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The foreign exchange markets, renowned as the largest financial markets globally, also stand

out as one of the most intricate due to their substantial volatility, nonlinearity, and irregular

nature. Owing to these challenging attributes, various research endeavors have been

undertaken to effectively forecast future currency prices in foreign exchange with precision.

The studies performed have built models utilizing statistical methods, being the Monte Carlo

algorithm the most popular. In this study, we propose to apply Auxiliary-Field Quantum

Monte Carlo to increase the precision of the FOREX markets models from different sample

sizes to test simulations in different stress contexts. Our findings reveal that the imple-

mentation of Auxiliary-Field Quantum Monte Carlo significantly enhances the accuracy of

these models, as evidenced by the minimal error and consistent estimations achieved in the

FOREX market. This research holds valuable implications for both the general public and

financial institutions, empowering them to effectively anticipate significant volatility in

exchange rate trends and the associated risks. These insights provide crucial guidance for

future decision-making processes.
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Introduction

Foreign exchange markets, commonly known as FOREX,
hold the distinction of being the largest financial market
globally. They are renowned for their inherent complexity

and volatility, characterized by unpredictable behavior and sig-
nificant fluctuations in exchange rates (Wei and Zhu, 2022). The
ability to forecast currency pair movements is of great importance
in the field of FOREX. Over the past years, researchers worldwide
have devoted considerable attention to the FOREX market, driven
by its vulnerable characteristics (Islam et al., 2020; Ayitey et al.,
2023). As a result, various types of research have been conducted
to accurately predict future prices of FOREX currencies.

The models to estimate FOREX markets have been of great
importance in international finance in recent decades, occupying
an important effort by academics and professionals to forecast the
future values of currencies, considered a difficult task (Cheung
and Erlandsson, 2005; Kamal et al., 2012; Hauzenberger and
Florian, 2019; Islam et al., 2020). These models are usually esti-
mated by statistical methodologies, both classic regression models
such as ordinary least squares (OLS) or factor models up to
Monte Carlo models, which have given great precision results and
are the most commonly used (Giacomini and Rossi, 2010;
Jaworski, 2018). These models have been used in different var-
iants, with Metropolis-Hastings and Sequential filtering being the
Monte Carlo designs most used in Economics and Finance. Such
models are assessed based on the standard deviation result
achieved, the size of the sample, as well as the complexity. The
literature shows the different fit results after applying different
statistical techniques and Monte Carlo algorithms for these
Currency Market models. For example, models constructed with
linear statistical techniques, such as Ordinary Least Squares, lin-
ear regression methods, and Factor models, have provided an
adjustment of 0.93–1.84 standard deviation (Rossi, 2013; Park
and Park, 2013; Byrnea et al., 2016; Ince et al., 2016; Serjam and
Sakurai, 2018), but their adjustments are between 1.26–2.11 when
constructed with small samples (Rossi, 2013; Jacob and Uusküla,
2019). On the other hand, other more advanced statistical models,
especially non-linear models, such as Vector Autoregression,
time-varying parameter models, and Error Correction models.
With large samples, these models have obtained a precision
between 0.58–0.83 (Clements and Lan, 2010; Kavtaradze and
Mokhtari, 2018; Taveeapiradeecharoen et al., 2019) while in the
case of small samples, the results have been 0.75–1.24 (Cheung
et al., 2019; Colombo and Pelagatti, 2020; Rubaszek and Ca’
Zorzi, 2020). Hence, it becomes apparent that econometric
methods demonstrate a level of accuracy within the range of
0.40–0.83 when performing simulations with sample sizes
exceeding 100 observations. However, these methods do not yield
a significantly low standard deviation when applied to small
samples (Park and Park, 2013; Beckmann and Schuessler, 2016).

Giacomo and Rossi (2010) applied the Fluctuation test and the
One-Time Reversal test for the monthly period of 1973–2008
with the data of the dollar/British pound exchange rate, showing a
standard deviation higher than 0.49 for both econometric tech-
niques. Park and Park (2013) conducted a comparative study
including the Japanese Yens, Swiss francs, Canadian dollars, and
UK pounds per the US dollar, for the quarterly period of
1973–2010, applying the time-varying cointegration coefficients
method. They showed a mean square error above 0.62. For its
part, Beckmann and Schuessler (2016) demonstrate in a Monte
Carlo simulation how a time-varying parameter model such as
ours, namely one that provides varying degrees of temporal
variation in the coefficients, can be very suitable for retrieving
samples in the database. Byrne et al. (2016) applied the Time-
Varying Parameters method, for a sample of several OECD
currencies per US dollar, obtaining an overall standard deviation

of 0.72. Ince et al. (2016) used ordinary least squares (OLS) to
estimate theoretical models of the FOREX market for data on US
dollar-Swiss franc and US dollar–Japanese Yen exchange rates.
They got an overall standard deviation superior to 1.06 in their
estimates. Finally, Hauzenberger and Huber (2019) applied the
Markov process of Time-Varying transition to forecast the
FOREX market for Japan, Norway, Australia, Switzerland,
Canada, Sweden, South Korea, and the UK relative to the US
dollar. They reached an average deviation of 0.94. In their study,
Tigani et al. (2022) developed a model utilizing Gaussian kernel
density and Monte Carlo simulation to forecast the volatility
patterns of the EUR/USD currency pair on an hourly basis. The
proposed model holds potential applications in the financial
market, particularly in algorithmic trading, where the Monte
Carlo method is employed to estimate integrals within this fra-
mework. The authors suggest that future research should include
a comparative analysis of the accuracy of various sampling
methods, such as Metropolis-Hastings, Gibbs sampling, and
Markov Chain Monte Carlo, to further enhance the under-
standing and effectiveness of the model.

Therefore, many researchers have targeted their studies on the
FOREX market by using methods ranging from statistical
methods to deep learning. However, because volatility behavior in
the foreign exchange market has important implications for
modeling and calculating risk in these markets, future researchers
will need to use innovative and improved approaches to analyze
the impact and forecasting of this volatility behavior (Kamal et al.,
2012; Islam et al., 2020; Chinthapalli, 2021). Hence, the Quantum
Monte Carlo method emerges as a sophisticated quantum
approach, offering a dependable solution to capture the men-
tioned volatility. The aim is to simulate speculative attack models
in order to provide further insights into potential events that may
transpire within FOREX markets. Furthermore, Islam et al.
(2020) conclude that future research on FOREX market predic-
tion can be through robust and accurate approaches, like GRU,
Monte Carlo methods, Kohonen’s self-organizing neural network,
modular neural network, and numerous additional algorithms,
which are not yet completely studied in this domain.

To fill this gap in the previous literature and to solve these
problems of accuracy of the existing methods for estimating
FOREX markets, our paper analyses USD/EUR and USD/JPY
exchange rates in the period 2013–2021. This work compares
three Monte Carlo techniques, Markov Chain Monte Carlo,
Sequential Monte Carlo, and Auxiliary-Field Quantum Monte
Carlo (AFQMC), with the AFQMC technique being the best
performer. This technique has already demonstrated its metho-
dological superiority in other areas in carrying out accurate
sampling with few observations and data distributions (Giacomini
and Rossi, 2010; Rossi, 2013; Kolasa et al., 2017; Jaworski, 2018).
Our results show a more robust estimation according to accuracy,
both in-sample, and out-of-sample estimations, a better behavior
with small and irregular samples compared to the conventional
regression, deep learning, and Monte Carlo methods. Also, these
Monte Carlo models need less time to make the estimates, espe-
cially in the case of the AFQMC method. Hence, these results also
show great computing of popular FOREX market models that
previous literature showed as difficult to estimate accurately,
reducing the instability of the previous literature (Jaworski, 2018;
Dash, 2018; Cheung et al., 2019; Hauzenberger and Huber, 2019;
Colombo and Pelagatti, 2020). These results can be very useful in
their application in FOREX market models and in other models in
Financial Econometrics that help the valuation challenges of
financial professionals and other related interest groups.

Our research has been motivated by the impact of recent
economic events on FOREX markets, including the market
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collapse in 2020 following a decade of global economic growth
and recovery from the 2007 to 2008 financial crisis. The onset of
the COVID-19 pandemic in early 2020 further exacerbated the
situation, resulting in significant economic downturns and
increased uncertainty. As a result, traders now require a thorough
understanding of market behavior before making trading deci-
sions (Ilić and Digkoglou, 2022). Monte Carlo simulation is a
widely employed method in business and finance to assess
portfolios and investments by simulating various uncertain fac-
tors that influence their value, thereby establishing the distribu-
tion of their value across a range of possible outcomes. Extensive
literature highlights the numerous applications of Monte Carlo
methods in finance, encompassing security valuation, risk man-
agement, portfolio optimization, model calibration (Staum, 2009),
derivatives valuation (Rebentrost et al., 2018), theoretical research
(Creal, 2012), calculations (Asmussen, 2018), and stock market
forecasting (Parungrojrat and Kidsom, 2019). Moreover, the
Monte Carlo method is often combined with other techniques,
such as the Mali calculation (Fournié et al., 2001). In conclusion,
as unexpected crises like the recent situation in Ukraine unfold,
predictive methods gain significance for investors and researchers
(Ilić and Digkoglou, 2022).

The present research differs from others in that it compares
various Monte Carlo techniques in FOREX markets prediction.
Most of the models in previous studies have been dominated by
statistical techniques such as ordinary least squares, quantile
regression, and recently neural network techniques. Monte Carlo
simulation holds a significant position as one of the key algo-
rithms in finance and numerical computational science, playing a
crucial role in the realm of risk management being able to easily
deal with high-dimensional problems such as volatility (Guo,
2022). Aşırım et al. (2023) concluded that the prediction of the
foreign exchange market is quite difficult due to this volatility.
However, the Monte Carlo method could help risk management
in this prediction. In addition, Jarusek et al. (2022) recommend
applying the Monte Carlo method to manage market chaos and
volatility, since prediction in the foreign exchange market is
difficult to perform in a complex dynamic system. Applying the
Monte Carlo method to trading systems allows for better risk
analysis and risk management. The Monte Carlo method also
helps to estimate when a system has stopped working, to know
the characteristics of the system, and therefore to understand
what we can expect from its performance (Aşırım et al., 2023).

We provide at least two additional contributions to the lit-
erature. First, the application of AFQMC methodology has
increased the precisión of the FOREX market model. Our find-
ings indicate stronger accuracy than previous studies, both in-
sample, and out-of-sample estimation, as enhanced efficiency
with short and irregular samples versus conventional regression,
deep learning, and Monte Carlo methods. FOREX markets are
considered to be highly complex and volatile, with important
implications for modeling and calculating risk in these markets.
The Quantum Monte Carlo approach delivers a sophisticated
quantum analysis and is a credible way to measure such volatility,
the aim is to formulate speculative attack models to generate
further details regarding the potential developments in the
FOREX market. Despite the complexity of the new quantum
method, we offer a new possibility that other authors and prac-
titioners can develop in the future. So, our research has significant
implications for financial institutions and governments, given the
increasing relevance of advanced risk management. According to
Rebentrost et al. (2018), quantum computers reveal the hope of a
substantial improvement in the speed of these computations.
One-day computations should be shortened to significantly
smaller time scales, making real-time risk analysis possible. This
near real-time assessment could enable the entity to respond

more quickly to changes in the market and to exploit dealing
occasions. Therefore, we apply the Quantum Monte Carlo
method in our study because most of the scenarios that define the
financial field involve a great deal of computational difficulty, and
thus lend themselves to quantum computation. It is a widely used
technique in science, with applications in physics, chemistry,
engineering, and finance (Orus et al., 2019). Monte Carlo simu-
lation facilitates visualizing all possible outcomes of decisions,
inclusive of the actual probabilities of each occurring. This allows
the impact of risk to be quantitatively assessed, enabling more
accurate forecasting and eventually better decision-making under
uncertainty (Sikora et al., 2019).

