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Inferring links in directed complex networks
through feed forward loop motifs
Satyaki Roy1✉, Ahmad F. Al Musawi2,3 & Preetam Ghosh 3

Complex networks are mathematical abstractions of real-world systems using sets of nodes

and edges representing the entities and their interactions. Prediction of unknown interactions

in such networks is a problem of interest in biology, sociology, physics, engineering, etc. Most

complex networks exhibit the recurrence of subnetworks, called network motifs. Within the

realm of social science, link prediction (LP) models are employed to model opinions, trust,

privacy, rumor spreading in social media, academic and corporate collaborations, liaisons

among lawbreakers, and human mobility resulting in contagion. We present an LP metric

based on a motif in directed complex networks, called feed-forward loop (FFL). Unlike nearest

neighbor-based metrics and machine learning-based techniques that gauge the likelihood of a

link based on node similarity, the proposed approach leverages a known dichotomy in the

motif distribution of directed networks. Complex networks are sparse, causing most nodes

and their associated links to have low motif participation. Yet, due to intrinsic network motif-

richness, few links participate in many distinct motif substructures. Thus, the FFL-based

metric combines the presence and absence of motifs as a signature to outperform baseline

metrics on ten directed social and biological network datasets. We conclude with the future

of the FFL-based metric in dynamic network inference as well as its use in designing com-

bined metrics using network motifs of varying orders as features.
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Introduction

Complex networks are a ubiquitous tool for representation
among entities in real-world systems (Strogatz, 2001).
There are several types of networks including social, eco-

logical, computer, biological, biochemical, technological, brain
networks, climate, social networks, etc. Within biological net-
works, they may be classified based on the biomedical implica-
tions of the interaction among genes, proteins, drugs and target
proteins, metabolites, neurons, organisms in a food chain, etc.
(Crichton et al., 2018). An important tool in the effort to
understand the possibility of known interactions between any two
network entities is the prediction of the likelihood of them
sharing a link. With the advent of deep machine learning, link
prediction metrics can help find the similarity between nodes and
their likelihood of sharing a link, by probing varying depths of
their neighborhoods (Zhang and Chen, 2018; Mayo et al., 2015).

Several machine learning-based computational techniques are
being leveraged to predict links in complex networks. Graph
embedding techniques represent nodes as low-dimensional vec-
tors while pre-serving the structural relationships within net-
works. Such techniques can mainly be classified into matrix
decomposition, random walk, and deep learning. These techni-
ques are being combined to develop ensemble learning models,
while deep learning methods on graphs are being augmented with
graph signal processing methods to achieve higher prediction
accuracy (Chen et al., 2022; Cheung et al., 2020). In addition to
the similarity in terms of local neighborhoods, recent link pre-
diction models are encoding community or cluster-level closeness
into the node embeddings (Saxena et al., 2022). An example of
such clusters is the recurrent subgraphs, called network motifs
that characterize large-scale natural and engineered complex
networks (Milo et al., 2002; Stone et al., 2019). Apart from their
over-representation in complex networks than expected by
chance, the network motifs have been shown to act as signaling
modules that control the response to external stimuli (Han et al.,
2007) and render functional as well as structural robustness
against perturbation (Paul and Radde, 2016; Roy et al., 2020; Dey
et al., 2019; Ghosh et al., 2011). This has led to the character-
ization of the importance of nodes (and links) in complex net-
works in terms of their node (or link) motif participation (or
centrality) (Koschützki et al., 2007; Wang et al., 2014). There is a
growing body of literature on the role of motifs of three nodes
(namely, feedback loop, feed-forward loop, etc.), four nodes (e.g.,
bi fan), and beyond (Milo et al., 2002; Ma’ayan et al., 2005).

Motifs are a promising tool to unravel the effect of drugs on
cellular targets (Wu et al., 2016) and driver genes based on their
change in motif profiles between normal and disease states in

biological networks (Liu et al., 2014). It is also a pertinent
resource for inferring relationships between entities in complex
networks through link prediction metrics based on participation
in common or shared motifs in undirected networks (Jia et al.,
2017; Aghabozorgi and Khayyambashi, 2018). Entities in undir-
ected networks exhibit the transitive property of relationships,
resulting in the formation of triangles or closed triads as network
motifs. For instance, in a social setting, if node 1 trusts node 2 and
node 2 trusts node 3, then node 1 has reasons to trust node 3 (Jin
and Zafarani, 2017). Thus, the notion of triadic closure in social
network theory states that the existence of links (u, v) and (v, w)
among three nodes u, v, w in an undirected network suggests that
there is a tendency of forming the link (u, w) (Simmel, 1908).
Triadic closure serves as the basis for commonness in the
respective neighborhoods as a criterion for any pair of nodes to be
connected. It can also be used to understand the evolution of
networks over time (Liben-Nowell and Kleinberg, 2003).

Application of link prediction algorithms in social science. This
tendency of forming triads (also called common neighbor prop-
erty), whereby two individuals are likely to be friends if they have
many common friends, is a key basis of our social groups (Wang
et al., 2011). Figure 1a shows the common neighbor property in a
social network, where Bill is more likely to be friends with Bob
(than Mary) because the two have a common neighbor John.
Similarly, social groups exhibit homophily, whereby people seek
out individuals who are similar to them. These characteristics can
be leveraged to predict how social ties are formed at a given time
or evolve over time. Let us discuss the use of link prediction (LP)
techniques in determining academic and corporate collabora-
tions, liaisons among criminals or terrorists, opinions, trust,
privacy, and rumor spreading in social media, and human
mobility resulting in disease contagion.

