of-sample evaluation period to obtain a more accurate
evaluation result. As a compromise, we select 40% of the data
as the initial estimation sample. In this way, our out-of-sample
period covers January 2019 through November 2021, which spans
periods both before and after the COVID-19 pandemic. To check
the robustness of our results to the sample selection, we re-
examine the forecasting performance using an alternative initial
estimation sample from January 2017 to December 2017. The
results are shown in the online appendix.

Stock indices trade in different time zones. Due to such
consideration, for each stock index, we convert the Sentinel-2
image UTC time to the local time to match the data. We use the
satellite imagery available within 24h before closing time to
predict the close-to-close return on the next business day, which
avoids the introduction of forward-looking information.

Competing shipping indicators. We investigate the linkages
between our container number index and existing shipping
indicators including the container throughput index and baltic
dry index (BDI). Although these indexes are published with lags,
they can well capture global economic activity (Kilian, 2009).
Figure 3 plots the global number of containers (GNC) index, BDI,
and the container throughput index (RWI_ISL). We can observe
that the GNC index changes inversely with competing shipping
indicators.

Forecasting results
Forecasting procedure. Following the majority of papers on
return predictability, we assume a linear relationship between the
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Fig. 2 Container recognition results for Port of Los Angeles. The first column shows satellite images at 7 different parts of Port of Los Angeles (LA) and
the yellow areas indicate the container yards. The second column is the ground truth of containers’ spatial distributions in 2017, labeled by hand. The
brighter color of pixels means a higher container frequency in one specific year, and the annual average frequency is marked at the bottom of each diagram.
Container recognition results by U-Net are shown from the third column to the last column, representing results from 2017 to 2021, respectively.

GNC and the stock index return (Goyal and Welch, 2003; Welch
and Goyal, 2008). The specification of predictive regressions for
stock returns on the lagged predictor variable of interest can be
written as follows:

=X, P+et=1.,T—h (1)

where 7., represents the average daily continuously com-
pounded stock returns in excess of the risk-free rate from time ¢
to t+h; X, represents a vector that consists of a return predictor
and an intercept; and &, is the error term, ¢, ~ i.i.d. (07 0?). The
parameter estimates of the predictive regression can be simply
obtained via ordinary least squares (OLS). As investors do in
practice, we execute one-step-ahead forecasting to generate out-
of-sample return predictions. Specifically, the return forecasts
from univariate predictive regression can be written as follows:

()

where ﬁt is the parameter estimates of  using the information
T};H on the {x, :_h to
obtain parameter Bt via the OLS method. The parameter esti-
mates are updated at each point in time for ¢ > M using extending
windows, where M denotes the initial sample length to execute
parameter estimation.

Next, we integrate multiple informations from the global ports
by pooling the individual return forecasts. It has been shown that
combining forecasts is an effective method for extracting
information from high-dimensional predictors in economic
forecasting (Timmermann, 2006). Forecast combinations use
the weighted average of forecasts from individual models, as given

by

Fn=XPot=M, ... T—h

until time ¢ At time ¢, we regress {r

t=M, .., T—h (3

where 7, ; denotes the forecasts from model i, 7, ; is the ex-ante

~ N ~ ~
Tt th,comb = e Ty hiltrh,io
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weight assigned to model i formed at time k, and N is the number
of predictive models. In this paper, we consider an equal-
weighted mean combination, which uses equal weight
T,.n; = 1/N. Although this weighting scheme is simple, recent
empirical and simulation studies have shown that it is not
necessarily outperformed by more sophisticated combinations
(Smith and Wallis, 2009; Claeskens et al., 2016). Note that this
paper focuses on plain OLS forecasting techniques and a naive
combination strategy, in the interest of straightforwardly testing
the predictive power of the new GNC indicator.

Statistical predictability. We examine whether satellite-based
container data are helpful in predicting global stock market
returns out-of-sample. The out-of-sample forecast at time t + 1 is
made using the data available up to time . The out-of-sample R?
(R%.¢) is used to evaluate the forecasting performance, defined as
follows:
st (r — ?t)z
T —\2
e=en (e —7)
where 7, is the return forecast, 7, is the prevailing mean forecast,
and r, is the realized return at time t. Therefore, R ¢ quantifies
the reduction of the forecasting loss of the given model relative to
the forecasting loss of the benchmark model. A positive R g
implies that the given model outperforms the benchmark model.
We use the common benchmark of the historical average, which
is typically hard to beat (Welch and Goyal, 2008). The statistic
developed by Clark and West is applied to test the statistical
significance of return predictability (Clark and West, 2007).
Figure 4 plots R% ¢ values of the equal-weighted forecast
combinations using univariate predictive regression with the
change in container numbers in each of the 48 ports. The
combination model that aggregates information from global ports
dominates the no-predictability benchmark of the historical

2
Roes =1—

4)
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Table 2 International stock index.

Abbreviation Stock index Country Time zone

AEX Amsterdam Exchanges Index Netherlands Europe/Amsterdam
ATG Athens General Composite Index Greece Europe/Athens

ATX Austrian Traded Index Austria Europe/Vienna

BFX BEL 20 Index Belgium Europe/Brussels
FCHI CAC 40 Index France Europe/Paris

FTMIB FTSE MIB Index Italy Europe/Rome

FTSE FTSE 100 Index United Kingdom Europe/London
GDAXI DAX Performance-Index Germany Europe/Berlin

IBEX IBEX 35 Index Spain Europe/Madrid
OMXSPI OMX Stockholm PI Sweden Europe/Stockholm
OSEAX Oslo SE All-share Index Norway Europe/Oslo