Secondly, our model helps to identify possible currency
movements in the foreign exchange market through Monte Carlo
simulation, thus avoiding a speculative attack. In this way, we can
determine how a financial crisis could affect the price of cur-
rencies. In the event that the current global virus situation wor-
sens or similar crises emerge in the future, it becomes increasingly
important to mitigate the adverse effects of currency price vola-
tility. In this regard, the insights gained from the implementation
of the Monte Carlo simulation hold great relevance. Conse-
quently, our model serves as a valuable tool for the analysis of
complex problems that are difficult to tackle analytically, as well
as for their subsequent forecasting.

The paper is organized as follows: the section “Literature
review” presents a literature review, discussing previous research
in the field. Section “FOREX markets fundamentals” introduces
the exchange rate dynamics models used in the analysis. In the
section “Estimation methods”, the methodologies employed for
the estimations are explained. Section “Empirical methods” pre-
sents the data utilized in the study and presents the results and
findings. Finally, the section “Conclusion” concludes by sum-
marizing the key insights and conclusions derived from the
research.

Literature review
In recent years, there has been a strong focus on predicting the
volatile FOREX market, leading researchers to explore various
methods. Among these, statistical analysis techniques have gained
popularity, with researchers employing algorithms such as
regression, decision trees, trading rules, support vector regression
(SVR), and fuzzy systems (Dymova et al., 2016; Achchab et al.,
2017). Raimundo and Okamoto (2018) contributed to this area by
proposing a hybrid model for FOREX rate prediction. Their
approach involved combining wavelet models with support vector
regression (SVR). They leveraged the discrete wavelet transform
(DWT) to extract relevant information from the FOREX dataset,
which was then used as input for SVR to forecast currency prices.
To assess the accuracy of their hybrid model, they compared its
performance to that of traditional autoregressive integrated
moving average (ARIMA) and autoregressive fractionally inte-
grated moving average (ARFIMA) models. Evaluation metrics
such as root mean square error (RMSE) and mean absolute error
(MAE) were employed. The results demonstrated the superiority
of their hybrid system over the traditional models, underscoring
its effectiveness in predicting FOREX rates.

In their respective studies, Serjam and Sakurai (2018),
Taveeapiradeecharoen et al. (2019), and Thu and Xuan (2018)
explored different approaches for predicting foreign exchange
(FOREX) rates. Serjam and Sakurai utilized linear kernel support
vector regression (SVR) on historical data from major currency
pairs, employing previous time frames as features. They dis-
covered a profitable rule, profitability inversion, applicable to
systems with unique characteristics. Taveeapiradeecharoen,
Chamnongthai, and Aunsri proposed a model based on
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compressed vector autoregression, reducing FOREX data using a
random compression technique and employing Bayesian model
averaging (BMA). Their model outperformed the existing
benchmark for six currency pairs. Thu and Xuan introduced an
SVM-based model for EUR/USD prediction, comparing different
metrics and observing a significant disparity in performance
between the Gaussian radial basis function (RBF) and polynomial
models. Additionally, they demonstrated a threefold increase in
profit rate using the SVM model compared to the conventional
transaction method.

Das et al. (2019) proposed a hybrid system that combined an
online sequential model of extreme learning machine (ELM) with
the krill herd (KH) optimization technique. Their system was
compared with a recurrent backpropagation neural network
(RBPNN) and the ELM algorithm using four currency pairs
(SGD/INR, YEN/INR, USD/EUR, and USD/INR). The evaluation
based on RMSE, MAPE, and Theil’s U metrics showed that their
system performed the best with error rates of 0.071646, 0.10375,
and 0.00014516, respectively. However, in terms of MAE and
ARV performance evaluations, their proposed model did not
provide the best results. For MAE evaluation, the online
sequential model of the extreme learning machine performed the
best, and for ARV evaluation, the krill herd with the extreme
learning machine (KH-ELM) achieved the best results. In another
study, Das et al. (2020) introduced a forecasting model that
combined the Jaya optimization technique with extreme learning
machines for predicting currency exchange rates. They used two
currency pairs (USDEUR and USDINR) and evaluated their
model’s performance using MAPE, ARV, Theil’s U, and MAE.
The performance comparison with other models based on ELM,
NN, and FLANN showed that ELM exhibited the best optimi-
zation. Their evaluation data indicated that ELM DE provided the
lowest error for MAPE evaluation, while ELM TLBO, ELM PSO,
and ELM Jaya achieved the best results for MAE, ARV, and
Theil’s U, respectively. Chou and Truong (2019) tested the
effectiveness of optimization using a benchmark function. They
examined daily CAN/USD rates and 4-h EUR/USD closing pri-
ces, which resulted in mean absolute percentage errors of 0.2532%
and 0.169%, respectively. Their forecast system achieved an
accuracy rate of 89.8–99.7%, demonstrating improved forecasting
accuracy compared to previous models for the CANUSD cur-
rency pair. The error rate of SMOF surpassed the baseline sliding
window model, ranging from 20.8% to 29.9%.

The utilization of neural networks has been instrumental in
time series prediction, particularly in the dynamic FOREX mar-
ket, leveraging the power of hidden neurons for accurate fore-
casting. De Almeida et al. (2018) proposed an innovative FOREX
trading model that combined support vector machines (SVM)
with the genetic algorithm (GA) to optimize trading rules,
resulting in an impressive return on investment of 83% during
their testing. Colombo and Pelagatti (2020) conducted simula-
tions using regularized regression splines, random forest (RF),
and SVM on data from advanced economies, with SVM exhi-
biting superior precision, boasting a mean error of ~0.4. Sun et al.
(2019) introduced a hybrid SVM method that incorporated a
neural network and applied it to forecast US dollar exchange rates
against major currencies, achieving mean error ranges of 0.31–1.7
for the period from 2011 to 2017. Ni et al. (2019) proposed a
model for FOREX time series prediction utilizing the CRNN
method, which combined a convolutional neural network and
recurrent neural network, demonstrating superior performance
compared to LSTM and CNN models based on RMSE evalua-
tions. Cao et al. (2020) harnessed the power of deep learning,
specifically deep long-short memory (LSTM), to forecast the
exchange rate between the US dollar and the Chinese yuan,
achieving a remarkable precision level of up to 75%. Hajizadeh

et al. (2019) introduced a hybrid model that combined the
GARCH model with a neural network to forecast foreign
exchange currency price volatility using the EUR/USD dataset,
leading to improved prediction accuracy. Finally, Fan et al. (2021)
investigated the correlation between Taiwan Weighted Stock and
Google Trends, demonstrating the superiority of neural networks
over support vector machines and decision trees in their machine
learning and trend search experiments.

Recently, there has been a notable surge of interest in research
focused on the FOREX markets, with researchers exploring
diverse methodologies to enhance market prediction capabilities.
From statistical learning to deep learning, different models and
hybrid approaches have emerged. However, in the field of eco-
nomics and finance, Monte Carlo techniques have been tradi-
tionally applied and are considered more reliable. Therefore, in
our currency market prediction model, which focuses on data-
intensive currency quotes, we have employed Monte Carlo
simulation. This method allows us to consider all possible out-
comes of our decisions and provides the actual probabilities of
each outcome occurring. By quantitatively assessing the impact of
risk, we can achieve more accurate forecasting and make better
decisions under conditions of uncertainty (Sikora et al., 2019).

FOREX markets fundamentals
In this study, we estimated various exchange rate dynamics
models, including uncovered interest rate parity, purchasing
power parity, speculative pressure indexes (Cuthbertson and
Nitzsche, 2004), sticky-price monetary, behavioral equilibrium
exchange rate, and Taylor rule fundamentals models (Cheung
et al., 2019). To evaluate these models, we drew a sample of data
and constructed different-size designs. Uncovered interest rate
parity and purchasing power parity are the most commonly used
models for exchange rate dynamics estimation (Rossi, 2013). To
estimate speculative attack scenarios, we used the model devel-
oped by Eichengreen et al. (1994), which has served as a basis for
subsequent models of speculative attacks (Braga de Macedo and
Lempinen, 2013; Wang et al., 2020; Valchev, 2020). Braga de
Macedo and Lempinen (2013) developed a general equilibrium
model to analyze and compare exchange rate adjustments to
those presented in Dornbusch (1976) and Kouri (1978). They
concluded that only the aggregation of holdings of assets sus-
ceptible to speculative expectations is relevant to their model, and
they studied three different cases.

To evaluate the efficacy of these models, we conducted Monte
Carlo simulations, generating 10,000 continuous-time trajectories
spanning a 30-year period. We employed the 90% variance range
as a metric to assess performance. Our findings revealed that the
Dornbusch formulation exhibited a variance range of 200%
around the average, which was reduced to 100% in the Kouri case
and further narrowed down to 20% in the general equilibrium
scenario. Valchev (2020) proposed a new exchange rate deter-
mination model that is robust to the evidence that the Uncovered
Interest Parity reverses its direction at longer horizons. They
showed that the feedback to the momentum of equilibrium
output is not monotonic due to the interplay of fiscal and
monetary policies, which fits well with the dynamics of exchange
rates. In their study, Wang et al. (2020) developed an early
warning system to forecast turbulence in the Shanghai Stock
Exchange Composite Index. They employed a SWARCH model
combined with a long short-term memory (LSTM) technique.
The researchers found that LSTM demonstrated robustness, as
evidenced by its high accuracy of 96.4% and an average forecast
horizon of 2.8 days. Furthermore, LSTM outperformed all base-
line models consistently throughout the evaluation process,
indicating its stability and effectiveness in predicting turbulence.
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They also suggested future directions for investigation, such as
expanding the number of explanatory variables and incorporating
other deep-learning mechanisms.

We also estimated the second-generation speculative attack
model of Flood and Marion (1997) using Monte Carlo estimation
algorithms, including the Metropolis-Hastings, Sequential Monte
Carlo (SMC) algorithms, and the novel AFQMC. In assessing the
performance of our models, we utilized classification accuracy
measured in percentage using both in-sample and out-sample
data. Additionally, we employed residual measurements such as
root-mean-square error (RMSE) and mean absolute percentage
error (MAPE) to further evaluate the quality of our predictions.

This study extends the existing theoretical models in the lit-
erature by incorporating well-established concepts such as
uncovered interest rate parity, purchasing power parity, beha-
vioral equilibrium exchange rate, sticky price monetary, and
Taylor rule fundamentals. These theoretical foundations have
been previously discussed in works by Rossi (2013) and Ismailov
and Rossi (2018), providing a strong theoretical basis for our
research. Additionally, we evaluate various estimation techniques
in the context of speculative attack models to simulate stress and
volatility scenarios, such as sudden currency value drops.

