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Interpretable early warning recommendations in
interactive learning environments: a deep-neural
network approach based on learning behavior
knowledge graph
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Early warning recommendation is crucial for tracking learning behavior and represents a
significant issue in interactive learning environments. However, an interactive learning
environment-based learning process may not always achieve expected goals, leading to
inefficient or ineffective learning behavior and negative emotions. Additionally, many learners
fail assessments due to these issues. To address this problem, this study proposes relevant
test problems for interpretable early warning recommendations based on massive learning
behavior instances and potential relationships. We design an applicable learning analysis
model, namely a deep-neural network based on the knowledge graph of learning behavior,
and verify its feasibility and reliability through extensive experiments and data analysis. Our
results demonstrate that the interactive learning process must match multi-factor analysis at
different temporal sequences to determine key temporal sequences or intervals. This is
limited by the classification of learning contents and interpretable concepts, which provide
effective reference for subsequent learning content with similar concept classes and
knowledge structures. Our approach recommends effective learning behavior in appropriate
temporal sequences as soon as possible or constructs feasible intervention measures to
improve learners’ participation. This research deepens and expands early warning by pro-
posing a feasible new method and obtaining key conclusions with vital practical significance.
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Introduction

he broad adoption of online interactive learning environ-

ments has revolutionized traditional learning approaches

and catalyzed new learning behaviors. Such environments
represent important platforms for current and future learning
methods, which constitute a crucial trend in educational reform
and development (Oppermann. et al, 2021). Online and data
technologies are fully utilized in interactive learning environ-
ments, eliminating the constraints of time and space (Xia, 2020a).
Furthermore, it provides more reliable and holistic cooperation
modes and communication means, describes the data structure
and relationships of learning behavior, and enables early warning
and intervention mechanisms (Tian et al., 2021). Mining valuable
information and interpretable semantics from massive learning
behavior instances is pivotal for the interactive learning process
(Song et al., 2021; Xia, 2021a).

Interactive learning environments foster online education
improvement (Huang et al., 2021), effectively promoting the
expansion of learning contents and deepening knowledge to
enhance practical innovation (Aguilar et al., 2021). The integra-
tion of various resources, including both software and hardware,
contributes to the integration of data and processes in online and
offline learning. This results in improved efficiency in the learning
process and promotes personalized learning behaviors, ultimately
enhancing learning effectiveness (Xia, 2021b). However, the
learning process supported by interactive learning environments
may yield massive inefficient or ineffective learning behavior
patterns resulting in negative emotions, and even causing con-
siderable failure rates in assessments (Silvola. et al., 2021).

The aforementioned reasons can mainly be attributed to three
aspects: (1) The interactive learning environment fails to meet
learners’ demands leading to an exponential increase in learners’
learning behavior patterns, consequently causing confusion.
Accurately mining applicable behavior patterns and resources
thus become the main research direction under the current
interactive learning environment; (2) No temporal sequence
exists among learning contents; also, the correlations of different
learning contents are not clear, as the interpretable descriptions of
interactive learning environments are lacking, making it difficult
to provide guidance and recommendation of effective learning
behavior; (3) Learners’ cognitive ability and knowledge structure
constraints towards the massive information of interactive
learning environments make it difficult to construct effective
learning behavior patterns in a short time. Effectiveness-oriented
learning behavior patterns should be made properly interpretable
(Xia & Qi, 2022), which constitutes an initial demand for the
construction of learning behavior. Interactive learning environ-
ments should therefore provide interpretable early warning and
feedback (Jovanovi. et al., 2021).

Since current research has yet to yield key, effective results, this
study analyzes and designs new methods relating to interpretable
early warning recommendations for large-scale learning behavior
instances and incorporates complete temporal sequences of the
learning process (Cerezo et al., 2020). Our aim is to enhance
learners’” ability to self-organize and construct feasible learning
behavior patterns, thereby increasing both adaptive and inter-
pretable experiences of the learning process, which contribute to
innovation and practicality. We analyze and design the inter-
pretable early warning recommendation mechanism of the
interactive learning process. Based on existing massive learning
behavior instances, we explore feasible methods to improve
availability and reliability. Firstly, we mine sufficient learning
behavior instances, construct interpretable early warning needs,
and put forward corresponding problems. Secondly, we construct
interpretable knowledge graphs between temporal sequences and
key features, design deep-neural network models based on these
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graphs, fully train data, optimize corresponding parameters, and
track the entire learning process. Thirdly, we construct com-
parative experiments of relevant approximate methods, determine
feasible interpretable early warning recommendation mechan-
isms, and discuss the underlying laws of the interactive learning
process.