PSI20 Euronext Lisbon PSI Index Portugal Europe/Lisbon

RTS Russian Trading System Index Russian Federation Europe/Moscow
SSMI Swiss Market Index Switzerland Europe/Zurich
XU100 Borsa Istanbul 100 Index Turkey Europe/Istanbul
WIG30 Warsaw SE WIG 30 Index Poland Europe/Warsaw
SSEC Shanghai SE Composite Index China Asia/Shanghai
BSESN S&P BSE Sensex Index India Asia/Calcutta
CSI300 Shanghai Shenzhen CSI 300 Index China Asia/Shanghai

HSI Hang Seng Index China Asia/Shanghai

KLSE FTSE Bursa Malaysia KLCI Index Malaysia Asia/Kuala Lumpur
KST KOSPI Composite Index South Korea Asia/Seoul

N225 Nikkei 225 Index Japan Asia/Tokyo

STI Straits Times Index Singapore Asia/Singapore
TASI Tadawul All Share Index Saudi Arabia Asia/Riyadh
COLCAP MSCI COLCAP Index Colombia America/Bogota

DJI Dow Jones Industrial Average Index United States America/New York
GSPC Standard & Poor's 500 Index United States America/New York
GSPTSE S&P/TSX Composite Index Canada America/Toronto
IXIC NASDAQ Composite Index United States America/New York
MXX IPC MEXICO Index Mexico America/Mexico City
JTOPI South Africa Top 40 Index South Africa Africa/Johannesburg
AORD All Ordinaries Index Australia Australia/Sydney
This table reports the abbreviation and basic information of international stock indices used in this paper. Our dataset contains 33 market-level indices from 28 countries, including 18 developed markets
(Australia, Austria, Belgium, Canada, France, Germany, Italy, Japan, the Netherlands, New Zealand, Norway, Portugal, Singapore, Spain, Sweden, Switzerland, the United Kingdom, and the United States)
and 12 emerging markets (China, Colombia, Greece, India, Malaysia, Mexico, Poland, Russia, Saudi Arabia, South Africa, South Korea, and Turkey).

average at horizons of up to 5 days. Specifically, at the horizon of
1 day, we observe positive R ¢ in all markets, and 27 of these
values are statistically significant at the 10% level. The average
daily R% ¢ of 33 markets can reach 0.0529%. This powerful
predictive ability can also be seen for longer forecasting horizons.
The R2 ¢ values are positive in all cases, with average magnitudes
of about 0.05%. The long-horizon predictability suggests that the
information from satellite imagery cannot be absorbed into the
price immediately but is digested slowly.

We carry out statistical inference by testing whether the given
model forecasts yield significant improvements over the bench-
mark forecasts. The asymptotic statistics suffer from the problem
of small-sample bias. In addition, they may have the wrong size
even when small-sample bias is considered. Due to such
considerations, we follow Mark (1995) in using a bootstrap-
based Diebold and Mariano (1995) statistic to examine the
significance of the forecasting improvement. Specifically, we
execute statistical inference using a stationary bootstrap proce-
dure from Politis and Romano (1994) under the null hypothesis
that the equity premium is unpredictable. The Diebold and
Mariano (1995) (DM) statistic for testing equal predictive ability
between the given model and benchmark model is given by

DM = I
Sf[
Ny

't

(©)

_ . N2 ~
where f, = NLﬂpr S, = Niﬂ (ft —ﬁ) and f, = (r, — rt)z —
(7, — rt)z. The number of resamples is set as 2000 when
bootstrapping, and the block length is optimally estimated from
the data using the selection procedure of Patton et al. (2009).

As shown in Table 3, we find that the forecast improvement of
the GNC model is statistically significant for most cases after
accounting for size distortion. The bootstrap-based DM tests
show a significantly positive R ¢ at the 10% level for 29 of 33
markets at the horizon of one day. This finding holds for longer
forecasting horizons. Overall, the forecast improvement of the
GNC model is consistent across different time periods and is
insensitive to sample size distortion.

We further use an alternative evaluation, success ratio (SR),
which measures how often the model generates forecasts with the
correct sign. The criterion is given by

1 T R 2
SR= o el =1 <(n ~Fimoda) < r?)

(6

The SR criterion is less sensitive to the R3¢ metric. The PT test
(Pesaran and Timmermann, 2009) is used to examine whether
the success ratio of each model is significantly >50%. Figure 5
exhibits the corresponding results. We find that the combined
information from individual ports correctly predicts the sign of
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Fig. 3 The global number of containers index. GNC represents the global number of containers calculated by summing the numbers for all 48 ports. For
comparison, we also plot the baltic dry index (BDI) and container throughput index collected by the Leibniz Institute for Economic Research (RWI) and the
Institute for Shipping Economics and Logistics (ISL). The data are min-max normalized between O and 1.

the change in the market index more frequently than tossing a
coin in most cases. The success ratios are higher than 0.5 in the
case of 27 markets for the forecasting horizon of one day, and 23
of these values are significant. The models are also more
successful when predicting the direction of change than a
random-walk benchmark at longer horizons, although the
directional predictability is slightly weakened.

Forecasting performance over time. We check the predictive
power of container data over time. A concern is that the model
cannot consistently beat the benchmark but only show pre-
dictive ability during short periods. To address this issue, we
calculate the cumulative sum of squared prediction error dif-
ference (CSSED) proposed by Welch and Goyal (2008), defined
as follows:

CSSEDmodel,t = E'tr:M+h (eﬁench,r - e?nodel,r)’ t=M+ h’ LR T
)

where epench,r and enode,, denote time 7 forecast errors asso-
ciated with the historical average benchmark model and the
given model, respectively. The CSSED measure has become a
standard indicator in the finance literature for evaluating out-of-
sample return predictability (Goyal et al, 2021). The CSSED
curve can illustrate whether a model of interest produces more
accurate return forecasts than the benchmark model for any
given evaluation period by redrawing the horizontal zero line to

the beginning of the out-of-sample period. Intuitively, when the
forecast generated from the given model outperforms the fore-
cast generated from the benchmark model at time ¢+ 1, the
CSSED increases from time ¢ to t+ 1.