Uncovered interest rate parity (UIRP). Fisher (1962) introduced
the concept of uncovered interest rate parity (UIRP), which
explains the relationship between interest rates and changes in the
relative value of currencies. According to UIRP, in an ideal
situation where the nominal exchange rate is represented by St,
investors can buy 1= St units of foreign bonds using one unit of
their domestic currency. Here, St denotes the price of the foreign
currency in terms of the domestic currency. Under the assump-
tion that a foreign bond yields one unit plus the foreign interest
rate i*t+h between time t and t+ h, the expected return of the
foreign investment, converted to the home currency, should be
equal to the return of the home bond (1+ it+h), assuming no
transaction costs and no-arbitrage. This can be expressed as
(1+ it+h) Et (St+h= St)= 1+ it+h, where Et(.) represents the
expectation at time t. The parameters alpha and beta in this
equation have theoretical values of 0 and 1, respectively (Ismailov
and Rossi, 2018). Thus, the equation represents the uncovered
interest rate parity (UIRP).

1þ i*tþh
� �

Et Stþh ¼ St
� � ¼ 1þ itþh ð1Þ

Using Eq. (1), Meese and Rogoff (1988) conducted a study to
predict out-of-sample real exchange rates by utilizing real interest
rate differentials. Their findings revealed that this approach
outperformed a random walk model. Similarly, research by
(Cheung and Erlandsson, 2005) and Alquist and Chinn (2008)
supported the superiority of the uncovered interest rate parity
(UIRP) over a random walk model for extended time horizons,
although the improvement in yield was not statistically
significant.

Purchasing power parity (PPP). The concept of purchasing
power parity (PPP) is based on the principle that the price of a
basket of goods should be the same in different economies when
expressed in a single currency. This implies that the purchasing
power of a unit of money should be equivalent across countries.
Various interpretations of the PPP principle exist, but a common
approach involves comparing price levels in one country with
those in a foreign country after converting the prices into a
common currency. This concept has been discussed in prior
works by Giacomini and Rossi (2010) and Rossi (2013). In the
context of a commodity price (CP) index, the prices in the home
country and the foreign country are denoted as pt and pt*,

respectively. The PPP assumption can be represented by setting
the parameters α and β to 0 and 1, respectively, similar to the
uncovered interest rate parity (UIRP) model (Ismailov and Rossi,
2018). Therefore, the PPP can be expressed as follows:

st ¼ αþ β pt � p*t

� �
þ εt ; where α ¼ 0 and β ¼ 1 ð2Þ

Previous studies have raised concerns about the predictive
power of the purchasing power parity (PPP) model, as its
performance is not significantly superior to that of the random
walk model in short-term forecasts. The random walk model
demonstrates stronger forecasting ability in the short term, while
the PPP model tends to outperform the random walk model in
longer time horizons. However, the gap between the two models
diminishes considerably when it comes to short-term predictions
(Cheung and Erlandsson, 2005; Alquist and Chinn, 2008).

Behavioral equilibrium exchange rate (BEER) model. The
behavioral equilibrium exchange rate (BEER) model is a theore-
tical framework used to calculate the equilibrium exchange rate of
a currency based on its economic fundamentals. The model
operates on the principle that the exchange rate is determined by
the supply and demand of the currency in the foreign exchange
market. By taking into account various economic variables such
as inflation, interest rates, productivity, and trade balance, the
BEER model aims to estimate an exchange rate that aligns with a
country’s economic fundamentals. The underlying assumption is
that the exchange rate will adjust to rectify any imbalances in the
economy and achieve long-term equilibrium (Barbosa et al., 2018;
Demir and Razmi, 2022).

The BEER model is becoming increasingly popular among
policymakers and economists as it offers a framework for
assessing the misalignment of a currency’s exchange rate relative
to its fundamentals. It has been utilized to identify cases of
currency overvaluation or undervaluation and guide policy-
makers in implementing appropriate policy measures to restore
the currency’s equilibrium exchange rate. A common standard
definition of this model is

st ¼ β0 þ p̂t þ β1ω̂t þ β2r̂t þ β3gdebtt þ β4tott þ β5nfat þ ut
ð3Þ

In this framework, the logarithm of the price level (CPI),
represented as p, is a key factor. Other variables included are ω,
which represents the ratio of the price of non-tradable goods, r,
denoting the real interest rate, gdebt, indicating the ratio of public
debt to GDP, tot, representing the logarithm of the trade terms,
and nfa, signifying foreign net assets. The model incorporates
various elements such as the Balassa–Samuelson effect, which
takes into account the relative price of non-tradable goods, the
real interest differential model, which considers the difference in
real interest rates, a foreign exchange premium associated with
the public debt stock, and additional portfolio balance effects
resulting from the net foreign asset exposure of the economy
(Barbosa et al., 2018).

Models built upon this framework are frequently employed to
ascertain the medium-term reference horizon at which foreign
currencies are projected to stabilize, particularly in the context of
analyzing monetary policies. Market professionals routinely
utilize this technique to gauge the extent of divergence exhibited
by currencies from their equilibrium values.

Sticky price monetary (SPM) model. The sticky price monetary
(SPM) model is a theoretical framework employed in the field of
FOREX to provide insights into the relationship between mone-
tary policy changes and currency exchange rates. In this model,
prices in the economy are characterized as “sticky,” meaning they
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adjust slowly to changes in supply and demand. According to the
SPM model, adjustments in monetary policy impact the nominal
interest rate, which, in turn, influences the demand for the
domestic currency. When the nominal interest rate increases,
there is upward pressure on the demand for the domestic cur-
rency as investors seek higher returns. This increased demand
leads to an appreciation of the domestic currency’s exchange rate
(Auray et al., 2019).

In the short run, the sticky price phenomenon implies that
prices in the economy do not instantaneously respond to changes
in supply and demand. Consequently, even when the exchange
rate appreciates, the prices of goods and services do not
immediately decrease to reflect the currency appreciation. This
situation renders the country’s exports relatively more expensive
and less competitive in the global market, resulting in a decline in
demand for its goods and a reduced demand for domestic
currency. As a consequence, the exchange rate experiences
depreciation. However, in the long run, prices gradually adjust
to the new exchange rate, restoring the economy to its
equilibrium state (Chadwick et al., 2015).

Over time, prices will eventually adapt to the new exchange
rate, allowing the economy to reach its equilibrium state.
However, in the short run, according to the sticky price monetary
(SPM) model, changes in monetary policy can cause fluctuations
in the exchange rate. This is primarily due to the sluggish
adjustment of prices in the economy, which do not immediately
respond to changes in monetary conditions (Auray et al., 2019).

The sticky-price monetary model provides a fundamental
understanding of how flexible exchange rates behave. The model
can be described as follows:

st ¼ β0 þ β1m̂t þ β2ŷt þ β3 ît þ β4π̂t þ ut ð4Þ

in which st represents the exchange rate at time t, m denotes the
logarithm of money at time t, y states the logarithm of real GDP
at time t, i and π show the interest rate and inflation rate at time t,
correspondingly, and ut is an error term.

Taylor rule fundamentals. The Taylor rule fundamentals model
expands on the concept of the Taylor rule, which is employed by
central banks to establish the target interest rate, by applying it to
foreign exchange rates in the currency market. This model takes
into account various economic factors, including inflation, output
gap, and the exchange rate, to determine the equilibrium
exchange rate. By incorporating these fundamental variables, the
Taylor rule fundamentals model aims to provide insights into the
relationship between interest rate changes and exchange rate
movements (Chen et al., 2017).

The underlying assumption of the model is that the central
bank modifies interest rates based on variations in economic
fundamentals in order to uphold price stability and achieve
optimal employment levels. The target interest rate is established
through a rule that takes into account the difference between the
actual inflation rate and the target rate, as well as the output gap.
Furthermore, the model incorporates a component that captures
the divergence of the exchange rate from its equilibrium value,
which is determined by the fundamental variables (Molodtsova
and Papell, 2009).

The Taylor rule fundamentals model is useful for predicting
future exchange rate movements based on changes in economic
fundamentals. If economic fundamentals suggest that the
exchange rate is overvalued, the model predicts that the central
bank will raise interest rates to bring the exchange rate back to its
equilibrium value. Conversely, if economic fundamentals suggest
that the exchange rate is undervalued, the model predicts that the

central bank will lower interest rates to stimulate economic
growth and raise the exchange rate (Rossi, 2013).

The Taylor rule fundamentals model offers insights into how
economic fundamentals, interest rates, and exchange rates are
interrelated in the foreign exchange market. It suggests that
central banks adjust their policy rates based on deviations in
inflation and output from their target levels. Moreover, the model
takes into account the deviation of the exchange rate from its
equilibrium value, which is influenced by underlying fundamental
variables. Mathematically, the Taylor rule fundamentals model
can be represented as follows:

stþk � st ¼ β0 þ β1
b~yt þ β2π̂t þ ut ð5Þ

being eyt the output gap, st+k is the expected exchange rate at time
t+ k, st represents the spot exchange rate at time t, β0 is the
intercept or constant term of the model. β1 is the coefficient of the
output gap variable, which represents the sensitivity of the
exchange rate to changes in the output gap. β2 denotes the
coefficient of the inflation variable, which represents the
sensitivity of the exchange rate to changes in inflation. And ut
is an error term.

Speculative attacks model. The identification of currency crises
should not be limited to the exchange rate regime or changes in
the nominal exchange rate alone. It is possible that a regime
change does not reflect the true reasons behind a country’s
decision to maintain the current level of its currency’s exchange
rate. Economic development or political institutions’ decisions to
enter a monetary union may increase currency price volatility.
Additionally, frustrated speculative attacks may occur, where an
excessive increase in demand for foreign exchange does not yield
the expected benefit. Monetary authorities have different options
to cover this demand, including adjusting the exchange rate,
interest rates, and foreign exchange reserves (Alaminos et al.,
2022a).

Furthermore, speculative attacks that fail to achieve their
intended outcome can also contribute to currency crises. When
there is an excessive increase in the demand for foreign exchange,
monetary authorities may use a variety of options to cover this
demand, including adjusting the exchange rate, interest rates, and
foreign exchange reserves.

The speculative attacks model of Eichengreen et al. (1994) is a
framework used to identify currency crises by taking into account
more than just the exchange rate regime or nominal exchange
rate changes. While these factors are important, they may not
always accurately reflect the underlying reasons for a country to
maintain its current exchange rate level. Instead, there are other
factors such as changes in economic development or a country’s
decision to enter a monetary union that can also impact the
volatility of a currency’s price.

Therefore, Eichengreen et al. (1994) used three variables to
construct an index to capture currency crisis episodes: the series
of currency exchange rates, interest rate differentials between
national and foreign countries, and national reserve differentials
between the two countries. The formula used to construct the
speculative pressure index on the currency is as follows:

EMPi;t ¼ α%Δei;t
� �

þ βΔ ii;t � ir;t
� �� �

� γ %Δri;t %Δrr;t
� �� �h i

ð6Þ
In this model, ei,t represents the exchange rate, which is the

price of a foreign currency in terms of i’s currency at time t. The
variables ii and ir represent the difference in short-term interest
rates between i’s currency and a reference currency. The terms ri
and rr indicate the percentage difference in the changes of ratios
between international reserves and narrow money (M1). The
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weights α, β, and γ assign importance to each of these factors.
During a crisis, the occurrence is explained by an outlier value of
the EMP index that surpasses the sample mean by a significant
standard deviation.