Unknown or hidden social ties. LP algorithms have been applied
to the data imputation problem in a social context, where
unknown or missing information can be filled out with high
confidence to make informed recommendations (Ouzienko and
Zoran, 2014). These recommender systems deal with the pre-
diction of citations of papers or co-authorships (Shibata et al.,
2012; Benchettara et al., 2010a) or learning unknown associations
among criminals in criminal network analysis (CNA) to find new
leads into hidden liaisons, such as drug syndicates and terrorist
networks. In the case of the latter, supervised machine learning
and deep reinforcement learning-based LP models are considered
to enable law enforcement agencies to deal with organized crime

Fig. 1 Triads and motifs. a Common neighbor property of the social network, where Bill is more likely to be friends with Bob (than Mary) because they
have a common neighbor John, b feed Forward Loop motif with three links, direct link u→ v and indirect links v→w, and u→w; c directed link (1, 2) playing
in v→w in the motif (4, 1, 2) and u→w in the motif (1, 3, 2).
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syndicates and activities (Lim et al., 2019, 2021). LP models are a
potential tool to find likely yet unfamiliar associations among
organizations that may lead to patent cooperation (Chen et al.,
2021).

These algorithms tap into behavioral studies which suggest that
the interaction among individuals on online social platforms is
influenced by their peers (Huo et al., 2018). Thus, its applicability
has been studied in gauging interpersonal relationships (Essli-
mani and Brun, 2011) as well as sentiments in social relationships
among individuals or organizations (Papadimitriou et al., 2012).
Analysis of signed social networks from online social networking
sites, where trust and distrust are denoted by + and – signs, is
used to gauge attitudes, opinions, and trust (Leskovec et al.,
2010a). Matrix factorization and latent factor-based LP models
have incorporated the level of trust and behavioral properties into
the recommenders (Yang et al., 2012; Jiang et al., 2020).

Evolution of social relationships. Social dynamics tend to change
over time, making it imperative to encode temporal information
into recommendation systems for academic and criminal net-
works. The community has looked at similar problems on CNA
as well as academic citations and co-authorships in the context of
varying times. LP models have been applied to databases of sci-
entific literature to model the evolving motivation of authors to
collaborate (Zhang et al., 2017). There is a suggestion that the
combination of time-varying criminal networks with personalized
information, like arrest warrants, judicial judgment, wiretap
records, and police station proximity, can improve the prediction
of future liaisons (Lim et al., 2019).

LP models applied to dynamic virtual as well as physical social
networks leverage the history of past interactions to predict future
associations (Jiang et al., 2020; Tsugawa and Hiroyuki, 2013). For
example, combining LP models with communication history
among individuals can help determine future face-to-face
interactions in social settings, such as academic conferences.
The prediction of evolving social dynamics in a multi-layered
social network has been analyzed by gauging the information flow
through trusted central nodes. This approach has been shown to
minimize unreliability spawning from rumor spreading (Fan
et al., 2019). Finally, these algorithms can be adapted to address
the challenges in trust and privacy. Research has gone into the use
of LP to minimize the trust deficit from the addition of new
members (i.e., nodes) and associations (or links) in dynamic
social groups (Bhagat et al., 2010).

Modeling human behavior. Another class of applications of LP
lies in the modeling of human behavior and contact resulting in
the transmission of infectious diseases, such as influenza and
COVID-19. Combination of network clustering and LP can
model the mixing pattern and spread dynamics in Korea (Kwon
and Hang-Hyun, 2023) and design intervention and public
policies that complement pharmaceutical measures (Antweiler
et al., 2021). Finally, it is a useful tool to measure behavioral and
cultural perceptions about intervention measures being adopted
(Ma et al., 2022), particularly at a time when human sentiment
can be gauged from freely available social media data (Wei et al.,
2016).

Contributions of this work. In this work, we extend the idea of
triadic closure in directed networks using network motifs. The
feed forward loop (FFL) is a 3-node motif abundantly found in
directed natural and engineered networks and therefore could be
leveraged to understand the connectivity in directed complex
networks (Gorochowski et al., 2018; Wang and Provan, 2009).
We leverage the FFL motif to highlight a contradiction in directed

complex network topologies we discuss hereafter. Complex net-
works have notably higher FFL presence than randomized net-
works (Roy et al., 2020); due to their motif-richness, a large
number of FFL motifs are distributed among a few links, causing
the average motif participation per link in complex networks to
be typically higher than their randomized counterparts. Besides, a
few hub nodes have a disproportionately high number of con-
nections, making the complex networks scale-free in nature
(Barabasi, 2009). Moreover, these networks exhibit the small-
world property, wherein most nodes are not directly connected
but it is possible to travel from one node to another in very few
hops (Wang and Chen, 2003; Sampaio Filho et al., 2015). It fol-
lows that the well-connected hubs and their associated links are
likely to participate in a high number of FFL motifs than the non-
hubs. We explore whether the lack of connectivity of the majority
of the (non-hub) nodes (termed network sparseness (Wang and
Chen, 2003; Tang et al., 2019) and the unevenness in motif dis-
tribution among the nodes could lend a perspective to link pre-
diction in directed networks.

With this intuition, we explore an FFL motif-based link
prediction measure, which harnesses some interesting features of
directed complex networks. Let us understand it using the
example of a kind of directed biological network, called the
transcriptional regulatory network (TRNs). FFL motif, as shown
in Fig. 1a and discussed in the section “Feed forward loop motif”,
is an acyclic triangle. Our prior analysis (Roy et al.,
2020, 2017, 2021) has shown that FFL is the most frequent
triangular motif in TRNs, greatly outnumbering the cyclic
triangle, called the feedback loops. We refer to a connected
triplet of three nodes as a directed triad (or simply triad). (4,1,2)
and (1,3,2) are examples of triads in Fig. 1b.