Figure 6 plots the CSSEDs of the combined GNC models relative
to the historical average benchmark. At the horizon of 1 day, all the
curves have slopes that are predominantly positive, suggesting that
the forecasts conditional on the number of containers consistently
outperform the prevailing mean benchmark over time. At longer
horizons, the CSSED curves are also positively sloped and have less
frequent falloffs. The smoother line illustrates the higher robustness
of the predictive power of the container information in forecasting
long-term returns. More importantly, we find an interesting
pattern in all markets, in that the CSSEDs jumped upward during
the global depression caused by COVID-19, especially in the
American and European markets. The evidence indicates much
stronger return predictability during the COVID-19 recession.

The better performance of the container indicators during the
COVID-19 period can be linked to the supply disruptions caused
by friction in the container shipping market. The COVID-19
pandemic produced a historic global crisis. To prevent an
outbreak, many countries went into lockdown and imposed
unprecedented containment measures. These led to unexpected
frictions in container shipping markets, such as port congestion,
shipping delays, or shortages along the supply chain, which
seriously reduced economic activity. These frictions increased
suddenly in early 2020, as the pandemic spread across China and
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Fig. 4 Forecasting performance evaluated by out-of-sample R-square. This figure plots the scatter of the out-of-sample R-square for different stock

market indexes. The forecast quality is evaluated by the out-of-sample R2 (Réos) defined by the percent reduction of mean squared prediction error of the
given model relative to the benchmark model of historical mean, R3¢ =1—>1_y., (1 — Pt)Z/ZLM+h (re— Ft)z, where 7, T, and r; are the return forecasts
from the model of interest, prevailing mean forecasts and the realized returns, respectively. The full sample period is from 2017-01-01 through 2021-11-01
and the out-of-sample period starts on 2019-01-01 (i.e., M = 500). We multiply the RéoS by 100 to denote percentage values. We measure the statistical
significance relative to the prevailing mean model using the Clark and West (2007) test statistic. The cases significant at 10% level are highlighted in red.

then the rest of the world; lockdowns disrupted global supply
chains and reduced the volume of container shipping.

Figure 3 exhibits a sharply increasing number of containers
stacked in port, implying blocked shipping capacity. Unexpected
shocks along supply chains prevent demand from being realized,
particularly for durable goods (Notteboom et al, 2021). For
example, the U.S. domestic demand component of overall goods
consumption dropped approximately 20% in early 2020, and
durable goods consumption dropped more than 30% (Kilian
et al, 2021). Kilian et al. (2021) show that the primary
determinant of the economic contraction in developed countries
in early 2020 was the sharp drop in domestic demand. In
contrast to the Great Recession, the change in consumption
played a more important role in determining real economic
activity during the COVID-19 crisis period. Using data on
container trade volume in North America, Kilian et al. (2021)
provide quantitative evidence of the impact of friction in the
container shipping market on the real economy during the
COVID-19 crisis. They find that these frictions led to an abrupt
drop in container trade, triggering an economic recession in the
U.S. in March 2020. Furthermore, they find that the recovery of
North American container trade in late 2020 was substantially
driven by lower frictions in the container shipping market rather
than by a recovery of U.S. import and export demand. Figure 6
shows a pattern in which the forecasting performance of the
satellite-based container indicator improves during the COVID-
19 pandemic. The CSSED curves jump for most stock market
indices in March 2020, echoing the effects of shocks to container
market frictions on economic activities.

We find that the CSSED jump is more prominent in the U.S.
and European markets. This finding can be explained by the
heterogeneous effects of lockdown policies on different
countries. Starting in mid-January 2020, China implemented
an unprecedented series of national lockdown policies to
contain the spread of the virus. Because of the interconnected
global shipping network, the local shock in China propagated to
other regions and became a global shock. Bai et al. (2022) use
data derived from the Automatic Identification System to
quantify the impact of pandemic lockdown policies on global
port calls. They find that in February 2020, container shipping
at ports with high levels of connectivity to Chinese ports was
significantly affected by Chinese lockdown policies, with a time
lag of two to three weeks, depending on the voyage duration of
a container ship. The effects of China’s lockdown on close
neighbors were less serious than the effects on highly connected
ports in distant regions. As a result, in mid-March 2020,
significant supply chain breaks occurred in European and
American ports but not in Asian ports. The unexpected
frictions in container shipping markets caused a sharp drop
in domestic demand in these countries, which explains the
jump in return predictability revealed by the satellite-based
container indicator.

Economic significance of return predictability. While the con-
tainer number data show statistically significant return predict-
ability, investors are more concerned about whether they can
generate economic gains. Following the literature (Welch and
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Table 3 Forecasting improvement significance evaluated by bootstrap-based Diebold-Mariano (1995) statistic.