Explaining the meaning and effects of every large factor of this
model, we can detail the next breakdown:

α%Δei,t: The term mentioned represents the impact of
exchange rate fluctuations on the EMP. The coefficient α
determines the degree of sensitivity of the EMP to changes in
the exchange rate. A higher value of α indicates greater
responsiveness of the EMP to exchange rate movements.

βΔ(ii,t−ir,t): This component reflects the influence of interest
rate differentials on the EMP. The coefficient β represents the
level of sensitivity of the EMP to variations in interest rate
differentials. A higher β value indicates greater responsiveness of
the EMP to changes in interest rate differentials.

γ(%Δri,t %Δrr,t): This term accounts for the impact of changes
in reserves on the EMP. The coefficient γ quantifies the degree of
sensitivity of the EMP to fluctuations in the reserves differential.
A higher γ value signifies a greater sensitivity of the EMP to
changes in the reserves differential.

Speculative attacks’ second-generation model. The speculative
attacks model posits that the government’s choice to devalue its
currency is contingent upon weighing the costs linked to aban-
doning the fixed exchange rate system against the loss of cred-
ibility that ensues. If the cost of devaluation is deemed lower than
the cost of maintaining the fixed exchange rate, the government
may opt to devalue its currency. This decision-making process is
shaped by the anticipation of forthcoming economic policies,
which are depicted by different equilibrium levels.

The second-generation models of currency crises diverge from
the first-generation models by incorporating multiple equilibria
that consider the interplay between the private sector and the
government. These models capture the interaction between the
private and public sectors, resulting in various potential outcomes
(Alaminos et al., 2022b). When international financial actors
foresee a potential currency devaluation, it can trigger a financial
crisis as interest rates rise to incentivize domestic currency over
foreign currencies. This situation may prompt the government to
devalue its currency due to the high costs associated with
servicing its debt. Conversely, when private agents do not
anticipate an exchange rate change, interest rates remain low,
reducing the likelihood of devaluation.

Flood and Marion (1997) introduced second-generation
models to elucidate the self-fulfilling nature of shocks. According
to this framework, if economic agents anticipate a potential
currency devaluation, their expectations are factored into wage
negotiations, leading to economic imbalances. These imbalances
subsequently result in an increase in the country’s price level. To
rectify such disequilibrium, the government may choose to adjust
the exchange rate, which is fixed based on wage agreements.
When the government decides against devaluation, it addresses
the economic imbalances and prevents an inflationary surge by
reducing its influence on the variables that determine production
levels. Alternatively, if the government opts for a flexible
exchange rate regime, it contributes to a situation where both
wage levels and price levels in the country rise. Equation (7)
illustrates the costs associated with the exchange rate regime in
both scenarios.

Lt ¼ 0:5θ pt � pt�1
� �þ 0:5 yt � y*

� �2 ð7Þ

being pt represents the national price level, yt represents the
country’s output at time t, y* denotes the target output set by

economic policy, and θ represents the weight assigned to
deviations in inflation from the policy goal.

As done with the previous model, a more detailed breakdown
of the meaning and effect of each part of the present model is
shown below for a better explanation to the reader:

At time t, Lt represents the speculative pressure index,
indicating the level of pressure exerted by market participants
on the country’s currency to devalue. The value of 0.5 is a
constant weighting factor that equally considers the two
components of the index. The parameter θ represents the
sensitivity of the index to changes in the exchange rate. A higher
θ value indicates that the index is more responsive to fluctuations
in the exchange rate. The variable pt refers to the current period’s
exchange rate, while pt−1 represents the exchange rate in the
previous period. The difference yt−y* signifies the gap between
the actual output (yt) and the potential output (y*) of the
economy. This difference reflects the level of economic activity
and growth in the country. The term 0.5θ(pt− pt−1) represents
the second component of the speculative pressure index,
capturing the deviation of actual output from potential output.
When the economy is underperforming relative to its potential,
market participants may perceive a need for a currency
devaluation to stimulate growth and enhance economic activity.
Consequently, this leads to increased pressure on the currency to
devalue.

In summary, the model indicates that the speculative pressure
index is influenced by expectations of exchange rate devaluation
and the deviation of the economy’s performance from its
potential. The index tends to increase when there are anticipa-
tions of devaluation or when the economy is underperforming.
This creates a self-fulfilling cycle, as heightened pressure can
trigger a devaluation, which in turn intensifies the pressure for
further devaluation.

Estimation methods
Markov Chain Monte Carlo (Metropolis–Hasting Algorithm).
The Metropolis–Hasting (MH) algorithm is a well-known and
complex sampling technique used in statistical analysis (Heratha
and Herath, 2018; Haario et al., 2006). This algorithm is based on
Markov chains and is related to rejection methods, which means
that a proposed value is required, and the normalization of the
distribution function being sampled is not necessary. The MH
algorithm is inspired by the behavior of systems near equilibrium
in statistical mechanics. In this algorithm, the transition prob-
abilities between different states, X and Y, are utilized to describe
the evolution of the system. The concept of equilibrium is reached
when, on average, the system has an equal probability of being in
either state X or Y. Furthermore, the probability of transitioning
from state Y to X is equivalent to the probability of transitioning
from state X to Y. This equilibrium condition is mathematically
expressed through the detailed balance equation.

f Xð ÞP Y jXð Þ ¼ f Yð ÞP XjYð Þ ð8Þ

where f(X)P(Y|X) represents the likelihood of finding the system
in the vicinity of state X, denoted by f(X), multiplied by the
conditional probability of the system transitioning from state X to
state Y, denoted by P(Y|X) (Ayekple et al., 2018). The detailed
balance condition plays a crucial role in maintaining the correct
distribution in the algorithm and is employed to determine the
acceptance probability of proposed moves in the
Metropolis–Hastings algorithm. The acceptance probability is
determined by comparing the probabilities on the left and right-
hand sides of the detailed balance equation. By adhering to this
condition, the algorithm ensures that the samples obtained align
with the desired distribution. P(Y|X) is known and it is about
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finding f(X). The MH algorithm claims the opposite: given an
f(X) is about finding the transition probability that brings the
system to equilibrium. Transitions are proposed from X to Y
following any test distribution T(Y|X). It compares f(Y) with f(X)
and it accepts Y with likelihood A(Y|X).

The acceptance probability determines whether a proposed
state is accepted or rejected based on the comparison of
probability densities between the current state X and the
proposed state Y. If the probability density of Y is higher than
that of X, the acceptance probability A(Y|X) is set to 1, resulting
in the acceptance of the move to Y. However, if the probability
density of Y is lower than that of X, the acceptance probability
A(Y|X) is <1. In this case, the move to Y is accepted with a
probability of A(Y|X) and rejected with a probability of 1−A
(Y|X). The proposed state Y is randomly chosen from the
proposal distribution T(Y|X), which satisfies the detailed balance
condition. The detailed balance condition ensures that the ratio of
transition probabilities, P(Y|X) to P(X|Y), is equal to the ratio of
acceptance probabilities, A(Y|X) to A(X|Y). By satisfying this
condition, the algorithm adheres to the principle of detailed
balance, facilitating the convergence of the Markov chain to the
desired equilibrium distribution (Heratha and Herath, 2018).
Therefore,

P Y jXð Þ ¼ A Y jXð ÞT Y jXð Þ ð9Þ
A Markov chain made up of the states is constructed X0, X1,

X2,…,XN which is reached in each transition, from an initial X0.
Each Xn is a random variable that will satisfy the following
condition:

lim
n!1

ϕn Xð Þ ¼ f Xð Þ ð10Þ
The mentioned condition implies that as the number of

iterations increases indefinitely, the empirical distribution of the
states Xn, represented by ∅n(X), approaches the target distribu-
tion f(X). This means that the algorithm generates a sequence of
states, X0, X1, X2,…,XN, and as the number of iterations (N) grows
larger, the distribution of the final state XN converges to the
desired target distribution f(X) (Haario et al., 2006). During each
step of the random path, there is a transition probability T(Y|X)
that ensures the transitions between states are properly normal-
ized, indicating the likelihood of moving from one state to
another. Z

dY T Y jXð Þ ¼ 1 ð11Þ

Assuming it is always possible to go from Y to X if it is possible
to go from X to Y, and vice versa, we define,

q YjXð Þ ¼ T XjYð Þf Yð Þ
T XjYð Þf Xð Þ ≥ 0 ð12Þ

where T(Y|X) represents the probability of proposing state Y
given the current state X, which is known as the proposal
distribution. The target distribution is denoted by f(X) for the
current state X and f(Y) for the proposed state Y. The proposal
probability ratio q(Y|X) is used to calculate the acceptance
probability of the proposed state Y given the current state X. This
acceptance probability determines whether the proposed state is
accepted or not. The value of q(Y|X) is treated as the probability
of acceptance in the algorithm, indicating the likelihood of
transitioning to the proposed state Y.

A YjXð Þ ¼ min q YjXð Þ; 1� � ð13Þ
The acceptance of the proposed state Y depends on the value of

q(Y|X). If q(Y|X) is less than or equal to 1, the state Y is always
accepted. However, if q(Y|X) is greater than 1, the acceptance
probability is determined by min{1, q(Y|X)}. The condition q(Y|

X) ≥ 0 ensures that the proposal probability ratio is non-negative,
which is necessary for the acceptance probability to be well-
defined (Betancourt, 2019).

The summary of the procedure explained so far to generate
Markov chains from the Metropolis–Hastings algorithm has the
following general outline:

Algorithm: Metropolis–Hastings
Step 1: Initialize X0, t= 0.
Step 2: Repeat {
Generate a candidate Y⁓ q(.|Xt)
Generate U⁓U(0, 1)
If U ≤(Xt; Y), take Xt+1= Y
otherwise, take Xt+1= Xt

Increase t
}

For this derivation of the algorithm, we have the Metropolis
random walks, where q(Y|X)= q(|X−Y|). In all cases, it is
necessary to note that the quantity α(X,Y) is fundamentally for
the construction of Markov chains. The choice of the form of
α(X,Y), which is very simple, guarantees that π(·) satisfies the
balance condition, and therefore that π(·) is itself the
stationary distribution of the Markov chain (Neureiter et al.,
2022). The key quantity in the Metropolis algorithm is the
acceptance probability α(X,Y), which determines whether the
proposed state Y is accepted or rejected. The choice of α(X,Y)
is crucial for constructing Markov chains that have a desired
stationary distribution. The form of α(X,Y) is typically quite
simple and is designed to satisfy the balance condition. The
balance condition ensures that the desired distribution π(·) is
the stationary distribution of the Markov chain. In other
words, as the Markov chain converges, the distribution of
states should approach the desired distribution π(·) (Ayekple
et al., 2018). The balance condition is satisfied when the
acceptance probability α(X,Y) is defined as α(X,Y)=min{1,
π(Y)/π(X)}.
In this context, π(X) and π(Y) represent the probability

densities of states X and Y, respectively. The acceptance
probability is determined by comparing the relative likelihoods
of transitioning from state X to state Y. If the probability density
of the new state Y is higher than that of the current state X
(π(Y) > π(X)), the transition is always accepted with probability 1
(Heratha and Herath, 2018). If the new state Y has a lower
probability density (π(Y) < π(X)), the transition is accepted with
probability π(Y)/π(X). By incorporating this acceptance prob-
ability, the Markov chain tends to explore the state space in a way
that is consistent with the desired distribution π(·).