Since complex networks like TRNs are rich in FFL motifs, the
likelihood of the existence of a link, say (1, 2) in Fig. 1c is high as
it completes two FFL motifs (4, 1, 2) and (1, 3, 2). This property is
analogous to existing common neighbor-based metrics (such as
common neighbors, Jaccard, Adamic Adar, resource allocation,
etc. (Ghorbanzadeh et al., 2021) in undirected networks.
Additionally, the three directed links of an FFL denoted by an
ordered triplet (u, v, w) (formed by links u→ v, v→w, u→w)
have distinct designations. A link prediction metric should
therefore consider the likelihood of the link given that it plays a
designated role in an FFL motif. This is apparent in the case of the
link (1, 2) that has designations v→w and u→w in FFLs (4, 1, 2)
and (1, 3, 2), respectively. Thus, combining the evidence of (1, 2)
in its network for both designations is necessary. Moreover, we
have also reported that TRNs are extremely sparse, and the
majority of nodes are likely to have no motif participation,
making the absence of FFL motifs a possible signature as well.
Thus, we present an FFL-based link prediction metric (in the
section “Feed forward loop-based link prediction and analysis”)
that learns the link existence likelihood given the presence and
absence of FFL motif triads and combines the two likelihoods as
the weighted sum over all possible FFL motif triads.

Overall, the FFL-based approach leverages Bayes’ theorem to
estimate the possibility of connecting two nodes in terms of the
number of triads and non-triads they participate in. We define a
triad as a triplet of nodes with at least two directed links, whereas
a non-triad is a triplet with at most one link. The proposed metric
works in two stages (see Fig. 2). First, it estimates the probability
of the existence of a link c≡ (x, y) in a directed network given a
specific triad as the product of the probability that nodes x, y
participate in the triad and the likelihood of a link existing in the
network given that triad. Second, it analogously calculates the link
probability of c given a specific non-triad as the product of the
probability that nodes x, y participate in the non-triads and the
likelihood that a link exists in the network given that non-triad.
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Finally, it combines the two scores by a weighted sum determined
by a real, non-zero parameter κ.

We conclude a discussion on the application of the motif-based
approach in (1) inferring links evolving in dynamic natural
networks (namely, social, and biological), engineered networks,
and recommendation systems; and (2) building deep machine
learning models that employ network motifs of varying orders to
refine link prediction accuracy (refer to the section “Discussion”).

Method
Directed graph. A graph is an ordered pair G= (V, E) where V is
a finite, non-empty set of objects called vertices (or nodes); and E
is a (possibly empty) set of 2-subsets of V, called edges (Newman,
2003). A directed graph is a graph in which edges have directions.
A directed edge (u, v)∈E allows unidirectional information flow
from vertex u to v and not necessarily from v to u. Some directed
graphs may have weights associated with them; these weights can
be discrete or continuous. Graph density of a directed network is
measured as the ratio between the number of links to the max-
imum possible number of links, i.e., Ej j

Vj j ´ Vj j�1ð Þ.

Feed forward loop motif. A feed forward loop (FFL) motif is a
triplet of three nodes (u, v, w), forming an acyclic triangle (see
Fig. 1b). FFL is one of the most abundant 3-node network motifs
in complex networks, such as transcriptional networks. Nodes u,
v, w are termed master regulator, intermediate regulator and
target node, and there are three links, direct link u→ v and
indirect links v→w, and u→w.

The importance of a link (u, v) in a directed complex network
G is often quantified by FFL motif-based centrality. Edge motif
centrality is defined as the number of FFL motifs m≡ (u, v, w) it
participates in, i.e.,

C x; y;G
� � ¼ ∑

w2V
1 u; vð Þ 2 E& u;wð Þ 2 E& u;wð Þ 2 E½ � ð1Þ

In Eq. (1), 1 is an indicator variable that assumes a value of 1 if
a motif m≡ (u, v, w) exists in the form of directed links (u, v), (v,
w), (u, w), and 0 otherwise. Edge motif centrality can be used to
estimate the FFL motif distribution of G by plotting the frequency
of links (u, v) that participate in k FFL motifs
(∀0 ≤ k ≤maxe∈E(C)). Moreover, links participating in several
FFLs can have distinct roles or designations—they may be u→ v,
v→w, u→w links of different FFLs. Figure 1c shows link (1, 2)

participating in v→w in the motif (4, 1, 2) and u→w in the
motif (1, 3, 2).

FFL motif density is defined as the ratio between the number of
FFLs in G over all possible directed triplets of nodes u, v, w that
can form FFLs and calculated as

DðGÞ ¼ ∑u ∑v ∑w 1 u; vð Þ 2 E& u;wð Þ 2 E& u;wð Þ 2 E½ �
Vj j ´ Vj j � 1ð Þ ´ Vj j � 2ð Þ ð2Þ

Feed forward loop-based link prediction and analysis. The FFL
motif-based link prediction measures the probability of link
prediction from node x to node y (i.e., x→ y) in terms of the FFL
motifs in directed network G. For each triad (illustrated in Fig. 3),
there is a closing link (denoted by c) that completes the triad. For
example, c= u→w for triad 110. The score for the link (x, y),
given by S(x, y) is the combination of the probability of (x, y)
being the closing link c, given the presence as well as the absence
of each triad. The metric can be understood in three phases.