h=1 h=2 h=3 h=4 h=5
AEX 0.003*** 0.028** 0.006*** 0.001*** 0.030**
ATG 0.035** 0.190 0.090* 0.184 0.154
ATX 0.035** 0.075* 0.051* 0.008*** 0.072*
BFX 0.004*** 0.002*** 0.007*** 0.000*** 0.009***
FCHI 0.001*** 0.021** 0.002*** 0.000*** 0.009***
FTMIB 0.062* 0.038** 0.014** 0.014** 0.067*
FTSE 0.020* 0.057* 0.003*** 0.001** 0.008***
GDAXI 0.044* 0.073* 0.006*** 0.008*** 0.129
IBEX 0.084* 0.061* 0.040** 0.009*** 0.060*
OMXSPI 0.012** 0.052* 0.006*** 0.003*** 0.035*
OSEAX 0.009*** 0.368 0.043** 0.003*** 0.178
PSI20 0.099* 0.121 0.022** 0.022** 0.101
RTS 0.033** 0.023** 0.009*** 0.006*** 0.024**
SSMI 0.053* 0.024** 0.010*** 0.021* 0.157
XU100 0.191 0.033** 0.008*** 0.002*** 0.003***
WIG30 0.066* 0.103 0.005*** 0.004*** 0.007***
SSEC 0.014** 0.037** 0.067* 0.049** 0.041**
BSESN 0.142 0.049* 0.443 0.066* 0.015**
CSI300 0.005** 0.047** 0.114 0.068* 0.045**
HSI 0.001*** 0.144 0.014** 0.002*** 0.003***
KLSE 0.051* 0.122 0.120 0.007*** 0.007***
KS1 0.136 0.252 0.147 0.006*** 0.103
N225 0.041** 0.066* 0.073* 0.088* 0.257
STI onz 0.004*** 0.010** 0.001*** 0.000***
TASI 0.041** 0.023* 0.038** 0.058* 0.139
COLCAP 0.096* 0.001*** 0.013** 0.001** 0.004***
DJI 0.000*** 0.099* 0.015** 0.001*** 0.001***
GSPC 0.000*** 0.086* 0.037** 0.007*** 0.021**
GSPTSE 0.056* 0.355 0.234 0.002*** 0.006***
IXIC 0.003*** 0.183 0.172 0.037* 0.095*
MXX 0.044** 0.235 0.139 0.025** 0.108
JTOPI 0.005*** 0.071* 0.002*** 0.000*** 0.005***
AORD 0.017** 0.214 0.041** 0.004*** 0.020*
Amount of significant DM statistics 29 22 26 32 24
This table reports the p-value of the statistical significance of the satellite-based container model relative to the prevailing mean model using a bootstrap-based Diebold and Mariano (1995) statistic. We
draw inferences by using a stationary bootstrap produce of Politis and Romano (1994) under the null hypothesis that the equity premium is unpredictable. The number of resamples is set as 2000 when
bootstrapping, and the block length will be optimally estimated from the data use the selection procedure of Patton et al. (2009). The sample period covers from 2019:01 to 2021:11. The asterisks ***, **,
and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. The last line reports the amount of cases significant at the 10% level.

Goyal, 2008; Rapach et al, 2010), we consider a risk-neutral
investor who executes zero-investment strategies that invest in a
risky asset (stock market index) financed with bills or in a risk-free
asset (bills) financed by shorting the stock index. A popular
benchmark is the unconditional investment strategy, namely buy-
and-hold, in which the investor holds the stock index all of the
time and only earns the equity premium itself. Although the buy-
and-hold approach is naive and no-timing, it is rarely dominated
by sophisticated timing investment strategies conditional on var-
ious indicators, as identified in previous papers (Goyal et al., 2021).

In contrast, if the investor has information regarding the
number of containers, he/she can seek time investments. In order
to achieve a more realistic performance of our portfolio strategy,
we start trading with a day lag, when the satellite information is
available to investors. Here, we test the economic predictability of
the number of containers, and whether it can generate higher
returns than the naive buy-and-hold strategy. Specifically, we
consider two timing strategies, tilted and untilted ones, according
to the return forecasts. The untilted investment strategy invests in
the market index using money financed by bills when the market
is expected to be bullish, but shorts the market index and saves
money in bills when it is expected to be bearish. This strategy
judges market trends based on whether the return forecasts are
above or below the historical average. Unlike the untilted strategy,
the tilted strategy switches from long stocks to short only if the

signal is very bearish, at the 25th percentile rather than the mean.
The weight assigned to the risky asset is scaled according to the Z-
score specification for both timing strategies. The forecast at a
given time subtracts the prevailing mean (untilted) or first
quartile (tilted) of the forecasts and then divides by the prevailing
standard deviation. These two strategies earn the same as the
unconditional strategy when the forecast is bullish, but the
opposite when the forecast is bearish.

Table 4 reports the mean return and Sharpe ratio for the three
investment strategies: buy-and-hold, tilted, and untilted. We find
that both of the timing strategies that are conditional on return
forecasts based on the number of containers can beat the
benchmark of the buy-and-hold strategy. The untilted timing
strategy outperforms the naive strategy in 26 of 33 markets, with a
mean return of about 14.85% per year and annual SR of 1.16,
almost double the mean and SR of the benchmark strategy. The
titled timing strategy shows even better performance and
outperforms the naive strategy in 30 of 33 markets, with an
annualized return of 16.38% and SR of 1.19. Overall, the return
predictability revealed by the number of containers is economic-
ally meaningful and profitable.

Understanding the source of return predictability
A comparison with existing shipping data. The satellite-based
container number data can predict returns because they are
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Fig. 5 Forecasting performance evaluated by directional accuracy. The forecast quality is evaluated by success ratio (SR) defined by how often the model

2
generates forecasts with the correct direction, SR=1/(T =M —h+1) ZLMM I, Iy = I<(rt - Pt‘model) < rf) where 7, ;.40 @and r; are the return forecasts

from the model of interest and the realized returns, respectively. The full sample period is from 2017-01-01 through 2021-11-01 and the out-of-sample
period starts on 2019-01-01 (i.e., M = 500). We measure the statistical significance using the Pesaran and Timmermann (2009) test statistic. The cases

significant at the 10% level are highlighted in red.

forward-looking with regard to economic activity. A natural
question is whether these data are more accurate than other types
of shipping data used to measure economic activity, such as the
freight rates indicator (Kilian, 2009) and container throughput
(Dohrn and Maatsch, 2012; Doéhrn, 2019; Kilian et al., 2021). If
the answer is no, our container data are meaningless.