Related work

Interpretable needs enable the construction and correlation of
learning behavior. It is essential to realize or improve the inter-
pretability of interactive learning environments, and attain self-
interpretation and interactive interpretation (Li et al., 2021). A
key requirement is to predict or provide feedback on historical
data and potential data. Relevant research (Dolatsara et al., 2022;
Jose & Shetty, 2022; Novello et al., 2023; El Zini & Awad, 2022)
mainly focuses on the following aspects:

Interpretable methods. Interpretable methods comprise of two
dimensions: Interpretable models and relevant interpretable
methods. Interpretable models are divided into two branches-
Model Agnostic and Model Specific. The Model Agnostic explains
all types of models and has good adaptability. It can be employed
as a business layer to implement interpretable scheduling. Model
Specific explains specific types of models, and relevant methods
depend on the business and analyzable characteristics of each
model. The relevant interpretable methods directly relates to
interpretable visibility and includes public interpretation and
private interpretation. Public interpretation explains the overall
logic and process mode, and the interpretable content is applic-
able to any learning behavior instance. Private interpretation
provides specific interpretation for a single learning behavior
instance. It is the decision analysis and feedback of the intelligent
learning mode (Pachamanova et al., 2021).

Model Specific tools are more readily applied, while Model
Agnostic has stronger interpretation abilities, including features,
relationships, and scenes. It can even integrate different
interactive learning environments, making it a crucial direction
in interpretation.

Interpretable tools. Interpretable tools are applications of inter-
pretable methods with relatively applicable modes and fields
(Mihaljevi et al., 2021). The interpretable ability of tools involves
the analysis and design of intelligent algorithms and models, and
problem-oriented functions can also be realized with inter-
pretable intelligent tools. These tools are developed constantly
and widespread; common interpretable tools include LIME,
SHAP, PDP, Interpret ML, Alibi, H20, etc., and the corre-
sponding functions are achieved by Python and R. The visibility
of applications includes public interpretation and private
interpretation.

These tools differ in interpretation, applicable data types,
stability, and operability. Furthermore, principle and interface
standards are not unified. Some tools are complex to utilize, and
the interpretable process has corresponding characteristics and
relationships, placing higher requirements on researchers. Due to
the massive data involved, analyzing data is still complicated,
making it unrealistic to apply these tools directly.

Interpretable recommendation mechanism. The recommenda-
tion mechanism provides users with personalized modes of ser-
vice, effectively reducing data overload and information
inapplicability. A key principle is designing a recommendation
algorithm based on deep learning, which improves accuracy and
reliability. Accurate recommendation services can stimulate
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learners, improve their enthusiasm and autonomy, and offer
recommended content’s interpretable process (Jya & Jcabc, 2021).

An interpretable recommendation mechanism establishes an
optimal decision feedback mechanism for the learning process,
enhancing credibility and reliability. It stimulates the interaction
and cooperation of learners, improves their satisfaction with the
recommended content, guides and helps learners construct
appropriate learning behaviors as soon as possible. This
recommendation mechanism significantly optimizes the feasi-
bility and dependence of the early warning mechanism.

Based on these three aspects of interpretability, the early
warning mechanism should be established based on the knowl-
edge graph of learning behavior, integrate interpretable recom-
mendation mechanisms, realize the feasibility recommendation
and feedback of early warning, and comprehend the learning
process. It provides analysis and prediction of interpretability,
improving the flexibility and adaptability of learning behavior.

Methods

To establish an interpretable early warning recommendation
mechanism for interactive learning environments, it is essential to
construct an interpretable knowledge graph that reflects the
relationships between learning behavior scenarios and key fea-
tures (Nadaf et al., 2021). Based on this graph, a deep-neural
network model can be designed to process and interpret massive
sets of learning behavior data.

Related definition.