Likelihood of FFL motif given the existence of a triad. First, we
measure the likelihood of (x, y) being the closing link c that
completes an FFL motif Δ, given the existence of a triad t. The
likelihood score is based on the Bayes rule: the product of the
probability of (x, y) participating in a triad t and the likelihood of
c≡ (x, y) given that it participates in t, i.e.,

P Δ; t;Gð Þ ¼ P cjt;Gð Þ ´ Px!y t;Gð Þ ð3Þ
In the above equation, the two terms are calculated as follows:

Px!y t;Gð Þ ¼ Number of t x; y
� �

participating inG

max
x0;y0ð Þ

Number of t x0; y0
� �

participating inG ð4Þ

P cjt;Gð Þ ¼ Number of Δ t participating inG
Number of t inG

ð5Þ

Likelihood of FFL motif given the absence of a triad. Applying the
same logic, the probability of a closing link c given the absence of
a triad t or equivalently, the existence of a non-triad (depicted in
Fig. 3 and denoted by t̂), is calculated as

P c; t;Gð Þ ¼ Pðcjt;GÞ ´ Px!y t̂;G
� �

ð6Þ
Weighted sum of the two likelihoods. The effect of the existence
(and absence) of a triad on a closing link c≡ (x,y) is weighed by a

Fig. 2 Motif-based link prediction. A schematic representation of the feed forward loop (FFL) motif-based approach, showing link prediction probability as
the weighted sum of the probability of the existence of a link c≡ (x,y) given the existence of a triad and the probability of the existence of a link c given the
existence of a non-triad.
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learnable parameter κ (where κ ≥ 0). Finally, combining Eqs. (3)
and (6), the link prediction score is calculated over all possible
triads t∈ T= [011,101,110], as

S x; y
� � ¼ ∑

t2T
P Δ; t;Gð Þ þ κ ´ P c; t;Gð Þ ð7Þ

One may consider three different weighing parameters κu→v,
κv→w, and κu→w for triads t= v→w, u→w; u→v, u→w, and
u→ v, v→w, respectively.

Illustrative example: Let us consider an illustrative example
of predicting the probability of link (3 4) in a directed

network (refer to Fig. 4). To keep it simple, we will focus on
triad 110 (shown in Fig. 3), where the links (u, v) and (v, w)
are present. The triads of structure 110 available are (1, 2,
3), (1, 2, 4), (3, 1, 2), (3, 2, 4), (1, 3, 2)—the first four are
open triads and the last one is a closed triad. As per Eqs. (4)
and (5), the probability of (3, 4) given triad structure 110 is
Px!y t; Gð Þ ´ P cjt; Gð Þ ¼ 1

1 ´
1
5 ¼ 1

5. Analogously, there are 19
non-triads (i.e., triplets of nodes with at most one link
among them), enumerated as follows:

1; 3; 4ð Þ; 1; 4; 2ð Þ; 1; 4; 3ð Þ; 2; 1; 3ð Þ; 2; 1; 4ð Þ; 2; 3; 1ð Þ; 2; 3; 4ð Þ; 2; 4; 1ð Þ; 2; 4; 3ð Þ

Fig. 3 FFL triads. Three triads and non-triads in directed complex networks and their representation in bitstrings of length 3: a value of 1 or 0 correspond to the
presence or absence of the directed links (u, v), (v, w), (u, w) in a possible FFL motif m= (u, v, w) among three nodes u, v, w in a directed complex network.

Fig. 4 Illustrative example of a prediction of link (3, 4) in a 4-node network,
only considering the presence and absence of triad 110 where the links (u,
v) and (v, w) are present.

Fig. 5 Signed triads. Four combinations of triad 110 (from Fig. 2) in a
directed complex network with signed links.
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3; 1; 4ð Þ; 3; 2; 1ð Þ; 3; 4; 1ð Þ; 3; 4; 2ð Þ; 4; 1; 2ð Þ; 4; 1; 3ð Þ; 4; 2; 1ð Þ; 4; 2; 3ð Þ; 4; 3; 1ð Þ; 4; 3; 2ð Þ:

Only 5 of these triads, namely, (1,4,2), (1,4,3), (2,1,4), (2,3,4),
(3,4,2) have the (u, w) link. This makes the probability of (3, 4)
given non-triad Px!y

�t;Gð Þ ´ P cj�t;Gð Þ ¼ 1
2 ´

5
19 ¼ 5

38. The final
probability score is 1

5 þ κ ´ 5
38.

Labeled directed links. The idea of FFL motif triad completion can
be extended to directed complex graphs with labeled links. An
example of a link label can be the sign (i.e., + or −) showing the
up-regulation or down-regulation of a gene by a transcription
factor in transcriptional networks (see the description of network
datasets in section “Results”). In signed networks, the number of
possible triads will be higher. Figure 5 (top) shows the 4 com-
binations within the 110 triads. We show the 12 triadic combi-
nations for motif m≡ (u,v,w) in Fig. 5 (bottom).

The link prediction score for unlabeled network (Eq. (7)) can
be extended for signed networks using the set of 12 triadic
combinations T (Table 1), as

Sðx ! γ yÞ ¼ ∑
t2T

PðΔγ;t; GÞ þ κ ´ PðΔγ;t0; GÞ ð8Þ

In Eq. (8), P(Δγ; t,G) is the probability that triad t is closed by c
≡ (x→ γ y) forming a signed FFL motif Δγ and P cγ; t;Gð Þ is the
probability of P(Δγ;t′,G) forming the third link in non-triad t′.