Intuitively, on the premise that the total amount of containers
in economic production is time-invariant in the short term, a
larger number of idle containers stacked in the yard means fewer
containers in the maritime logistics supply chain. Thus, an
increase in the number of containers in the port implies reduced
demand for shipping services. We first test this hypothesis by
checking the predictive relationship between the number of
containers in the port and the container throughput. The
specification of the model is given by

ARWIISL,,, = a + B,AGNC, + B,ARWIISL, +¢,.,  (8)

The dependent variable RWI_ISL is the h-month change in
container throughput, measured by the container throughput
index. GNC; is the aggregate number of containers over all 48
ports under consideration. It is a global trade indicator collected
by the Leibniz Institute for Economic Research (RWI) and the
Institute for Shipping Economics and Logistics (ISL) and includes
information from the 82 biggest ports in the world that handle
around 60% of global container throughput. The RWI_ISL index
is highly correlated with global trade measures in processed goods
and is a leading indicator of industrial production (D6hrn and
Maatsch, 2012; Dohrn, 2019). The explanatory variables include

10

the lagged growth rate of the number of containers and the
growth rate of container throughput.

We test the link between the number of containers and freight
rates using the following equation:

ABDI,,, = a + ,AGNC, + B,ABDI, +¢,,, ©9)

The dependent variable is the baltic dry index (BDI), which is a
good proxy of global real economic activity in industrial
commodity markets. The increase in economic activity boosts
demand for shipping services, causing freight rates to grow (Kilian,
2009). Similarly, the explanatory variables are the lagged growth
rate in container numbers and the lagged dependent variable.

Table 5 reports the regression results at horizons of
1-4 months. The significance of the coefficients is shown by
the t-statistics based on heteroscedasticity-robust standard errors.
The explanatory variable AGNC, is standardized. The slope
coefficient of AGNC, is significantly negative for both predictive
regressions at the horizon of 2 months. A one standard deviation
increases in AGNC, is associated with a 27.2% decrease in
container throughput changes and a 26.1% decrease in baltic dry
index changes. This indicates that satellite-based information
leads the traditional shipping indicators.

Predictive ability for real economic activity. The motivation for
using port imagery to predict stock market returns comes from the
close link between container shipping trade and the real economy.
Maritime transport is the backbone of the global economy
(McConville, 1999; Kilian, 2009; Branch and Stopford, 2013).
Because 90% of the world’s non-bulk dry cargo is shipped in
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containers, container trade volume is considered an appropriate
measure of economic activity. Several studies have shown that
container trade volume is a leading indicator of global or regional
industrial production (Déhrn and Maatsch, 2012; Déhrn, 2019;
Michail, 2020; Kilian et al., 2021). According to the dividend dis-
count model, asset returns are driven by time-varying discount rates,
which are functions of the state variables of the real economy
(Rapach and Zhou, 2013). Therefore, economic variables that
measure or predict the state of the economy are useful for predicting
returns (Fama and French, 1989; Campbell and Cochrane, 1999;
Cochrane, 2007, 2011). Thus, we expect that container shipping
trade volume can forecast stock returns if it measures economic
activity well. However, shipping trade data are not available in real-
time and are always released with a one- or two-month delay
(D6hrn and Maatsch, 2012). Fortunately, the satellite-based techni-
que provides an innovative information acquisition channel, through
which the information can be incorporated into prices before the
government’s announcement (Mukherjee et al,, 2021).

We construct a real-time container shipping trade indicator
based on port satellite imagery. In general, an increase in the
number of containers at a port is a sign of port inefficiency, which
is typically caused by congestion in transportation over urban
roads, railways, and waterways (Talley, 2006). Such frictions in
the container shipping markets restrict the container shipping
trade. Although the literature reveals a relationship between
container shipping volume and domestic demand, few studies
directly link the number of containers in the yard to consump-
tion. In contrast, the number of containers measures idle
transport capacity, which is negatively related to container
shipping volume. For this reason, we test whether the number
of containers can anticipate real output growth. The motivation

for our test is that the global marine trade links the production
activity and consumption of goods and is a key node for
monitoring economic activity. Therefore, the predictive ability of
the number of containers may come from its prognostication of
the real economy.

We create our macroeconomic growth forecasts using the
following autoregressive distributed lag model:

ARIP,,, = a+ B,AGNC, + B,ARIP, +¢,,, (10)
where RIP,,}, is the growth rate of industrial production during
the period t+h. The set of right-hand-side predictors includes the
growth rate in the number of containers in the ports (AGNC,)
and the one-month lagged dependent variable (ARIP,, ;) used
to accommodate autocorrelation.

Table 6 reports the regression results for 28 countries with
horizons from 1 to 6 months. The last row of the table shows the
results for the average growth rate of industrial production
across these countries. It is evident that the number of
containers can negatively predict the growth of industrial
production in 27 out of 28 countries at the horizon of 4 months.
In particular, 15 of the correlations show statistical significance
at the 10% level. Consistent results are obtained when regressing
the average growth rate of industrial production on the change
in container numbers. Overall, we conclude that the link
between the number of containers in ports and global real
economic activity has a major role in the predictive ability of
container numbers.

To shed light on the underlying economic mechanism, we now
focus on the predictive ability of the satellite-based container
indicator around the outbreak of COVID-19. In Table 5, we find
that our satellite-based container indicator can negatively predict
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shipping indicators such as the freight rate indicator of Kilian
(2009) and the container throughput indicator of Déhrn and
Maatsch (2012). We investigate whether the negative predictive
relationship demonstrates structural breaks around the COVID-

Table 4 Portfolio performance of the number of containers.