(1) Knowledge graph
A knowledge graph (KG) is a semantic network composed of
entities and relationships. It is also a directional hetero-
geneous network in which entities are represented as
nodes and relationships as directed edges. The formal
definition of a knowledge graph is typically described as
KG = {(h,r, t)|h,t e E,r € R}, h and t denote the source
and target nodes respectively; r denotes the relationship
between nodes; E represents a set of entities, and R represents

. ; M
a set of relationships. Learner = {I,} ., denotes a set of

learners, LC = { ct}f’:l denotes a set of learning content, and
M and N denote the size of these two sets respectively. The
interaction between the learner and the learning content can
be represented as IR = (I, interaction, ¢), which matches
the learning content with the entity when LC € ¢, and
integrates the resulting data with the knowledge graph. In
addition, if ¢ =¢&(Jr and R' = R|J(nteraction}, then KG =
{(h, r,)h,reé,re R/} can be calculated.
(2) Vector decomposition of deep-neural networks

Let f(x) € RX be the K-dimensional output of a deep-neural
network when the input is x, and let fi(x) denote the
probability that sample x corresponds to classification k, i.e.,
the probability that an input x with true label ¢ is
misclassified. The variable x is an intermediate result of
f(x), h(a) represents the top layer of the deep-neural network,
while a = g(x) € RP denotes a point in the data space. In
vector decomposition algorithm design for convolutional
neural networks (CNNs), the output of the CNN comes from
a = g(x), where h(a) is a simple fitting result. Moreover, hy is
defined as the linear combination of wy and a, such that
h(a) = WPa + bW, h(a) = Wl'a + b,.

Suppose there exists a series of vectors g, € R, and each
concept feature is represented by ¢. There is always a
corresponding vector g, associated with c¢; which can explain
the concept classes. Therefore, it is possible to decompose wy

into several parts, w; = s, de, t 5,9, T +5. 4,
through vector decomposition, where a series of q. serves
as the orthogonal basis of the concept features. ‘

If q. is expressed as a matrix C and wy is treated as a
least squares problem, we can obtain the solution
Wi =84, +5.,9, + - +s. 4. +r=Ci+r. To find s,
with the minimum [r|, we compute s= C*w,, which
represents the optimal solution. Additionally, C* is the
pseudo-inverse solution of C.

(3) Concept features

Although a deep-neural network can capture rich labels, it may
not include all the features extracted by a convolutional neural
network (CNN). Therefore, this study proposes adding a residual
vector r = w;, — C;s to the candidate basis vector Cj, resulting in
a new vector denoted as C;. C, incorporates all the features
mined by CNN, ensuring a more comprehensive representation
of the data.

The score for classification k in the last layer of CNN is given

x\ T
by h(a)=Wla+b,=(C,) a+b =51ch1¢1+52ch2¢1+ e
rTa + by, where squTxa represents the contribution of the concept

label ¢; and rTa denotes the contribution of the residual vector r
associated with k.

Algorithm design. The deep-neural network relies on learning
behavior feature vectors and knowledge graphs to describe
interactive learning processes. During algorithm design, feature
vectors are generated from training sets of learning behavior,
while knowledge graphs help explain multi-classification in test
sets. Since traditional deep-neural networks require multiple
datasets with different labels, a dataset must contain at least two
categories: classes and features. In this study, the top 5 features
with highest average contribution were selected for constructing
the knowledge graph, and both features and classes were defined
as concepts.

The core step of the interpretable vector and knowledge graph-
based deep-neural network is described by the DNNA algorithm.
This algorithm can be divided into three main parts: visualization
of the deep-neural network based on decomposed interpretable
vectors, construction of the knowledge graph, and testing of the
knowledge graph, as shown in Fig. 1.

Algorithm DNNA

Step 1. Learning behavior sequence recognition: The
temporal sequence of learning behavior is inputted into a
convolutional neural network (CNN) to obtain the weight vector
Wy, score; and confidence;.

Step 2. Interpretable weight vector decomposition: The
weight vector obtained from CNN is decomposed into several
feature vectors, depending on the training set.

Step 3. Output feature visualization: To verify the accuracy of
the vector decomposition, the results obtained in step 2 are
visualized by activating the last layer of CNN and performing
back-propagation derivation.

Step 4. Interpret “features-temporal sequence”: The impor-
tance of features is determined by their average contribution to
the vector decomposition, and the top 5 features are dynamically
interpreted by tracking the temporal sequences of learning
behavior.

Step 5. Calculate the recognition score of temporal sequence:
The interpretable “feature-temporal sequence” is viewed as the
input of CNN, and score, and confidence, are calculated once
again to determine the optimization part of CNN in identifying
learning behavior. Accuracy, recall, precision, F1 scores, etc., are
also calculated as indexes.
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Ri: contains R2:isUpperTo R3:isPrerequisiteTo

Fig. 1 Interpretable analysis process of interactive learning process. The algorithm's processing process is mainly divided into three parts: deep-neural
network visualization based on interpretable vector decomposition, knowledge graph construction, and knowledge graph testing.