Association rule-mining. Machine learning (ML) models are
trained on input (or training) data to make predictions on unseen
data (Jordan and Mitchell, 2015). Association rule mining is a
class of ML algorithms that learns the relationships among
entities from patterns existing in relational databases, such as
transactional or medical data (Zhao and Bhowmick, 2003). Given
a set of items I ¼ i1; i2; � � �

� �
and set of transactions

D ¼ d1; d2; � � �
� �

, an itemset x is defined as a combination of
items, i.e., x 2 I . Metrics such as support, confidence, and lift are
employed to quantify the importance of rules. We utilize support
defined as the frequency of appearance of an itemset x in the
transaction, calculated as

Supp xð Þ ¼ d 2 D : x � d
Dj j ð9Þ

The support for each itemset is normalized to a score in the
range 0 and 1, by dividing by the maximum support.

For any triplet u, v, w∈V, we employ the measures of accuracy
(see section “Accuracy”) and precision (see section “Precision”)
(Osisanwo et al., 2017) to estimate the likelihood of the existence

of a link u→w, given the existence of u→ v and v→w. Both
these measures are defined on the basis of true positive (TP), true
negative (TN), false positive (FP), and false negative (FN), as we
discuss hereafter.

Accuracy. Expected accuracy in link prediction is given by

A ¼ TP þ TN
TP þ TN þ FP þ FN

ð10Þ

We measure expected accuracy using Eq. (11) (defined
hereafter). We define a bitstring of length 3, say [bu,v, bv,w,
bu,w], where a value of 1 or 0 corresponds to the presence or
absence of the directed links u→ v, v→ w, u→ w in a
possible FFL motif m = (u, v, w) among 3 nodes u, v, w in a
directed complex network. For example, 001 refers to the
triad lacking in u→ v, v→ w and the presence of u→ w
(illustrated in blue in Fig. 3). Finally, η(001) denotes the
number of triplets (among all possible triplets u, v, w) that
satisfy the configuration of triad 001.

A ¼ η 000ð Þ þ η 010ð Þ þ η 100ð Þ þ η 111ð Þ
η 000ð Þ þ η 001ð Þ� �þ η 010ð Þ þ η 011ð Þ� �þ η 100ð Þ þ η 101ð Þ� �þ η 110ð Þ þ η 111ð Þ� �

ð11Þ
Precision. It is the fraction of all positive predictions that are truly
positive. It is calculated as

P ¼ TP
TP þ FP

ð12Þ

In the context of triplet analysis, we measure expected precision
as

P ¼ η 111ð Þ
η 111ð Þ þ η 001ð Þ þ η 101ð Þ þ η 011ð Þ ð13Þ

As discussed above, we employ accuracy and precision to find
support for triad completion: the likelihood of the presence of
link u→w, if and only if both u→ v and v→w are present in a
directed complex network (i.e., logical conjunction). Specifically,
high accuracy and low precision would indicate that the
contribution of the TN towards the accuracy is higher than
that of TP.

Subgraph sampling. We sample subgraphs from the directed
networks. In Fig. 6, we input TRN G and the order (i.e., the
required number of nodes in sampled subgraph) r, of the
required subgraph. We initialize an empty graph H and add a
well-connected node u ∈ V(G) as the first node. Subsequently,
we iteratively add nodes to H by randomly selecting a new node,
say v, that belongs to the neighborhood of u ∈ V(H) in G and
include the directed links between the newly added and existing
nodes u and v from G. This is required to ensure a single

Table 1 Summary of the 50 subnetworks sampled from 10 datasets.

Network |E| FFL density M-L ratio (sampled) M-L ratio (ER) κ

E. coli (Schaffter et al., 2011) 3758 9.64 × 10−7 0.66 0.02 10.0
Yeast (Schaffter et al., 2011) 12,873 1.13 × 10−6 0.43 0.03 1.0
Mouse (Han et al., 2017) 6490 1.57 × 10−6 0.70 0.04 0.01
Human (Han et al., 2017) 8427 2.84 × 10−6 1.31 0.06 0.01
Metabolic (Schellenberger et al., 2010) 5802 6.81 × 10−6 2.98 0.10 0.01
Reco (Rossi and Ahmed, 2015). 17,359,346 2.90 × 10−6 0.34 0.06 1.0
Citation (Rossi and Ahmed, 2015) 3,148,447 0.0002 8.77 1.05 1.0
Email (Yin et al., 2017) 25,571 0.0009 15.64 2.81 10.0
Wikipedia (Leskovec et al., 2010b) 103,689 9.38 × 10−5 4.84 0.61 1.0
Twitter (Rossi and Ahmed, 2015) 834,798 3.09 × 10−7 0.05 0.01 1.0

The table shows the average number of directed links (|E|); the ratio of the average number of FFL motifs to the maximum possible number of FFLs (FFL density); FFL Motif-to-Link ratio in sampled
networks and the Erdos–Renyi (ER) random graphs of the same graph densities; weighing parameter κ for FFL-based link prediction.
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connected component in the generated subgraph. This process
terminates when the required subgraph order r is realized.

AUC-ROC. Receiver operator characteristic (ROC) is a binary
classification measure that plots true positive rate (¼ TP

TPþFN)
against false positive rate (¼ FN

TPþFN) at different threshold values.
Area under the curve (AUC) gives the classifier’s ability to dis-
tinguish between classes. 0.5 < AUC ≤ 1 indicates that the classi-
fier distinguishes the positive class values from the negative class
values since the classifier is able to detect more numbers of TP
and TN than FN and FP (Davis and Goadrich, 2006).

Results
We carry out experiments on 10 directed complex network
datasets (enlisted below). For each, we sample 50 subgraphs and
record the mean (and standard deviation in) the AUC-ROC. The
summary statistics of the sampled subnetworks are shown in
Table 1.