Buy-and-hold Untilted Tilted strategy

strategy

Mean SR Mean SR Mean SR
AEX 14.20 0.74 17.27 1.50 20.17 1.55
ATG 12.70 0.48 13.59 0.77 15.38 0.81
ATX 9.00 0.38 17.19 1.05 18.41 1.06
BFX 7.40 0.33 27.31 1.89 28.53 1.84
FCHI 10.30 0.48 19.30 1.50 21.00 1.49
FTMIB 1.20 0.48 17.52 1.28 19.24 1.30
FTSE 1.60 0.09 13.42 1.03 13.69 1.00
GDAXI 12.00 0.56 16.27 1.23 18.47 1.27
IBEX 0.60 0.02 13.63 0.92 13.69 0.87
OMXSPI 18.90 1.02 18.48 1.64 21.23 1.75
OSEAX 1.10 0.62 6.39 0.51 8.43 0.63
PSI20 4.90 0.25 10.05 0.83 10.90 0.82
RTS 15.70 0.66 25.35 1.52 28.42 1.54
SSMI 10.90 0.68 14.39 1.56 16.1 1.59
XU100 8.80 0.64 20.34 1.40 22.24 144
WIG30 2.40 0.13 12.29 0.79 12.65 0.77
SSEC 9.20 0.63 15.62 145 17.16 1.51
BSESN 15.30 0.81 17.90 1.30 20.49 1.36
CSI300 12.90 0.76 17.08 1.38 19.70 1.48
HSI —4.50 —-0.20 5.14 0.41 4.62 0.34
KLSE —4.10 —-0.22 2.85 0.44 2.37 0.33
KS1 10.10 0.57 8.89 0.65 10.70 0.74
N225 9.90 0.56 14.18 114 15.67 1.16
STI —0.30 0.01 14.36 1.45 14.39 1.35
TASI 12.70 0.83 19.10 1.64 21.78 171
COLCAP —1.90 —-0.04 21.00 1.57 20.90 1.46
DJI 13.10 0.59 14.91 1.29 16.52 135
GSPC 18.40 0.87 17.87 157 20.24 1.67
GSPTSE 1.10 0.58 6.97 0.77 8.76 0.90
IXIC 26.00 112 18.85 1.42 22.43 1.57
MXX 4.90 0.41 8.37 0.68 9.50 0.71
JTOPI 6.00 0.38 15.15 1.05 16.12 1.05
AORD 9.70 0.53 8.98 0.68 10.53 0.76
Average 9.10 0.50 14.85 1.16 16.38 119
This table reports the annualized mean return and sharp ratio (SR) of non-timed strategies and
timed strategies conditional on return forecasts. The non-timed strategy (buy-and-hold) is
always bullish and earns the equity premium. The conditional timing strategy invests in the
equity premium financed by the T-bill if the predictive return is above historical average
(Untilted), or above its 25th percentile (Tilted); and the opposite otherwise. The weight
assigned to the risky asset is scaled according to Z-score, which is equal to the return forecast
minus the prevailing mean, divided by the prevailing standard deviation. The outperformed cases
of timed strategies relative to the non-timed strategy are highlighted in bold.

19 crisis. Specifically, we use a predictive regression with an
interaction item,

Yeun = &+ B AGNC, + B,AGNC, x COVID, + f,COVID,

+ By + &y
(11)

where y,,;, represents one of the two competing shipping
indicators under consideration, the freight rate and container
throughput. AGNC; is the change in the aggregate numbers of
containers over all 48 ports. COVID, is a dummy variable that
takes the value of one after the outbreak of COVID-19, defined as
the period after December 2019. The coefficients that we are
interested in are 8; and f3,. As shown in Table 7, the estimates of
Pi1 are significantly negative at the horizon of two months,
indicating that GNC predicts the traditional shipping indicators.
More importantly, the estimate of f3, is not significantly different
from zero. This finding suggests that the predictive relationship is
not affected by the shocks of COVID-19.

Next, we discuss the relationship between the satellite-based
container indicator and real economic activity over the shocks of
the COVID-19 period. Specifically, we use the following
regression:

AIP, , = a + ,AGNC, + 3,AGNC, x COVID, + 3,COVID,
+ B,AIP, + &4,
(12)

Panel C of Table 7 reports the corresponding estimation
results. We find that the 8, estimate is significantly negative at the
horizon of four months, implying that GNC leads the real
economic activities at four months. The estimate of 8, is also
significantly negative, consistent with the enhanced predictive
power of our indicator during the COVID-19 pandemic period.
In summary, GNC is a leading measure of shipping trade and its
measuring ability is not affected by the shock of the COVID-19
crisis. The simultaneous enhancement of the container informa-
tion’s ability to predict the stock market and global industrial
output in the COVID-19 epidemic further suggests that its link to
the real economy is an important source of its return
predictability.

Discussion

In this paper, we investigate the ability of satellite imagery data of
container ports to predict global stock market returns. The
number of containers, extracted using the deep learning method,
reveals significant return predictability and delivers sizeable
investment gains.

Market efficiency under costly information acquisition. The
efficient market hypothesis states that stock prices reflect all

Table 5 Forward-looking content of satellite imagery data.

Panel B: Predictive regression for ABDI;p,

h=1 h=2 h=3 h=4
Panel A: Predictive regression for ARWIL_ISL;,p,
AGNC; 0.037 (0.27) —0.285** (—-2.128) 0.132 (0.99) —0.052 (-0.376)
ARWI_ISL; —0.167 (-1.222) 0.075 (0.558) 0.299** (2.249) —0.243* (-1.756)
Adjusted R2 2.76% 8.12% 11.85% 6.55%

AGNC; —0.188 (~1.405) —0.271** (—2.095)
ABDI, 0.092 (0.691) —0.039 (-0.302)
Adjusted R2 4.27% 8.05%

0.163 (1.228)
0.157 (1.183)
5.69%

0.097 (0.716)
—0.151 (-1.128)
3.29%

1%, 5%, and 10% levels, respectively.