Step 6. Evaluate the reliability of interpretable vector
decomposition: score; and score,, as well as confidence; and
confidence,, are analyzed and compared to obtain quantitative
results of interpretable vector decomposition.

Step 7. Construct the knowledge graph of temporal sequence:
A knowledge graph is constructed based on the interpretative
relationships among feature vectors obtained from Step 2.

Step 8. Calculate the similarity of temporal sequence: The
similarity of temporal sequences is calculated based on the
Jaccard coefficient.

Step 9. Mine the discriminant features: Based on Step 2,
interpretable results are extended to mine discriminant features of
vector decomposition.

Step 10. Test the learner’s credibility: The learner’s credibility
is tested on the discriminant features obtained in Step 9, and the
mean squared error (MSE) is calculated based on the term
frequency-inverse document frequency (TF-IDF) of the discri-
minant features to quantify the learner’s reliability.

Data processing and problem description

We describe a study that aims to develop an interpretable early
warning recommendation mechanism for learning behavior using
data from an Al-enabled online learning platform. The dataset is
very large, with a scale of 1.3PB, but has two main problems: Data
sparsity and Uncertainty in learning behavior. To address these
issues, the study proposes to introduce more characteristics into
the recommendation process and analyzes knowledge graphs of
relevant learning contents to integrate feasible requirements into
the early warning recommendation mechanism.

To address data sparsity, we propose to introduce more char-
acteristics into the recommendation process (Sailer et al., 2021),
as traditional assessment results cannot provide a strong basis.
Additionally, analyzing knowledge graphs of relevant learning
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contents and integrating feasible requirements into the early
warning recommendation mechanism is necessary to improve its
effectiveness in identifying and addressing potential learning
difficulties.

The uncertainty in learning behavior makes it challenging to
model and effectively recommend personalized content to lear-
ners. To overcome this challenge, the study proposes that the
interpretable early warning mechanism should be modeled based
on a temporal sequence of data, and learning behavior features
should be associated to represent dynamic and continuous
changes (Eberle & Hobrecht, 2021). This approach can help
capture the complexity of learning behavior more comprehen-
sively and improve the accuracy and effectiveness of the early
warning mechanism.

These two problems are preconditions for achieving inter-
pretability in learning behavior. It is challenging to obtain
effective recommendations in situations that involve scarce
features or fuzzy relationships, which makes realization of
interpretability difficult. Effective features and more compre-
hensive relationships are required to build an adequate knowl-
edge graph that captures the semantics of learning content
effectively. Improved capturing of these semantics is key to
enhancing the recommendation effect, and can also provide
reasonable early warning (Xia., 2020b). Therefore, creating an
interpretable early warning recommendation mechanism
requires temporal sequence of learning behavior, followed by
mining critical path.

Building on the analysis and design of the data sets, we further
mine applicable data and relationships, and achieve interpretable
early warning recommendation driven by learning content (Er
et al,, 2021). We construct a directory of learning contents from
the data set, define interpretable concepts and knowledge asso-
ciation rules, and form an entity set comprising learning contents
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Table 1 Learner description.

Learner

Learning content Description

LID//Learner's Key word, that can be used to distinguish each learner, unique.

LC_ID Learning content’s key word, unique
LC_PR watching progress of learning content
Watch_Duration Watching duration of learning content
Watch_Date Watching date of learning content

Table 2 Learner content description.

Attribute Description

LC_ID Learning content’s key word, unique

LC_Name Learning content’s name

LC_Utility Learning content'’s utility, that is the value and
significance.

LC_Class Learning content'’s classification, that is the series.

LC_Diff Learning content’s difficulty, that is marked as the

rank label.

Watch_Duration Watching duration of learning content

Table 3 Learner behavior description.

Description Corresponding data set Scale
Learner-entity Learner 28707
Learning Content (LC) 97
Concept (CT) 1204
Entity 1542
Knowledge graph Entity Type 2
Relationship Type 3
Triple 2620
Topology Path 5133

and concepts. This results in building the knowledge graph. After
data screening, merging, and association, we obtained 97 learning
contents involving 28,707 learners and 1,204 concepts. Relevant
association rules include three categories: learning content
<inclusion> concept, concept m <order> concept n, and concept
m <level> concept n. Two key entities are needed in the data set:
learners and learning contents. The key descriptions are provided
in Tables 1 and 2.