Training and testing split. We divide each directed complex
network dataset into training and testing datasets. Given a net-
work G(V, E) shown in Fig. 7a, the set of directed training links
Etrain is a subset of the complete set of edges, i.e., Etrain⊂ E. The
network G(V, Etrain) (Fig. 7b) is used to train the link prediction
models, while the model is tested as a combination of (1)

remaining links E−Etrain labeled 1 and (2) nonexistent links
labeled 0, as illustrated in Fig. 7c.

Network Datasets. Here are the descriptions of the 10 network
datasets.

1. Citations network comprises authors as nodes and directed
edges represent the citation of authors by other authors
(Rossi and Ahmed, 2015). It has 28,093 nodes and
3,148,447 links.

2. Email network is a network of members of a European
institution and directed edges indicate that emails are sent
from one member to another (Yin et al., 2017). It contains
1005 nodes and 25,571 links.

3. Recommendation network from a Czech dating site, where
nodes are users and directed edges represent ratings given
by users to other users (Rossi and Ahmed, 2015). It
contains 220,970 nodes and 17,359,346 links.

4. Wikipedia network comprises a network of Wikipedia 7115
users and 103,689 directed links existing from voter users to
users competing to become system administrator (Leskovec
et al., 2010b).

5. Twitter network is a network of 465,017 social network
users and 834,798 directed links pointing from the follower
to the followed user node (Rossi and Ahmed, 2015).

6. Transcriptional regulatory network (TRN) comprises a
network of proteins, called Transcription Factors (TFs),
and target genes. Directed links exist from one TF to a TF/
gene whose expression it regulates. We consider 4 TRNs:

– Escherichia coli (or E. coli) bacteria with 1565 nodes and
3758 links, Saccharomyces cerevisiae (or yeast) (Schaffter
et al. 2011) with 4441 nodes and 12,873 links

– Human (with 2862 nodes and 8427 links) and mouse
(Han et al. 2017) (with 2456 nodes and 6490 links). For E.
coli TRN, the links are labeled with positive (+) or
negative (−) signs, indicating that the TF is up- or down-
regulating a given TF/gene.

7. Metabolic network represents the metabolic reactions of E.
coli, where a node is a metabolite, and each directed link
points from the input to the product of a reaction
(Schellenberger et al., 2010). It has 1039 nodes and
5802 links.

8. Dynamic social network of Dutch school friendships
comprising a series of snapshots of the friendships among

Fig. 6 Subgraph sampling algorithm.

Fig. 7 Training and testing networks. Split of a directed complex network
dataset into b training network with training links Etrain shown as green
dotted lines and c testing network with training links colored brown,
comprising remaining links E−Etrain (solid lines) and nonexistent links
(dotted lines).
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freshmen at secondary school in The Netherlands, in
2003–2004 (Snijders et al., 2010).

Baseline metrics. We consider the following baseline metrics
(all of which, except triadic similarity and DeepWalk, are taken
from (Ghorbanzadeh et al., 2021)). For any node u ∈ V, the
notations Γu, Γiu and Γou denote the sets of all neighbors, in-
neighbors, and out-neighbors of u.

1. Jaccard similarity is a normalized common neighbor-based
metric in an undirected network and is calculated as

JCðx; yÞ ¼ Γu \ Γv
Γu ∪ Γv

ð14Þ

2. Common neighbor incoming is a metric based on the
common in-neighbors in a directed network and is
calculated as

CNI x; y
� � ¼ Γiu \ Γiv ð15Þ

3. Common neighbor outgoing is a metric based on the
common out-neighbors in a directed network and is
calculated as:

CNO x; y
� � ¼ Γou \ Γov ð16Þ

4. Common neighbors incoming and outgoing combines the
CNI and CNO scores by adding them up, i.e.,

CNIO x; y
� � ¼ CNI x; y

� �þ CNO x; y
� � ð17Þ

5. Adamic Adar is another common neighbor-based similarity
measure that assigns higher importance to a common
neighbor with fewer neighbors. It is calculated as:

AA x; y
� � ¼ ∑

z2Γu\Γv

1
log Γz

ð18Þ

6. Resource allocation works on a very similar principle, as

RAðx; yÞ ¼ ∑
z2Γu\Γv

1
Γz

ð19Þ

7. Motif triads measure the likelihood of link existence among
nodes x and y in an undirected network based on the
number of 13 triadic motifs (ϕ(x, y, z)) they share with a
common neighbor z (Aghabozorgi and Khayyambashi,

2018). It is calculated as:

MSðx; yÞ ¼ ∑z2Γu\Γv ϕðx; y; zÞ ´ 1
13

Γu \ Γv
�� �� ð20Þ

8. DeepWalk is a neural network-based approach that learns
the latent representation among the nodes in an undirected
network while preserving the topological relationships
among the nodes (Perozzi et al., 2014). The similarity
among nodes u,v ∈ V can be estimated by the dot product
of their latent vectors zu, zv, i.e., similarity u; vð Þ ¼ zTu :zv .

Motif participation of directed links. Any FFL motif (u,v,w)
constitutes three links u→ v, v→w, u→w. The number of such
FFL motifs a directed link participates in is given by its edge motif
centrality (Eq. (1)). As discussed in the section “Introduction”,
complex networks are characterized by an over-representation of
network motifs, i.e., there are more network motifs than expected
by chance. Table 1 shows that the average FFL motif per link in
the 50 sampled subnetwork datasets is notably higher than those
of Erdos–Renyi (ER) random graphs of the same graph densities.
At the same time, these networks have very low graph density;
hence, the majority of FFL motifs are concentrated among a few
directed links, while a vast majority of links do not participate in
FFLs. To illustrate this, we show in Table 1 that the ratio between
the average number of FFL motifs and the maximum possible
number of FFLs (termed FFL density) is very low.