This table provides evidence that growth in the number of containers in the global ports (GNC) predicts a decrease in global container throughput (RWI) and the decrease of freight rate (BDI). The
sample period covers from 2017:01 to 2021:10. We report t-statistics based on heteroscedasticity robust standard errors in parentheses. The asterisks ***, **, and * indicate statistical significance at the
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Table 6 Forecasting real industry production growth with the number of containers.

h=1 h=2 h=3 h=4 h=5 h=6
Netherlands 0.154 —0.09 0.07 —0.225 —0.012 0.036
Greece 0.089 —-0.07 0.114 —-0.078 -0.172 0.048
Austria —0.016 0.071 —0.001 —0.356** 0.116 0.119
Belgium 0.033 0.019 -0.077 —0.094 0.189 0.046
France —0.062 0.042 —0.154 —0.278* 0.159 0.134
Italy 0.008 0.037 —0.246* -0.23 0.273* 0.052
UK —-0.112 0.021 0.041 —0.326** 0113 0.061
Germany —0.069 0.058 —0.044 —0.408*** 0.167 0.2
Spain -0.076 -0.02 -0.071 —0.269* 0.232 0.077
Sweden 0.059 —0.101 0.03 —0.325** 0.095 0.086
Norway 0.086 0.074 -0.05 -0.089 —0.052 0.018
Portugal 0.065 0.027 0.003 —0.354*** —0.032 0.036
Russia —0.037 —0.009 0.124 —0.068 0.062 —0.103
Switzerland 0.139 -0.01 —0.025 -0.129 -0.123 0.203
Turkey —0.085 0.079 0.002 —0.363** 0.126 0.015
Poland —0.057 0.063 -0.037 —0.335** 0.163 on
China -0.119 —0.168 0.282** -0.037 0.063 0.062
India 0 0.075 0.05 —0.512*** 0.206 0.014
Malaysia —-0.113 -0.173 0.146 —0.312** 0.254* 0.085
South Korea 0.061 0.024 0.126 —0.193 —0.196 0.213
Japan 0.02 0.041 0.05 —0.166 -0.219 0.159
Singapore 0.347*** -0.164 0.001 0.065 -0.16 0.116
Colombia 014 0.022 -0.14 -0.192 -0.032 0.229
America —-0.109 0.022 0.018 —0.327* 0.096 0.127
Canada —0.067 0.072 —0.041 —0.281* 0.131 0.072
Mexico -0.029 0.04 0.044 —0.349** —0.044 0.194
South Africa —0.125 —0.005 0.095 —0.358** 0.198 0.008
Australia 0.009 —0.236* —0.297** —0.309** 0.079 0.152
Average 0.004 0.014 —0.005 —0.42*** 0.116 0.153

This table provides evidence that growth in the number of containers in the global ports (GNC) predicts the real industry production growth for different countries. The sample covers the period from
2017:01 to 2021:10. We report t-statistics based on heteroscedasticity robust standard errors in parentheses. The asterisks ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels,
respectively.

Table 7 Forward-looking content of satellite imagery data during COVID-19 pandemic.

h=1 h=2 h=3 h=4

Panel A: Predictive regression for ARWI_ISL;,

AGNC; 0.005 (0.031D) —0.311* (=1.91D) 0.105 (0.652) —0.119 (-0.727)
AGNC;x COVID; —0.029 (-0.099) 0.163 (0.579) 0.003 (0.012) 0.072 (0.250)
COVID; 0.099 (0.354) 0.382 (1.389) 0.306 (1.113) 0.456 (1.613)
ARWI_ISL; —0.163 (-1.187) 0.057 (0.422) 0.297** (2.225) —0.248* (-1.821)

Adjusted R2 2.90%
Panel B: Predictive regression for ABDI;

10.39% 13.55% 1.79%

AGNC; —0.220 (-1.373) —0.319** (-1.991) 0.192 (1.189) 0.104 (0.621)
AGNC;x COVID; 0.182 (0.646) —0.095 (-0.337) 0.025 (0.087) 0.009 (0.030)
COVID; 0.391 (1.461) 0.552** (2.042) 0.471* (1.703) 0.513* (1.787)
ABDI; 0.093 (0.703) —0.053 (-0.399) 0.148 (1.091) —0.150 (-1.074)

Adjusted R2 12.24%
Panel C: Predictive regression for AAIP,

13.35% 12.47% 9.14%

AGNC; 0.062 (0.362) —0.125 (-0.747) —0.036 (-0.209) —0.244*** (-2.975)
AGNC; x COVID; —0.012 (-0.040) 0.396 (1.341) 0.091 (0.30M) —0.510* (—1.689)
COVID; —0.112 (—0.388) —0.082 (-0.285) 0.008 (0.028) 0.181 (0.579)

AlPy 0.037 (0.260) —0.171 (-1.230) —0.178 (-1.251) —0.066 (—0.531)

Adjusted R2 0.78% 5.68% 3.20% 9.79%

This table investigates the predictive ability of global ports (GNC) to global container throughput (RWI), the decrease in freight rate (BDI), and the growth rate of averaged real industry production (AIP).
To examine the change of predictive relationship around COVID-19, we add a dummy variable that takes the value of one on the COVID-19 period, defined as the time after 2020. The sample period
covers from 2017:01 to 2021:11. We report t-statistics based on heteroscedasticity robust standard errors in parentheses. The asterisks ***, **, and * indicate statistical significance at the 1%, 5%, and
10% levels, respectively.