Tables 1, 2 include some common attributes of the learning
contents. The attributes in Table 1 describe the distribution of
learners and learning contents, with corresponding data that are
specific instances directly relating to learners. Table 2 describes
the fundamental attributes of the learning contents. Some features
only become statistically interpretable after the learners produce
learning behavior instances. In this way, it is possible to create
correlation between learners and learning contents, enabling the
provision of more descriptive features based on learners’
participation.

Based on Tables 1 and 2, the entity relationships and knowl-
edge graphs were analyzed and counted, and the results are
shown in Table 3. The knowledge graphs consist of numerous
triples, but the types of entities and relationships have been
determined.

Figure 2 displays a knowledge graph comprising learning
content and related concepts. In the graph, the circle represents
learning content, the rectangle represents concepts and the
directed arc represents relationships between them. Different

Fig. 2 Knowledge graph of some learning contents and concepts. The

circle represents the learning content, the rectangle represents the concept,
and the directed arc represents the relationship. Different learning contents
form interpretable relationships with the concepts. There are three types of

relationships: “contains,” “isUpperTo,” and "“isPrerequisiteTo.".

learning contents establish interpretable relationships with the
represented concepts. There mainly are three types of relation-
ships, “contains,” “isUpperTo” and “isPrerequisiteTo.” If “A is
UpperTo B”, it means A is at a higher level than B. “A isPrer-
equisiteTo B” means that A serves as a prerequisite for B. The
relationships among learning contents and concepts are mainly
based on “contains”. However, concerning the relationship
between concepts, these three types of relationships may exist.
Although there is no direct relationship among the learning
contents, potential correlations among them could appear indir-
ectly through relevant concepts.

Figure 2 illustrates the relatively complex interpretable context
of the interactive learning environment, which requires extensive
data analysis. The involved dataset comprises a large volume of
learners and learning contents. Consequently, it leads to complex
relationships and conditions among entities, concepts, and
knowledge graphs (Xia & Qi, 2023). Although these data can
provide a more substantial basis for early warning recommen-
dations’ interpretability, they also create obstacles for accurate
correlations. Based on Tables 1-3’s statistical results, in con-
junction with Fig. 2’s complex structure, we propose key test
questions for Interpretable early warning recommendations, as
laid out in Fig. 3.

Q1: conceptual correlation and classification of learning
contents;

Q2: according to the classification of different learning con-
tents, the correlation of learning behavior path that learners pass
the assessment;

Q3: according to the classification of different learning con-
tents, the key early warning sequences of learners who fail to pass
the assessment;

Q4: according to the classification of different learning con-
tents, the significance of the knowledge graph of the learners who
pass the assessment;
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Fig. 3 Test questions and relationships of interpretable early warning recommendations. The seven key questions of interpretable early warning

recommendations are put forward; they form latent relationships.

Q5: according to the classification of different learning con-
tents, the significance of the knowledge graph of the learners who
fail to pass the assessment;

Q6: the interpretable early warning recommendation about the
fusion of Q2 and Q4;

Q7: the interpretable early warning recommendation about the
fusion of Q3 and Q5.

Experiment

The entire experiment fully tests the dataset of interactive
learning environment using Algorithm DNNA. In order to test its
feasibility and reliability, several indices were selected: (1) Area
under curve (AUC), used to test the sorting of algorithms. The
calculation model is described as AUC =Y, where ypos and yneg
are the predicted values for positive and negative samples,
respectively, and npos and nneg represent the scales, respectively;
(2) Relative improvement (RI), used to measure the improvement
of DNNA relative to other comparison algorithms. The calcula-

AUCDNNA — @

tion model is described as RI:(AUC L Mdz—a_l)“OO%’ where «

represents AUC of the random classifier, with &« =0.5; (3) FI,
used to measure the performance of multi-classification

prediction, with the calculation model described as
F, =2x %; (4) Multi-task learning gain (MTL-Gain),

used to measure the benefit in which multi-feature learning is
compared to single feature learning. The calculation model is
described as MTL — Gain = My — M, ., Where My and
Minge are the indices of multi-feature learning and single-feature
learning, respectively. We will calculate these indices through a
large number of learning behavior instances training to test the
effectiveness of DNNA. At the same time, in the process of
comparison with approximation methods, we will further test the
reliability and accuracy of DNNA applied to learning behavior
instances analysis and prediction.