Following the implementation, this study used the
Gelman–Rubin Test as a criterion to analyze the convergence
of Markov chains (Nguyen and Jones, 2022), which consists of the
following steps:

1. Generate M ≥ 2 strings, each with 2N iterations, starting
from different starting points.

2. Discard the first N iterations of each chain to allow for
burn-in.

3. Calculate the within-chain variance of each chain s2j after
discarding the first N iterations. Then, calculate the average
of the within-chain variances:

W ¼ 1
M

∑
M

j¼1
s2j ð14Þ

where s2 is the variance of each chain, calculated after
discarding the first N iterations. Calculate the between-chain
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variance B by taking the variance of the means of the M
chains:

B ¼ N
M � 1

∑
M

j¼1
θj � θ

� �2
ð15Þ

where θ is the mean of the M strings.
4. Estimate the variance of the target parameter θ as follows:

var θð Þ ¼ 1� 1
N

� 	
W þ 1

N
B ð16Þ

This term represents a weighted average of the variance
within each chain and the variance between different
chains.

5. Compute the potential scale reduction factor, R:

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
var θð Þ
W

r
ð17Þ

The chains are accepted to have converged when typically
0.97 < R < 1.03 (Neureiter et al., 2022). The Gelman–Rubin test is
used to evaluate convergence by comparing the within-chain
variance (W) and the between-chain variance (B). Convergence is
indicated when the within-chain variance is similar to the
between-chain variance, suggesting that the chains have con-
verged to the same distribution. The test calculates the statistic R,
which represents the ratio of the estimated variance of the target
parameter using all chains to the within-chain variance of each
individual chain.

Sequential Monte Carlo (SMC). The particle filtering framework
is a strong state space model for inference (Bloem-Reddy and
Orbanz, 2018). They have also been commonly used for financial
and macroeconomic applications (Lux, 2018). The essence is to
map the state variable distribution using a Monte Carlo approach
built through a vast amount of random samples, that evolve
according to a simulation-based updating schedule. As such,
novel observations are rendered by the filter as they are available.
Every particle is given a weight and recursively updated.

The filtering problem lies in the determination of p xt
��y1:t ; ;� �

.
This can be done in the projection (Eq. (19)) and update (Eqs.
(20) and (21)) steps:

p xtþ1
��y1:t ; ;� � ¼ Z

p xtþ1
��xt ; ;� �

p xt
��y1:t ; ;� �

dxt ð18Þ

p xtþ1
��y1:tþ1; ;� � ¼ p xtþ1

��y1:t ; ;� �
p y1:tþ1

��xtþ1; ;� �
p y1:tþ1

��y1:t ; ;� � ð19Þ

p ytþ1
��y1:t ; ;� � ¼ Z

p xtþ1jy1:t ; ;
� �

p y1:t
��xtþ1; ;� �

dxtþ1 ð20Þ

In Eq. (18), the prediction step is performed, which involves
estimating the probability of the next state. This estimation is
done by integrating the current state using the transition function
and the current state probability. Equation (19) is the update step,
where the probability of the next state given the observations is
estimated using Bayes’ rule and the likelihood function. Finally,
Eq. (20) is the likelihood computation step, where the likelihood
of the next observation is estimated by integrating over the next
state using the transition function and the current observation
probability (Bloem-Reddy and Orbanz, 2018). In summary, these
equations outline the recursive estimation process employed in
sequential Monte Carlo (SMC) to estimate the probability
distribution of the system state at each time step.

The sequential Monte Carlo filter represents the distributions
of interest employing Monte Carlo approximations, that is,
employing a set of M particles. We assume to be in time t−1 and
to create M extractions of p xt

��xt�1; ;� �
, in such a way that they

are simulated from the system of formulas of state. Then, we
allocate every particle m= 1, …, M a weight proportional to its
probability:

wt;m ¼ p yt
��xt ; ;� � ð21Þ

The weights can be normalized as

ewt;m ¼
wt;m

∑M
m¼1 wt;m

ð22Þ

To generate the particles, the SMC filter uses Monte Carlo
approximations. Starting from the previous time step (t−1), the
filter creates M samples of p yt

��xt; ;� �
. These samples are

simulated using the system of state equations. After generating
the particles, each particle is assigned a weight wt,m that is
proportional to the likelihood of the observation yt given the state
value xt associated with that particle. This weight represents the
importance of that particle in approximating the target distribu-
tion (Bloem-Reddy and Orbanz, 2018). Particles with a higher
likelihood of the observations are assigned higher weights.

Therefore, the weights can be used to calculate Monte Carlo
integrals using importance sampling (Lux, 2018). Resampling
considers the number of offspring in proportion to the weight of
importance and is generated by simulating a set U from M of
random variables uniformly distributed in [0; 1], employing the
cumulative sum of the normalized weights

qm ¼ ∑
m

j¼1
ewt;j ð23Þ

and then setting Om equal to the number of points in U that are
between qm−1 and qm. When ∅ is fixed, the subsequent
distribution p(∅|y1:t) can be described as its Monte Carlo mean
and its variance ;t and s2t , where s2t denotes the vector of
empirical variances of each element ∅ (Bloem‐Reddy and
Orbanz, 2018). Instantly it can be noted that, for artificial
evolution of the parameters, the Monte Carlo variance rises to
s2t þ ξt . The Monte Carlo approximation can be stated as a
softened kernel density of the particles:

p ;jy1:t
� � � ∑

M

j¼1
k

jð Þ
t ;tþ1j;

jð Þ
t ; ξt

� �
ð24Þ

while the target variance s2t can be expressed as

s2t ¼ s2t�1 þ ξt þ 2Cov ;t�1; kt
� � ð25Þ

being Cov ;t�1; kt
� � ¼ � ξt

2 .
This Eq. (24) approximates the distribution of the unknown

variables (∅) given the observed data (y1:t) using a set of M
particles. At every time step, the particles are advanced from the

previous state ;ðjÞt
� �

to the current state (∅t+1) using a transition

kernel kðjÞt with a tuning parameter ξt. The importance weights of
the particles are then calculated based on their ability to explain
the observed data at the current time step, as described by
Eq. (21) (Lux, 2018).

Equation (25) provides the estimation of the target variance at
time t, taking into account the variance at the previous time step
s2t�1
� �

, the tuning parameter ξt, and the covariance between the
particles at the previous time step (∅t−1) and the transition
kernel at the current time step (kt). This equation allows for the
adaptation of the target variance, which helps in maintaining an
appropriate balance between exploration and exploitation in the
Sequential Monte Carlo algorithm.

Finally, the bootstrap filter includes a resampling step to
address particle degeneracy by eliminating particles with low-
importance weights. In the past, several authors used the
importance-weighted empirical distribution, but this time, we
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use a uniformly-weighted distribution as the way is being applied
to a few recent papers (Martino and Elvira, 2021).

PN ¼ dx0:t y1:t
��� � ¼ N�1 ∑i N

ið Þ
t δx ið Þ

0:t
dx0:t
� �

ð26Þ

where N ið Þ
t is the number of a descendant of the particle x0:t which

will be calculated by the branching process during sampling. The
most commonly used mechanism process is about resampling N
times from P̂N (Gordon et al., 1993). During the sampling
process, a branching mechanism is utilized to duplicate or
eliminate each particle based on a branching process. The
decision to duplicate or eliminate a particle is generally governed
by the assigned importance weights for each particle. This ensures
that particles with higher weights have a higher likelihood of
being duplicated, while particles with lower weights may be
eliminated. The process of eliminating particles and duplicating
others helps to prevent particle depletion and ensure that the
particles adequately represent the posterior distribution. We

require ∑i N
ið Þ
t ¼ N for all t. If N

jð Þ
t ¼ 0, the particle xðjÞ0:t dies. We

try to choose N ið Þ
t such thatZ

ht x0:t
� �

PN dx0:t
��y1:t� � � Z

ht x0:t
� �bPN dx0:t y1:t

��� � ð27Þ

The surviving particles, indicated by N(i)t > 0, approximate the
distribution pðx0:tjy1:tÞ. Importance weights are employed to
adjust the sample density and approximate the target distribution.
Resampling is subsequently employed to eliminate particles with
low weights and duplicate particles with high weights. This
process generates a new set of samples that closely resemble the
target distribution.The resampling step ensures that the samples
remain diverse, avoiding the degeneracy of the particle filter.

Auxiliary-field quantum Monte Carlo (AFQMC). The CPMC
algorithm consists of two main components. The first component
involves projecting the basic state as a random walk of open-
importance samples in a deterministic Slater space. This random
walk utilizes an accurate restricted representation, which allows
CPMC to scale polynomially. The algorithm also incorporates
importance sampling, enhancing its applicability in various scenar-
ios. The second component involves constraining the trajectories of
the random path. During this process, each created Slater determi-
nant maintains significant overlap with a reference test wave func-
tion, represented as |ψT〉. This constraint eliminates the sign problem,
resulting in CPMC scaling algebraically rather than exponentially.
However, it introduces a systematic error in the algorithm.

In the CPMC method, particular attention is given to a particle
basis that is specific to the problem at hand. The Hamiltonian
employed in this method follows the Born–Oppenheimer
approximation and does not involve the mixing of spin states.
Throughout the discussion, it is assumed that the Hamiltonian
conserves the total spin projection, Ŝz , and that the electron
number remains fixed for each spin component. However, even if
the Hamiltonian does mix spin states, it can still be effectively
handled using the CPMC method, as demonstrated in a study by
Nguyen et al. (2014). For clarity, the notation used in the
subsequent discussion will be explained in the following
paragraph.

In the context of the Hubbard model lattice, M represents the
number of base states available for a single electron. The state |χi〉
refers to the ith ground state of a single particle, with i ranging
from 1 to M. The operators cyi and ci correspond to the creation
and annihilation operators, respectively, for an electron in the
state |χi〉. The operator ni represents the number operator
associated with state |χi〉. The variable N represents the total
number of electrons, while Nσ specifically indicates the number of

electrons with spin σ (where σ can be either up or down). The
symbol φ represents an orbital of a single particle. The expansion
φ ¼ ∑i φi xii

�� ¼ ∑i c
y
i φi 0ij , based on the single-particle base

states {|χi〉}, can be represented as a vector of dimension

M :

φ1
φ2

..

.

φM

0
BBB@

1
CCCA. The state |φ〉 represents a many-body wave

function that can be expressed as a Slater determinant. Given N
different single-particle orbitals, we can construct a many-body
wave function by taking their antisymmetric product, denoted as
ϕi
�� � φ̂y1φ̂

y
2 ¼ φ̂yN 0ij . Here, the operator φ̂ym is defined as the sum

φ̂ym � ∑i c
y
i φi;m. The matrix Φ represents a matrix of dimension

M ×N, whereM is the number of base states and N is the number
of orbitals. This matrix Φ contains the coefficients of the orbitals
required to form a Slater determinant, expressed as |∅〉:

Φ �

φ1;1 φ1;2 � � � φ1;N
φ2;1 φ2;2 � � � φ2;N

..

. ..
. ..

.

φM;1 φM;2 � � � φM;N

0
BBB@

1
CCCA. The resulting M ×N matrix

corresponds to a Slater determinant. The state |Ψ〉 represents a
many-body wave function that may not necessarily be a single
Slater determinant, with the initial state denoted as |Ψ0〉.