available information (Fama, 1970). In an environment with
perfect information, the market value of information approaches
zero (Copeland and Friedman, 1992; Sunder, 1992) and there is
no motivation for information-gathering. However, this hypoth-
esis relies on the assumption that information acquisition is

costless. Our finding of the return predictability of satellite
information is consistent with the argument for market efficiency
under costly information acquisition (Grossman and Stiglitz,
1980; Verrecchia, 1982). According to this argument, an investor
who spends resources on collecting information expects to receive
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compensation in a market where information acquisition is
costly. The information acquisition leads to informed trades and
improves the information content in prices, further promoting
price efficiency. When informed investors observe positive
information about security, they bid the current price up, and
conversely, the future return will be low. In this way, the private
information is quickly incorporated into stock prices. This pro-
cess provides informed traders with profits and accordingly
generates return predictability.

The application of satellite data increases price informative-
ness. In comparison with traditional data sources such as
government or corporate announcements, satellite data have the
advantages of real-time availability, frequency, and quality. As a
result, this alternative data source provides forward-looking
information about future earnings that can be incorporated into
stock prices (Katona et al, 2018; Zhu, 2019; Mukherjee et al,,
2021). The information about future earnings contained in
satellite imagery effectively reduces insider trading. As a result,
the availability of such alternative data decreases information
asymmetry between firm insiders and outside investors. Managers
have less opportunity to trade profitably on their private
information about future earnings because a fraction of such
information is available to outside investors through an
alternative source. Therefore, we believe that the use of satellite
data in investment decisions will improve market price efficiency.

The horizon of return predictability. We find return predict-
ability at horizons of up to 5 days using satellite imagery data.
One may wonder why satellite information is not instantly
incorporated into the price—for example, on the same day that
the information is released. Instead, the existence of return pre-
dictability implies a lead-lag effect.

We provide two explanations. First, the pre-processing and
delivery of satellite data take time. Satellite data are usually sold as
different levels of products instead of the raw data. Because the
raw data only contain the original sensor signals, they cannot
provide any useful insights to investors. They must be subjected
to a series of pre-processing steps. For example, the transforma-
tion of the Sentinel-2 raw data into human-understandable
images includes decompression, radiometric corrections, geo-
metric viewing model refinement, resampling, and conversion to
reflectance. Normally, it takes nearly 3h to publish an early
version of satellite data products and 48-60h for carefully
calibrated versions. This delay is inevitable for any satellite
platform. As most raw satellite images are captured from
10:30 a.m. to 1:30 p.m. local time, the extracted satellite informa-
tion usually arrives in the stock market with a one-day or
longer delay.

Second, processing satellite images requires techniques that
unsophisticated individual investors lack. The high threshold for
processing satellite data naturally prevents most investors from
using them, making their price effect gradual instead of instant.
Jensen (1978) argues that when new information enters the
market it is instantly integrated into stock prices if enough
investors take it into account, leading to extremely short-term
return predictability. However, only a portion of investors takes
satellite data into account. Most satellite products and customized
services are so expensive that only institutional traders can afford
them. Although there are some publicly available satellite data
resources accessible to individual investors, most do not have
enough image-processing techniques to interpret the information
in a timely fashion. Thus, the prices partially reflect the
information of informed individuals (arbitrageurs) (Grossman
and Stiglitz, 1980). This private information diffuses through the
market as it is acquired by investors. The average private signal
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can be revealed by a sequence of prices, and uninformed investors
condition their trades on public observables such as prices and
order flows. When less-informed investors observe private
signals, they may rationally behave like price chasers (Grundy
and McNichols, 1989; Wang, 1993). As a result, the private
satellite information is integrated into the price. It takes longer for
satellite information to be incorporated into market price, based
on Jensen’s (1978) argument.

Therefore, it is reasonable that our satellite-based container
number index shows market return predictability at horizons of
up to 5 days. The predictability across several days in fact reflects
the further revelation of existing private information as time
goes by.

Conclusions

Due to the development of big data technology, satellite imagery
data are increasingly appreciated by sophisticated investors. In
comparison with traditional economic data such as industrial
production and consumer price indices, satellite data have greater
frequency and are available in real-time. This paper provides a
fresh example of the application of satellite data in financial
investment decision-making.

As changes in the number of containers reflect real economic
activities, we draw on container information based on satellite
imagery of major global ports using a deep learning method. Our
results suggest that the combined container information predicts
stock returns in global mainstream markets. The return predict-
ability is both statistically and economically significant. The
predictive power of container information became stronger after
the COVID-19 pandemic, especially in the U.S. and European
markets. We also show that satellite-based container information
leads to the traditional shipping indicators of freight rates and
container throughput. The container information is also found to
be closely linked to global economic activity, serving as a potential
explanation for the return predictability.

Container number data is not available in real-time. Container
coverage drawn from satellite images provides a good proxy and can
reflect economic changes, thus helping investors in the stock market
to obtain excess returns. We execute an investment experiment and
find that an investor making use of satellite imagery of seaports will
on average receive annualized returns of 16%. In practice, many
reasons may reduce the investment gains using satellite information.
For example, it typically takes several hours or even longer time to
transform the original sensor signals into images and process satellite
images. We have accounted for such lags in portfolio analysis.
Nevertheless, during the period of data processing, container
information may flow into the stock market via other channels such
as online text, although the availability of these alternative data
remains another problem. We believe that with the development of
big data technology, satellite images provide an important infor-
mation source to help improve investment decisions.

Data availability
The datasets analyzed during the current study are available in
the Dataverse repository: https://doi.org/10.7910/DVN/NYHT44.
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