Six relatively similar methods were chosen: (1) Logistic
regression (LR), which is the most commonly used prediction and
recommendation method; (2) Factorization machines (FM), a
classical feature cross-analysis method; (3) DNNFM, which

6

Table 4 Overall recommended performance indexes.
Algorithm AUC RI
DNNA 0.9035 0.00
LR Logistic 0.8279 +19.72%
FM 0.8501 +17.74%
DNNFM 0.8577 +13.42%
DNNCross 0.8446 +16.92%
Autolnt 0.8702 +10.32%
AFN 0.881 +7.44%

combines FM and deep-neural networks (DNNs). DNNs are used
to analyze high-order cross information between features, while
FMs are used to analyze low-order cross information between
features; (4) DNNCross, which uses fully connected DNNs with
residuals to learn nonlinear feature cross information; (5) Auto-
Int, which uses multidimensional self-attention mechanisms
instead of expert knowledge and automatically selects and crosses
valuable features; (6) AFN, which utilizes the logarithmic layer to
adjust the order of feature combination by converting the power
of each feature into parameters.

The whole experimental process is divided into three steps:

Step 1: Overall recommendation effect testing

The DNNA and seven comparison methods were applied to
the dataset, and each algorithm was run ten times to obtain the
averages of area under curve (AUC) and rank-irrelevance (RI).
The results are shown in Table 4. It can be observed that the AUC
of DNNA is better than that of other methods, which enhances
cross analysis. When calculating the RI of DNNA, it is equivalent

to (2%ewua=2_ 1)y 100% = 0. The RI of other methods is
AUCpyns —a

positive relative to DNNA, indicating that DNNA can enhance
the performance gain of other algorithms and improve the
reliability and accuracy of data analysis.

Step 2: Interpretable feature recommendation test

Following the overall recommendation results, further tests
were conducted on the interpretable influence of multi-
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dimensional features. Table 5 displays the experimental outcomes
and suggests that interpretability can enhance prediction efficacy
and generate favorable gains. Among the four related indexes,
DNNA outperforms other methods in analyzing interpretable
features and producing better recommendation results.

Step 3: Test based on similarity

In order to evaluate the effectiveness of random sampling
based on similarity, feature similarity is used to calculate the
similarities. Four sampling methods suited for interactive learning
processes are selected, and samples are partitioned into positive
and negative sets:

(1) R-method: a random sampling method that does not
consider similarity. Positive samples are selected, while
others are treated as negative samples.

(2) FR-Method: a sample generation approach based on
ranking feature similarity. The top N features are deemed
positive samples, while others are classified as negative
samples. N =10 is considered optimal.

(3) L-method: a sample generation methodology based on
the similarity of learner descriptions. The top N features are
determined to be positive samples, while the rest are
designated as negative samples. N=8 is regarded as
relatively optimal in this method.

(4) FS-method: a random sampling method based on the
similarity between different features. The similarity thresh-
old is established from experimental analyses. When a
similarity of 0.569 is employed as a threshold for
distinguishing positive samples from negative samples, the
result is optimal.

(5) Interpretable feature feedback mechanism based on DNNA:
Adaptive calculation and recommendation of similarity are
achieved using this technique. On this basis, the data set is
divided into positive and negative samples.

AUC and RI are chosen as the evaluation indexes for analyzing
both positive and negative samples. The experimental results
indicate that there is no significant difference in the analysis
process of the positive sample across the five methods, with dif-
ferences distributed between 0.0000023-0.0000032. However,
there are notable differences in the indexes calculated from the
negative sample, which can be seen in Table 6. Based on the
sampling strategy of interpretable feature feedback mechanism, it
is suggested that DNNA may be more effective in improving
accuracy, reliability, and sensitivity analysis. Therefore, DNNA
may be more suitable for this type of analysis.

Sufficient experiments have demonstrated that DNNA (Deep
Neural Network Architecture) has significant advantages in
interpretable recommendation for interactive learning processes,
and is more reliable and sensitive than other methods in terms of
accuracy and completeness. The interpretative recommendation
approach of DNNA is suitable for the temporal tracking of
interactive learning processes, which enables early warning
recommendations.