We can denote the superposition integral, which is a number,
between two non-orthogonal Slater determinants |φ〉 and |φ′〉 as
follows:

ϕ
��ϕ0� 
 ¼ det ϕyϕ0

� � ð28Þ
being Φ† the conjugate transpose of the matrix Φ. The equation
given in the statement describes the superposition integral
between two non-orthogonal Slater determinants, |φ〉 and |φ′〉.
The notation det ϕyϕ0

� �
represents the determinant of the matrix

product of the conjugate transpose of the single-particle wave
functions in |φ〉 and |φ′〉. A superposition integral serves as a
numerical measure of the overlap between two Slater determi-
nants, playing a vital role in evaluating transition probabilities
and computing expectation values (Ceperley, 2010). Furthermore,
the operation of applying the exponential of an operator on a
Slater determinant follows a specific procedure.

bB ¼ exp ∑
M

ij
cyi Uijcj

� 	
ð29Þ

leads to another determinant of Slater:

B̂ ϕi
�� ¼ ϕ0y1 ϕ̂

0y
2 ¼ ϕ̂0yN 0ij � ϕ0i

�� ð30Þ
with ϕ̂0ym ¼ ∑j c

y
j ϕ
0
jm and ϕ0 � eUϕ, being the matrix U formed

from elements Uij. The second property of a Slater determinant
states how it is affected by the exponential of an operator.
Consider an operator B̂ that can be written as a sum of creation
and annihilation operators, as shown in Eq. (29), where cyi and cyj
are the creation and annihilation operators, respectively, and Uij

are the elements of a matrix U. When this operator acts on a
Slater determinant |ϕ〉, it results in another Slater determinant
|ϕ′〉, as shown in Eq. (30) (Nguyen et al., 2014). Here,
ϕ0y1 ϕ̂

0y
2 ¼ ϕ̂0yN 0j are the rows of a new N ×N matrix formed by

taking the transpose of a matrix ϕ′, which is given by multiplying
the original matrix ϕ with the matrix exponential of U.

Given B≡ eU indicates a square matrixM ×M, the operation of
B̂ over simply involves multiplying eU, a matrix M ×M, by Φ, a
matrix M ×N (Ceperley, 2010). It is, therefore, appropriate to
consider every Slater determinant represented as two separate
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rotatable parts:

ϕi
�� ¼ ϕ"i

�� � ϕ#i
�� ð31Þ

The appropriate matrix expression would be the following:

ϕ ¼ ϕ" � ϕ# ð32Þ
where ϕ↑ and ϕ↓ have dimensions M ×N↑ and M ×N↓,
accordingly. The overlap between two Slater determinants is
simply the product of the overlaps of individual turn determi-
nants (Ceperley, 2010):

hϕ
��ϕi0 ¼ Y

σ¼";#
hϕσ ϕ0σi

�� ¼ det ϕ"
� �y

ϕ0"
h i

� det ϕ#
� �y

ϕ0#
h i

ð33Þ

Any operator B̂ defined by Eq. (30) operates separately on the
two rotating parts:

B̂ ϕi
�� ¼ B̂" ϕ"i

�� � B̂# ϕ#i
�� ð34Þ

Equation (32) expresses a Slater determinant as a product of
two determinants corresponding to spin-up and spin-down
electrons, respectively. The notation ϕ′↑ and ϕ↓ denote the
submatrices corresponding to spin-up and spin-down electrons in
the Slater determinant, respectively. The dimensions of these
submatrices are M ×N↑ and M ×N↓, respectively, where M is the
number of spatial orbitals, and N↑ and N↓ are the numbers of
spin-up and spin-down electrons, respectively. Equation (33)
shows how to calculate the overlap between two Slater
determinants, which is simply the product of the overlaps of
their spin-up and spin-down determinants. The overlap of each
spin-determinant is expressed as a determinant of the corre-
sponding submatrices. Finally, Eq. (34) states that any operator B̂
defined by Eq. (30) operates separately on the spin-up and spin-
down parts of the Slater determinant. This means that the
operator acts on each submatrix independently.

Equation (32) provides a representation of a Slater determinant
as the product of two determinants, one for the spin-up electrons
(ϕ′↑) and another for the spin-down electrons (ϕ↓). These
determinants are submatrices with dimensions M ×N↑ and
M ×N↓, respectively, where M represents the number of spatial
orbitals, N↑ is the count of spin-up electrons, and N↓ is the count
of spin-down electrons. The overlap between two Slater
determinants is computed in Eq. (33) by taking the product of
the overlaps of their spin-up and spin-down determinants, each
expressed as a determinant of the corresponding submatrices.
Equation (34) states that any operator B̂ defined by Eq. (30) acts
independently on the spin-up and spin-down parts of the Slater
determinant, operating on the respective submatrices separately.
The Hubbard model is a simple paradigm of an interacting
electron system (Ceperley, 2010). Its Hamiltonian is given by the
following equation:

Ĥ ¼ K̂ þ V̂ ¼ �t∑ cyiσcjσ þ cyjσciσ
� �

þ U∑ni"ni# ð35Þ

where t represents an element of the jump matrix, and cyiσ and ciσ
are creation and destruction operators for electrons with spin σ at
position i (Nguyen et al., 2014). The Hamiltonian is defined as a
network with dimensions M ¼Q

d Ld . The exchange rate
calculations are performed in an approximation to the ground
state in particle physics. The ground state wave function |Ψ0〉 can
be obtained by repeatedly applying the projection of the ground
state operator to any test wave function |ΨT〉 that is not
orthogonal to |Ψ0〉.

Pgs ¼ e�Δτ Ĥ�ETð Þ ð36Þ
given ET as the best estimate of the exchange rate of the currency,
if the wave function at the nth time step is |Ψ (n)〉, the wave

function at the next time step can be expressed as:

Ψ nþ1ð Þ
�� ¼ e�Δτ Ĥ�ETð Þ Ψ nð Þi
�� ð37Þ

The objective of the algorithm is to determine the ground state
wave function |Ψ0〉, which represents the most stable state of the
currency exchange rate system. Equation (36) outlines the
iterative process of applying the ground state operator projection
to a test wave function |ΨT〉 in order to converge toward the
ground state wave function |Ψ0〉. The parameter Δτ controls the
time step, while Ĥ denotes the Hamiltonian operator and ET
represents the estimated exchange rate. The algorithm gradually
evolves the wave function from an initial state (|ΨT〉) to the stable
ground state (|Ψ0〉) by repeatedly applying the projection
operator. Equation (37) illustrates the wave function at the
(n+ 1)th time step, obtained by applying the projection operator
to the wave function at the previous time step. Through repeated
iterations, the algorithm approaches the ground state wave
function, which provides an estimation of the currency
exchange rate.

In the Hubbard model, the Hubbard–Stratonovich (HS)
transform is employed to convert the exponential term e�ΔτV̂

into the desired form. This transform is utilized to simplify the
mathematical representation of the system:

e�ΔτUni"ni# ¼ e�ΔτU ni"þni#ð Þ=2∑p xi
� �

eγxi ni"�ni#ð Þ ð38Þ
where γ is given by cosh(γ)= exp(ΔτU/2). There is no
information in the above procedure about the importance of
the deterministic result in the representation of |Ψ0〉 contained in
the sampling of ~x.The following equation expresses the mixed
estimator of the ground state approximation. |

Emixed �
h;T Ĥ

�� ��ψ0i
h;T ψ0i

�� ð39Þ

where it is required to estimate the denominator by ∑
k
h;T ;ki

�� ,

being |∅k〉 random walks after the balance (Nguyen et al., 2014;
Ceperley, 2010). We define the function estimates the super-
position of a Slater determinant ∅k:

OT ;k
� � � h;T ;ki�� ð40Þ

The mixed estimator (Eq. (39)) can be expressed as the
expectation value of the Hamiltonian operator, Ĥ, in the ground
state wave function, |ψ0〉, projected onto a trial wave function,
∅T. The numerator represents this expectation value, while the
denominator corresponds to the overlap between the trial wave
function and the ground state wave function.

We assign a weight wk=OT (∅k) to every random walk
(Ceperley, 2010; Nguyen et al., 2014). The weight for each ride in
the set is set to one, indicating equal importance for all rides

; 0ð Þ
k

E
¼ ;Ti

����� for all k. Then the form is iterated as follows:

e; nþ1ð Þ
E
 ∑~x

~P ~xð ÞB̂ ~xð Þ e; nð Þ
������ ð41Þ

where B̂ ~xð Þ ¼ B̂k=2B̂V ~xð ÞB̂k=2.
The walkers, represented as e; nð Þ

��� , are now sampled from a
revised distribution. These walkers visually represent the wave
function of the fundamental state using a diagrammatic
representation:

ψ nð Þ�� 
 / ∑k ω
nð Þ
; nð Þ
k

��� E
OT ; nð Þ

k

� � ð42Þ

Equation (42) shows how the wave function of the trial state at
iteration n, denoted by ψ nð Þ�� 


, can be approximated using a sum
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over different configurations (denoted by ; nð Þ
k

��� E
) weighted by

their corresponding weights (denoted by ω(n)). These configura-
tions are sampled from a new distribution, which is determined
by the previous set of weights and the normalization factor OT.
The equation also includes a normalization factor in the
denominator to ensure that the sum over all configurations is
properly normalized to 1, which is a requirement for any valid
wave function. This normalization factor depends on the overlap
between the trial state and each individual configuration
(Ceperley, 2010). This iterative approach involves improving
the trial wave function by utilizing a set of walkers that represent
the system. The walkers are sampled from a distribution that is
updated at each iteration, taking into account the previous set of
weights. This systematic process allows for the gradual conver-
gence toward the true ground state of the system.

The modified function eP ~xð Þ is defined as the product of individual
probabilities eP ~xð Þ for sampling the auxiliary field at each site in the
network. This can be expressed as ~p ~xð Þ ¼QM

i ~p xi
� �

, where M
represents the total number of sites in the network.

ep xi
� � ¼ OT ; nð Þ

k;i

� �
OT ; nð Þ

k;i�1
� � p xi

� � ð43Þ

where ; nð Þ
k;i�1

��� E
¼ b̂V xi�1

� �
b̂V xi�2

� �
¼ b̂V xi

� � ; nð Þ
k

��� E
, is the current

state of the kth walker, ; nð Þ
k

��� E
, after your first (i−1) fields have been

sampled and updated, and ; nð Þ
k;1

��� E
¼ b̂V xi

� � ; nð Þ
k;1�1

��� E
is the next sub-

step after selecting the ith field (Ceperley, 2010; Nguyen et al., 2014).
In each ep xi

� �
, xi can only take the value of +1 or −1 and can be

sampled after choosing xi del ep xi
� �

=Ni, where the normalization
factor is N i � ~p xi ¼ þ1

� �þ ~p xi ¼ �1
� �

, and carrying weight for

the random walk wðnÞk;i ¼ N iw
ðnÞ
k;1�1. The inverse of the superposition

matrix ;T
� �y;ðnÞkh i�1

is maintained and updated after each xi is

selected.

For every walker ;ðnÞk
��� , a random walk step thus involves:

6. One x sampling starting from the likelihood density

function eP xð Þ=N ; nð Þ
k

� �
. With discrete, Ising-like auxiliary

fields for a Hubbard interaction, the sampling is achieved
by a heat bath-like algorithm, sweeping through each field
xi.

7. compute the ; nð Þ
k walker to produce a new walker after

building the corresponding B(x).

8. allocate a weight ω nþ1ð Þ
k ¼ ω nð Þ

k N ; nð Þ
k

� �
to the new walker.