We highlight the two features of directed complex networks
using the E. coli transcriptional regulatory network. Figure 8a is a
log–log plot of the frequency of links (on the y-axis) for a given
edge motif centrality (on the y-axis), showing the decline in the
frequency of edges with edge motif centrality > 3. This reaffirms
that the majority of the links have low motif participation. It is
worth noting that the few links with high-edge motif centrality
typically participate in multiple roles (i.e., u→ v, v→w, u→w)
of several FFLs. To show this, we record the average number of
role u→ v, v→w participation given the u→w participation of
directed links in E. coli. Figure 8b depicts that links with high
u→w participation tend to have high u→ v, v→w participation
(normalized by maximum u→ v, v→w participation among all
links). Overall, this suggests that the presence and the absence of

Fig. 8 Motif participation of directed links in E. coli transcriptional networks. a Log–log plot of the frequency of links for a given edge motif centrality,
showing the decline in the frequency of edges with centrality > 3. b Links with high u→w participation have high u→ v, v→w participation (normalized by
maximum u→ v, v→w participation among all links).
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FFL motifs can both be useful measures of link prediction in
directed complex networks.

FFL motif completion. The FFL motif triad completion rule
enforces the conjunctive logic – it tests the likelihood that the
u→w link of an FFL motif (u,v,w) exists if and only if both u→ v
and v→w are present (refer section “Association rule-mining”
for details). We apply the rule to all possible ordered triplets of
nodes and record the accuracy scores (Eq. (11)). Figure 9a shows
that the mean accuracy scores for the 10 network datasets vary
between 89.7% and 99.4%, showing the high tendency of links to
complete FFL motif triads.

The high accuracy can be a function of high true positive (TP)
as well as true negative (TN) (see section “Accuracy”). To get a
clearer picture of which out of TP and TN contribute more to the
accuracy, we estimate the expected precision (fraction of positive
predictions that are TPs; refer to Eq. (13)) for the stated FFL triad

completion rule. Figure 9b shows that the mean precision ranges
between 0.018% and 5.21% across the 10 networks, suggesting
that the high accuracy stems more from the FPs than TPs.

Note that the common neighbor-based link prediction metrics
(Jaccard, Adamic Adar, Resource Allocation, etc.) account for
both TP and TN by predicting a high likelihood of triad
completion if two nodes share common neighbors. However, they
fail to account for the fact that the majority of the links in
directed complex networks do not participate in any motifs. We
show in Table 1 that the sampled subnetworks from the 10
datasets exhibit a low FFL motif density, explaining the need for
incorporating both the presence as well as the absence of motif
triads into the prediction score.

Comparison with baselines. We evaluate the link prediction
accuracy of the following three variants of the proposed scoring
metric: a score based on the (v1) existence of triads (Eqs. 3), (v2)

Fig. 9 FFL motif completion. Mean (and standard deviation in the) in the prediction success of u→w link given the existence of u→ v and v→w across all
possible ordered triplets of nodes in the complex network datasets in terms of a accuracy and b precision.

Fig. 10 Comparison with baseline algorithms. AUC-ROC scores of a three variants of FFL-based scoring mechanisms and Jaccard. The three variant scores
are based on the existence of triads, the sum of existence and absence of triads, and the weighted sum of existence and absence of triads; b variant 3 of FFL
scoring against baseline algorithms: MS, CNI, CNO, CNIO, AA, RA, and DeepWalk (see baseline metrics in section “Results”).
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sum of existence and absence of triads (combining Eqs. (3) and
(6), and (v3) weighted sum of existence and absence of triads (Eq.
5). The value of the weighing parameter (κ) is chosen such that
the AUC-ROC scores are maximized. We compare the AUC-
ROC scores of the 3 variants against the Jaccard similarity
baseline for 50 sampled subnetworks of the 10 network datasets.
Figure 10a shows that all three variants of the FFL-based metric
significantly outperform Jaccard. Furthermore, v1 ≤ v2 ≤ v3 for all
the datasets. Clearly, incorporating the absence of triads is an
important feature that improves prediction accuracy (hence,
v1 ≤ v2). Controlling the contribution of existence and absence of
triads using a weighing parameter κ further improves perfor-
mance (hence, v2 ≤ v3). The values of κ for different subnetworks
are summarized in Table 1.

We compare the accuracy of FFL-based scoring (variant 3)
against other baseline metrics, namely, MS, CNI, CNO, CNIO,
AA, RA, and DeepWalk. For DeepWalk, we have considered

random walks of length 10, and each node is embedded as vectors
of length 16. Figure 10b illustrates that FFL outperforms the
baselines for almost all complex networks because it (1) predicts
link existence based on the existence and absence of triads and (2)
strikes a balance between the two through the weighing
parameter (κ). Resource allocation (RA), Adamic Adar (AA),
and common neighbor incoming and outgoing (CNIO) come
closest to the FFL-based metric for email, Wikipedia, and citation
subnetworks, because these subnetworks are relatively dense and
have a higher propensity for FFL triad completion, as reported in
Table 1. (RA and AA seem indistinguishable as they have the
same AUC-ROC for most networks.)

We explore how the motif-based approach performs when
applied to different snapshots of time-varying social networks
(discussed under dynamic network at the beginning of the
“Results” section). We record the number of links and FFL
motifs in each of the four timepoints of the 26-node dynamic

Fig. 11 Dynamic network analysis. a Number of nodes, links, and FFL motifs in four snapshots of a dynamic social network (Wei et al., 2016). b Comparison
of the mean AUC-ROC scores across 50 runs (on the dynamic network) of three variants of FFL-based scoring mechanisms and Jaccard against those of
baseline algorithms: MS, CNI, CNO, CNIO, AA, RA, DeepWalk.