In the reorthogonalization procedure, no modification of the
weight of a walker is required. This is because the upper
triangular matrix R, which arises during reorthogonalization, only
contributes to the overlap OT, and the weight of the walker
already accounts for this overlap. Therefore, after each reortho-
gonalization step, R can be disregarded, as explained by Motta
et al. (2019). To estimate the expected value of an observable that
does not commute with the Hamiltonian, the back-propagation
approach, proposed by Zhang in 2004, is employed. When two
independent populations are decoupled, significant fluctuations
in the estimator can occur after uncoupling the significance
functions, since the population in the random walk is sampled. In
the backpropagation method, an iteration n is selected, and the

entire population ; nð Þ
k

��� En o
is stored. For each new walker as the

random walk progresses from n, two pieces of information are

recorded: the auxiliary field parameters leading to the new walker
from its parent walker, and an integer tag describing the parent.
Backpropagation is then performed for m additional iterations.
For each walker l in the (n+m)th population, a determinant
ψT

� �� is initiated, and the propagators are applied in reverse order.
The m successive propagators are constructed using the stored

elements between steps m and m+ l, with exp � ΔτĤ1
2

� �
inserted

as necessary, following Zhang’s, 2004 methodology. The resulting

determinants ;ðmÞl

D ��� are combined with their parents from

iteration n to calculate the expectation value 〈O〉BP, similar to the
composite estimator. The weights are appropriately denoted as
ω nþmð Þ
l , accounting for significance sampling, as discussed by

Motta et al. (2019).

Empirical results
To estimate the models for USD/EUR and USD/JPY exchange
rates, daily close data from 2013 to 2021 have been utilized. The
data was obtained from Yahoo Finance historical data, providing
a reliable source for exchange rate information. In addition to
exchange rate data, macroeconomic indicators played a crucial
role in this study. These indicators were sourced from various
reputable databases such as Federal Reserve Economic Data
(FRED) of St. Louis, Eurostat, World Bank Open Data, and Bank
of Japan’s statistics. By incorporating relevant macroeconomic
data, a comprehensive analysis of the exchange rate dynamics and
factors influencing them was conducted. The information used in
this study is available at a monthly frequency, which is the
smallest frequency provided by international organizations and
the databases used in this research. This choice of frequency
aligns with previous studies, such as Rossi (2013), which suggest
that the selected frequency for empirical exchange rate research
does not significantly impact the reliability of the results. The
selected economic indicators in this paper include short-term
interest rates, international reserves, narrow money (M1), com-
modity prices, and 10-year government bond yields. These indi-
cators have been chosen based on their relevance in previous
research on the models employed, as discussed in the section
“Literature review” of the paper. The inclusion of these indicators
enhances the understanding and prediction of financial market
turbulence, including speculative attack models studied in this
research, following the suggestions of Wang et al. (2020). For the
estimation process, two Intel Core I7-6500U quad-core pro-
cessors were used, and the code was implemented using the
MATLAB package (version R2019b). To ensure robustness and
accuracy, 500 computing runs were performed to estimate the
FOREX fundamentals models, enhancing the reliability of the
results.

Results for USD/EUR exchange rate. Tables 1–7 show adjust-
ment levels by means of accuracy, RMSE, and MAPE. In all
Monte Carlo methods, the level of precision always surpasses
77.41% for out-of-sample data for the sample of 200 observations.
For its part, the RMSE and MAPE levels are adequate, whereas
the Monte Carlo methods, especially the AFQMC quantum
technique, where improve both the precision results and the error
levels of the rest of the methodologies used. For the sample of 500
observations, it shows this same trend, only that most meth-
odologies improve their precision results. Therefore, the AFQMC
technique obtains the best results with a precision range for data
outside the sample of 86.93–89.56% for the sample of 200
observations, while it reaches a range of 87.96–92.97% for the
sample of 500 observations. Overall, these findings yield a pre-
cision level significantly higher than that of prior investigations.
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For example, in the study by Hauzenberger and Huber (2019), an
accuracy of around 77% is revealed, in the work of Cheung et al.
(2019) it is close to 74%, and in the study of Beckmann and
Schüssler (2016), it approaches 75.94%. Other works such as Park
and Park (2013), and Rubaszek and Ca’ Zorzi (2020) achieve an
accuracy lower than even 70%. Therefore, the difference shown
by the Monte Carlo methodologies, and especially the quantum
variant, used in this research surpasses by far the accuracy
reported in the earlier literature.

In light of our results, the reliability and stability of the
AFQMC method can be verified, if we observe the average result
of RMSE and MAPE after 500 iterations compared to the rest of
the applied methodologies. Therefore, the AFQMC method
improves the precision and error values shown by the rest of
the Monte Carlo methodologies and the regression techniques
(Lee, 2011; Jaworski, 2018; Hauzenberger and Huber, 2019), both
with a sample of 200 observations out of 500 observations. This
novel quantum method demonstrates a high level of precision for

Table 2 Results of the PPP model.

N Model In-sample Out-of-sample

Classification (%) RMSE MAPE Classification (%) RMSE MAPE

200 MCMC 84.20 0.72 0.53 80.37 0.75 0.56
SMC 85.18 0.78 0.44 81.30 0.81 0.46
AFQMC 92.17 0.61 0.39 88.39 0.64 0.41

500 MCMC 87.30 0.40 0.18 83.33 0.42 0.19
SMC 86.38 0.32 0.21 82.44 0.34 0.22
AFQMC 93.53 0.26 0.15 90.06 0.28 0.17

N is the number of observations.

Table 1 Results of the UIRP model.

N Model In-sample Out-of-sample

Classification (%) RMSE MAPE Classification (%) RMSE MAPE

200 MCMC 85.65 0.62 0.37 81.76 0.64 0.39
SMC 86.71 0.61 0.36 82.77 0.64 0.38
AFQMC 93.18 0.37 0.22 89.56 0.39 0.23

500 MCMC 89.04 0.33 0.19 85.61 0.35 0.20
SMC 87.77 0.38 0.22 84.39 0.39 0.23
AFQMC 95.21 0.23 0.14 92.97 0.26 0.15

N is the number of observations.

Table 3 Results of the BEER model.

N Model In-sample Out-of-sample

Classification (%) RMSE MAPE Classification (%) RMSE MAPE

200 MCMC 84.83 0.66 0.39 80.14 0.69 0.41
SMC 85.88 0.65 0.38 81.13 0.68 0.40
AFQMC 93.24 0.39 0.24 87.39 0.41 0.25

500 MCMC 89.09 0.35 0.21 83.92 0.37 0.22
SMC 87.82 0.40 0.24 82.72 0.43 0.25
AFQMC 95.27 0.25 0.16 90.71 0.28 0.17

N is the number of observations.

Table 4 Results of the SPM model.

N Model In-sample Out-of-sample

Classification (%) RMSE MAPE Classification (%) RMSE MAPE

200 MCMC 84.25 0.78 0.57 79.60 0.81 0.60
SMC 85.23 0.84 0.48 80.53 0.87 0.50
AFQMC 92.23 0.65 0.43 88.03 0.68 0.45

500 MCMC 87.35 0.44 0.20 82.53 0.46 0.21
SMC 86.43 0.34 0.23 81.66 0.36 0.24
AFQMC 93.59 0.28 0.17 89.69 0.30 0.19

N is the number of observations.
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the FOREX market estimation, different from the methods used
in the previous literature.

In order to demonstrate the superiority of the quantum Monte
Carlo AFQMC methodology in estimating dynamic exchange rate
models and to provide robustness tests, the Diebold–Mariano
(DM) test (Diebold and Mariano, 1995) was employed. The
comparison between the techniques used also considered the time
required for estimation. Table 8 presents the results of the DM
analysis, showing that AFQMC outperforms other methods as the
results fall within the range of −1.96 to 1.96, indicating that the
observed differences in estimation between the methods are
statistically significant at a 5% significance level. Negative values
indicate that the second choice in the comparison is superior.
These results hold for both the sample sizes of 200 and 500
observations. Additionally, Table 9 displays the mean execution
time for the estimation approaches, revealing that Monte Carlo
approaches, particularly AFQMC, require less time for estima-
tion, both for in-sample and out-of-sample data. The estimated
time ranges from 0.6 to 0.20, considering both sample and out-of-
sample data, as well as the sample sizes of 200 and 500
observations. This improves the time elapsed to obtain results
from the FOREX market models carried out in previous works

(Rossi, 2013; Jacob and Uusküla, 2019; Rubaszek and Ca’ Zorzi,
2020; Adegboye et al., 2021). In the same way, it even improves
the precision results shown in works related to research lines such
as the FOREX market prediction with Machine Learning
methodologies, such as with neural networks, where they have
shown accuracies in the range of 73.92–86.48% (Ni et al., 2019;
Wei et al., 2019; Zheng et al., 2019; Parot et al., 2019; Cao et al.,
2020; Wang et al., 2020), the precision displayed by Support
Vector Machines with a range of 71.58–88.26% (Fu et al., 2019;
Sun et al., 2019), or Random Forest with a precision of
68.31–84.19% (Wei et al., 2019; Colombo and Pelagatti, 2020).

Results for USD/JPY exchange rate. Tables 10–16 show the
precision levels as the results of error levels measured by RMSE
and MAPE. The precision values of the Monte Carlo methodol-
ogies used exceed 90.48% for out-of-sample data for the sample of
200 observations. After analyzing the error data, the RMSE and
MAPE values show stable levels, where the Monte Carlo methods
and the AFQMC quantum technique improve both the precision
results and the error levels of the rest of the methodologies used.
The same conclusions are shown for the sample of 500

Table 6 Results of the speculative attacks model.

N Model In-sample Out-of-sample

Classification (%) RMSE MAPE Classification (%) RMSE MAPE

200 MCMC 85.62 0.68 0.51 82.19 0.72 0.53
SMC 86.47 0.74 0.42 83.01 0.78 0.44
AFQMC 92.17 0.59 0.38 88.90 0.61 0.39

500 MCMC 88.40 0.39 0.17 84.86 0.40 0.18
SMC 87.22 0.31 0.20 83.73 0.32 0.21
AFQMC 93.77 0.26 0.15 90.84 0.28 0.16

N is the number of observations.

Table 5 Results of the Taylor model.

N Model In-sample Out-of-sample

Classification (%) RMSE MAPE Classification (%) RMSE MAPE

200 MCMC 85.67 0.74 0.55 81.40 0.78 0.57
SMC 86.53 0.80 0.46 82.22 0.84 0.48
AFQMC 92.23 0.63 0.40 88.54 0.65 0.43

500 MCMC 88.45 0.41 0.19 84.05 0.44 0.20
SMC 87.27 0.33 0.22 82.93 0.34 0.23
AFQMC 93.83 0.28 0.17 90.47 0.30 0.18

N is the number of observations.

Table 7 Results of the speculative attacks’ second-generation model.