Fig. 12 Variations in labels and weighing parameter for 50 subnetworks of E. coli TRN. a Mean AUC-ROC scores for κu→v, κv→w, κu→w ∈ [0.01, 100];
b comparison of the mean (and standard deviation in) AUC-ROC for positive and negative labeled directed links of FFL-based against Jaccard metric.
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network (see Fig. 11a) and show that the mean AUC score
across 50 runs of 3 variants of the motif-based approach,
particularly v2, is higher than that of the baseline measures (see
Fig. 11b).

Weighing parameter and variations in labels. We discuss in
section “Weighted sum of the two likelihood” that the parameter
κ accounts for the presence of a link given the absence of a triad t
(refer to Fig. 2 for all possible triads t= v→w, u→w; u→ v,
u→w, and u→ v, v→w). For any FFL motif m ≡ (u, v, w), the
weighing parameter k can be further classified into κu→ v,
κv→w, and κu→w corresponding to triad closing link c ≡ (x,y)
≡ (u, v),(v, w),(u, w), respectively, given the absence of triad t
(given by �t). The goal is to examine whether the use of specific
weighing parameters instead of a generic one κ could better
control the contribution of different triadic patterns toward the
directed link (x, y) to be predicted. To study this, we define i as 15
evenly spaced real numbers in range [−2, 2] and generate each of
κu→v, κv→w κu→w= 10i ∀i. The resultant κ parameters range
between [0.01, 100], where more values are close to 0.01 than they
are to 100. This is helpful since the highest accuracy scores are
achieved for low values (<10) of κ (see Table 1). Figure 12a
depicts that the mean AUC-ROC over 50 sampled E. coli TRN
subnetworks, where the best scores are once again achieved for
lower κ values. The best mean AUC-ROC scores of ≈0.75 ± 0.03
are achieved for κu→v, κv→w, κu→w= 0.14, 1.93, 0.01, which
outperforms the earlier best FFL accuracy (≈0.72 ± 0.04) with a
common κ. This suggests that including parameters that control
different FFL motif substructures can improve prediction accu-
racy. Needless to say, these parameter values need fine-tuning, as
they may vary across network types.

The FFL-based metric can effectively predict link labels. In the
case of E. coli transcriptional network (TRN), the links are signed
positive (+) or negative (−). We employ the signed variant of the
FFL metric (Eq. (8)) that employs 12 signed FFL triad variants to
predict the signs of E. coli TRN and compare the AUC-ROC
scores for both signs against the Jaccard metric. Figure 12b shows
that for both signs, the proposed FFL-based link prediction metric
outperforms Jaccard.

Discussion
This metric opens up several research directions. First, there is a
growing interest in the area of inference models for dynamic
social and biological networks with the goal of learning the
changing relationship among genes, proteins, metabolites, etc.
(Oates and Mukherjee, 2012; Nalluri et al., 2017). In the domain
of genomics, the advent of high-throughput data acquisition
tools has facilitated access to finer-resolution datasets, such as
single-cell data (in addition to bulk tissue data). In the existing
study, the FFL-based metric predicts the link existence score
based on the likelihood of link existence given the presence (and
absence) of directed triads in the entire network. Since motifs
are abundantly present in biological networks, given any time-
series data of fine resolution, machine learning models can be
trained on the history of motif participation of nodes of interest
(namely, cells, proteins, genes, etc.) to predict future connec-
tions. We have demonstrated in the section “Comparison with
baselines” that the proposed approach, when applied to snap-
shots of dynamic networks, outperforms baselines. We are
currently extending this approach to temporal links (i.e., links
connecting two different timepoints) in spatiotemporal net-
works as well as predict future connections in other evolving
directed complex networks. Some application domains are (1)
management (i.e., related to security, performance, and trou-
bleshooting) of engineered networks through the identification

of beneficial and harmful links (Liao and Striegel, 2012) and (2)
improving recommendations in e-commerce and academic
networks (Benchettara et al., 2010b).

Second, using the signed E. coli transcriptional network as a
case study, we have demonstrated that the FFL-based metric can
be useful to predict labels of directed links. It is apparent that
there will be considerable computational complexity as the
number of possible labels (and consequently directed triads)
increases. To handle this, it will be necessary to identify triads
that do not contribute to the overall link existence score. This
process of selecting informative triads can be mapped to a feature
selection problem and these triads can vary greatly across com-
plex networks. Third, we would like to generalize the proposed
metric to other network motifs. While two- and three-node
network motifs are more widely studied (Jiang et al., 2006), such
an analysis promises to reveal higher-order motifs of interest in
specific complex network types. Finally, network motifs of vary-
ing orders can be used as features to build and train deep
machine-learning models that predict the existence of links in
large (and dynamic) networks.

Conclusions
In this work, we presented a metric that leverages the feed
forward loop (FFL) motifs to predict links in directed complex
networks. Existing common neighbor-based link prediction
metrics rely solely on the triadic-richness of complex networks
and gauge the likelihood of link existence based on the number
of shared triads between a pair of nodes. We propose to account
for the sparse topologies of directed complex networks that
make the absence of triads an equally important criterion for
link prediction. Thus, the proposed FFL-based metric measures
score as the weighted sum of the likelihood of a link given the
presence and absence of directed triads. Our experimental
analysis of 10 real complex network datasets (biological, social,
communication, etc.) shows that the proposed metric exhibits a
significantly higher AUC-ROC than standard baseline
approaches.

Data availability
The code and datasets generated during and/or analyzed during
the current study are available in the GitHub repository, https://
github.com/satunr/MOTIF_LP.
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