N Model In-sample Out-of-sample

Classification (%) RMSE MAPE Classification (%) RMSE MAPE

200 MCMC 78.53 0.64 0.47 77.41 0.70 0.50
SMC 83.35 0.71 0.39 81.28 0.77 0.43
AFQMC 89.25 0.57 0.35 86.93 0.58 0.38

500 MCMC 82.73 0.38 0.16 78.31 0.39 0.18
SMC 81.79 0.29 0.19 83.23 0.31 0.20
AFQMC 93.33 0.24 0.14 87.96 0.27 0.15

N is the number of observations.
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observations since most of the methodologies slightly improve
their results. This means that the AFQMC method achieves the
best results with a precision range for out-of-sample data of
90.48–97.37% for the sample of 200 observations, while it reaches
a range of 90.09–95.62% for the sample of 500 observations.
These results conclude an improvement of the precisions shown
by other works, where regression and Monte Carlo methods were
used. Thus, previous work for the estimation of FOREX markets
with the usual statistical methodology has an accuracy of around

7580% (Park and Park, 2013; Ince et al., 2016; Byrne et al., 2016;
Kavtaradze and Mokhtari, 2018; Serjam and Sakurai, 2018;
Taveeapiradeecharoen et al., 2019; Cheung et al., 2019; Hau-
zenberger and Huber, 2019; Rubaszek and Ca’ Zorzi, 2020), being
difficult to achieve high levels of success. Therefore, the difference
shown by the AFQMC Monte Carlo quantum specification sur-
passes the accuracy displayed by prior literature. The precision
and error levels achieved for the USD/JPY exchange rate surpass
the results obtained in previous studies using Machine Learning

Table 10 Results of the UIRP model.

N Method In-sample Out-of-sample

Classification (%) RMSE MAPE Classification (%) RMSE MAPE

200 MCMC 88.20 0.57 0.35 82.56 0.61 0.35
SMC 89.30 0.54 0.33 83.42 0.59 0.34
AFQMC 95.97 0.31 0.19 90.48 0.36 0.21

500 MCMC 90.01 0.31 0.17 86.40 0.35 0.18
SMC 88.72 0.33 0.18 85.01 0.37 0.21
AFQMC 96.26 0.20 0.11 93.91 0.22 0.13

N is the number of observations.

Table 11 Results of the PPP model.

N Method In-sample Out-of-sample

Classification (%) RMSE MAPE Classification (%) RMSE MAPE

200 MCMC 87.42 0.68 0.50 84.34 0.72 0.53
SMC 88.42 0.73 0.41 85.32 0.78 0.44
AFQMC 94.84 0.58 0.38 92.72 0.61 0.39

500 MCMC 90.63 0.39 0.17 87.45 0.40 0.18
SMC 89.67 0.30 0.20 86.52 0.32 0.21
AFQMC 95.89 0.23 0.14 94.43 0.27 0.14

N is the number of observations.

Table 12 Results of the BEER model.

N Method In-sample Out-of-sample

Classification (%) RMSE MAPE Classification (%) RMSE MAPE

200 MCMC 87.36 0.61 0.37 87.11 0.65 0.37
SMC 88.45 0.58 0.35 88.01 0.63 0.36
AFQMC 96.02 0.33 0.21 95.02 0.38 0.23

500 MCMC 90.07 0.33 0.19 91.16 0.37 0.20
SMC 88.78 0.35 0.20 89.69 0.39 0.23
AFQMC 96.32 0.22 0.11 95.62 0.24 0.15

N is the number of observations.

Table 13 Results of the SPM model.

N Method In-sample Out-of-sample

Classification (%) RMSE MAPE Classification (%) RMSE MAPE

200 MCMC 87.47 0.74 0.54 88.98 0.78 0.57
SMC 88.47 0.79 0.45 90.02 0.84 0.48
AFQMC 94.89 0.62 0.40 97.37 0.65 0.43

500 MCMC 90.69 0.41 0.19 92.26 0.44 0.20
SMC 89.72 0.32 0.22 91.29 0.34 0.23
AFQMC 95.95 0.25 0.16 95.16 0.29 0.16

N is the number of observations.
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techniques, which have reported accuracies ranging from 68.31 to
88.26% (Contreras et al., 2018; Wei et al., 2019; Zheng et al., 2019;
Parot et al., 2019; Fu et al., 2019; Cao et al., 2020; Wang et al.,
2020; Sun et al., 2019; Colombo and Pelagatti, 2020). These
improvements align with the findings observed for the USD/EUR
exchange rate.

Therefore, these levels of precision and errors of the AFQMC
quantum method demonstrate the difference and superiority over
the rest of the techniques, whether they are regression techniques
or other Monte Carlo variants. This concludes that there is an
important margin of greater precision of this new technique for
the estimation of FOREX market models compared to other
simulations carried out by the previous literature.

In line with the analysis conducted for the USD/EUR exchange
rate in section “Results for USD/EUR exchange rate”, we also
utilize the Diebold–Mariano (DM) test (Diebold and Mariano,
1995) to compare different techniques and measure estimation
time for the USD/JPY exchange rate. The results in Table 17
affirm the continued superiority of the AFQMC methodology, as
the DM test confirms the non-rejection of the null hypothesis at a
5% significance level, with results surpassing the threshold of
−1.96. This indicates that the observed differences in estimation
methods are statistically significant. Table 18 further reveals that
the AFQMC methodology requires less time for executing

FOREX market models, with elapsed time ranging from 0.5 to
0.17 min for both the samples of 200 and 500 observations, as
well as estimates within and outside the sample data.

In conclusion, our estimation model for the USD/EUR and
USD/JPY exchange rates has demonstrated the reliability and
stability of the AFQMC method. This approach outperforms
other Monte Carlo methodologies in terms of accuracy and error
values, regardless of whether the sample consists of 200 or 500
observations. Thus, the AFQMC technique offers a significant
improvement in the accuracy of FOREX market models
compared to previous simulations in the literature. Specifically,
for the USD/EUR exchange rate, the UIRP model exhibits high
precision in AFQMC estimations, while for the USD/JPY
exchange rate, the SPM model performs well. Furthermore, the
DM analysis confirms that AFQMC remains the preferred option
over other methods, as results exceeding the threshold of 1.96/
−1.96 do not lead to the rejection of the null hypothesis at a 5%
significance level, indicating significant differences in estimation
between the methods.

Conclusions
In this study, we present new simulations of FOREX market
models using the Auxiliary-Field Quantum Monte Carlo

Table 16 Results of the speculative attacks’ second-generation model.

N Method In-sample Out-of-sample

Classification (%) RMSE MAPE Classification (%) RMSE MAPE

200 MCMC 86.50 0.63 0.48 79.53 0.67 0.48
SMC 85.72 0.70 0.39 85.11 0.73 0.39
AFQMC 98.13 0.52 0.34 90.90 0.55 0.37

500 MCMC 85.73 0.35 0.15 84.17 0.39 0.16
SMC 85.58 0.27 0.18 83.98 0.29 0.20
AFQMC 93.87 0.21 0.12 90.09 0.23 0.14

N is the number of observations.

Table 15 Results of the speculative attacks model.

N Method In-sample Out-of-sample

Classification (%) RMSE MAPE Classification (%) RMSE MAPE

200 MCMC 87.76 0.65 0.48 85.08 0.69 0.51
SMC 88.64 0.71 0.40 85.93 0.75 0.42
AFQMC 94.47 0.56 0.36 92.02 0.59 0.38

500 MCMC 90.61 0.37 0.16 87.85 0.39 0.17
SMC 89.40 0.29 0.19 86.68 0.31 0.20
AFQMC 96.11 0.23 0.13 93.62 0.24 0.15

N is the number of observations.

Table 14 Results of the Taylor model.

N Method In-sample Out-of-sample

Classification (%) RMSE MAPE Classification (%) RMSE MAPE

200 MCMC 87.81 0.70 0.52 89.76 0.75 0.55
SMC 88.69 0.77 0.44 90.66 0.81 0.46
AFQMC 94.53 0.60 0.38 96.64 0.63 0.40

500 MCMC 90.67 0.39 0.18 92.69 0.41 0.19
SMC 89.46 0.31 0.21 91.45 0.33 0.22
AFQMC 96.17 0.25 0.13 95.31 0.26 0.17

N is the number of observations.
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(AFQMC) technique, with a particular focus on speculative attack
models. Our objective is to gain deeper insights into potential
extreme events that may occur in FOREX markets. We utilize
exchange rate data spanning the period 2015–2021, specifically
examining the US dollar against the Euro and Japanese yen. Two
different Monte Carlo methods, namely Markov Chain Monte
Carlo and Sequential Monte Carlo, are employed in the analysis.
Our findings indicate that the majority of the proposed Monte
Carlo approaches exhibit a low level of error and demonstrate
stability in estimating FOREX market models. Importantly, the
novel AFQMC technique outperforms the other methods, deli-
vering the highest level of accuracy and reliability in our
estimations.

In addition, the study aims to enhance the precision of earlier
studies by employing various deep learning and statistical
methods. The results achieved in this research are superior to the
existing literature, with an average precision range of
87.96–95.62% for out-of-sample using the AFQMC method.
While other Monte Carlo methods were used, it has only reached
an accuracy range of 74.60–90.39%, also for out-of-sample.
Unlike prior investigations, the present research proved to extend
the estimation of FOREX markets addressing the precision and
error results, both small sample and larger sample. This study
makes a significant contribution to the fields of International
Finance and Computational Finance.

The findings of this study hold great significance for various
stakeholders in the FOREX markets, including public managers,
finance analysts, central bankers, and other interested parties.
These findings offer valuable insights into which indicators can
provide reliable, accurate, credible, and promising forecasts of
future market performance. The proposed method proves to be a
valuable tool for both financial and macroeconomic decision-
making. Corporate decision-makers can utilize the model for risk
management, portfolio optimization, and derivative asset pricing,
while political decision-makers can leverage it to monitor eco-
nomic factors, assess their impact on exchange rates, and inform
fiscal and monetary policy development. Moreover, given the
inherent volatility of the FOREX market, our research provides a
reliable model that enables investors to anticipate market beha-
vior prior to executing their operations. This study makes a
valuable contribution to the existing knowledge in economics and
finance by introducing a novel estimation analysis that incorpo-
rates three Monte Carlo techniques. Among these techniques,
AFQMC stands out for its superior precision.

Accurate currency forecasting offers numerous advantages to
traders, enabling them to anticipate future events and make
informed decisions in FOREX markets. These models are parti-
cularly valuable for long-term investors as they provide insights
into the market’s direction over months and years. For spec-
ulators trading on shorter time horizons, these models offer
estimates of the overall trend in FOREX markets, allowing them
to make strategic moves based on this information.

This study employs well-established theoretical models of
FOREX fundamentals, which have been widely recognized in
previous literature for their ability to estimate the theoretical
value of currency exchange rates. But one of the limitations of this
study could be not having added simulations of these Monte
Carlo models to trading models in a possible market strategies
simulation. This would be an interesting line of future research as
an extension of the present work.

To conclude, this research is a significant contribution to the
analysis of foreign exchange market trends. The obtained results
have important implications for the decision-making of public
and financial institutions, allowing them to mitigate the risks
associated with large volatility in exchange rate trends. Addi-
tionally, the research assists in alerting governments and central

banks to the possibility of substantial currency depreciation
resulting from imbalances in the balance of payments. By pro-
viding valuable insights, this work helps stakeholders take
proactive measures to prevent adverse effects on the economy. In
the same way, the results obtained in this work can help FOREX
traders and investors to make better decisions in any financial
market with an interest in FOREX markets. However, given the
complexity of this novel quantum method, our research provides
a new possibility that other authors and professionals may
develop in the future. Also, further research in this field includes
estimating other kinds of economic and financial models that are
usually estimated through Monte Carlo methods.

Data availability
The datasets used and/or analyzed during the current study are
included in the supplementary information.
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