Table 5 Interpretable feature recommendation indexes. Table 6 Performance indexes of negative sample.
Algorithm F1 AUC MTL-Gain RI Method AUC RI
DNNA 0.8101 0.9124 +6.89% 0.00 R-Method 0.8218 +2.92%
LR Logistic 0.7235 0.8210 +3.58% +7.19% FR-Method 0.7549 +35.62%
FM 0.7109 0.8428 +4.17% +2.41% L-Method 0.8485 +1.93%
DNNFM 0.7622 0.8553 +3.53% +9.02% FS-Method 0.8477 +0.29%
DNNCross 0.7430 0.8439 +5.29% +10.15% DNNA 0.8615 0
Autolnt 0.7934 0.8720 +4.93% +6.44%
AFN 0.7973 0.8649 +2.25% +8.85%

Results

Using the experimental analysis and testing of the three steps
discussed above, DNNA has been utilized to conduct a compre-
hensive analysis and prediction of the dataset. Based on the
results of data analysis, an interpretable early warning recom-
mendation mechanism has been designed.

We focus on the temporal sequences and vector decomposition
features of learning behavior, construct the knowledge graphs,
and mine relevant discriminant features and relationships by
DNNA. It is necessary to complete the transformation of the
original data type and the relationship type, and convert them
into the relationships between temporal sequences or features.
Based on the definition of relationship type, the relationships are
divided into two categories: (1) Interpretation relationship. There
is an interpretation relationship between temporal sequences and
features, which is a one-way relationship and points to the tem-
poral sequences from the features; (2) Juxtaposition relationship.
There is a two-way juxtaposition relationship between the inter-
pretable features of the same temporal sequences.

To enhance accuracy and reliability, the features and concepts
are cleaned and preprocessed as follows: (1) Due to the large
number of features, various categories are used for prediction and
recommendation. These categories, such as resource, ques-
tionnaire, upload, download, quiz, data sampling, experiment,
interaction, and cooperation, are labeled based on the features,
and feature clustering is achieved through data preprocessing. (2)
Given the considerable variation in learning content concepts and
their sheer number, they are classified into six distinct categories
to eliminate clutter and support correlation analysis and statistics:
Related Content, Theoretical Basis, Difficulties of LC, Key Points
of LC, Application Background, and Context of LC.

After preprocessing, the features and concepts are applied to
capture the temporal sequences in the interactive learning pro-
cess. A complete learning period lasts 20 weeks, each of which
forms a temporal sequence from which the knowledge graph of
Learning  Content-Concept  Class-Feature  Class-Temporal
Sequence is built. As shown in Fig. 3, the dataset exhibits high
clustering during DNNA training with a success rate of 94.85%,
as only five out of the 92 learning contents became outliers.
Statistical analysis of data related to these five learning contents
revealed some issues: (1) There were fewer learners and thus less
completion rates for these contents; (2) The purpose and key
points of the learning contents were unclear, while the application
background and context were not fully explained; (3) The course
passing rate was low, and the learning behavior too discrete with
sparse data, reflecting a wastage of online learning resources and
the interactive learning process. The lack of complete and con-
tinuous data will make it difficult to analyze and identify early
warning measures.

Based on Fig. 4, Fig. 5, and Fig. 6, the relevant questions
proposed in section “Data processing and problem description”
are tested, and the conclusions are obtained.

QI: conceptual correlation and classification of learning
contents.
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By considering conceptual correlation, the learning content is
grouped into three categories, Content Layer, Feature Layer, and
Temporal Sequence. For the concept layer, all the contents follow
a relatively unified law whereby six types of concepts display
strong correlation around Difficulties of LC and Key points of LC,
with a correlation interval of [0.63, 0.92]. The correlation between
Difficulties of LC and Key points of LC is bidirectional, while the
other four concept classes exhibit indirect correlation.

Q2: according to the classification of different learning con-
tents, the correlation of learning behavior path that learners pass
the assessment.

Figure 4, Fig. 5, and Fig. 6 show feature layers that are composed
of key interactive feature classes formed by learners participating in

8

an interactive learning process and passing assessments. Different
interactive feature classes form a relatively stable learning behavior
path. In a complete learning period, the learning behavior path will
change. The critical path of I knowledge graph includes three parts:
interaction — (resource — (search — download), wiki), (ques-
tionnaire, Q&A) — quiz, resource — (Q&A — interaction, forum),
download); The critical path of II knowledge graph includes
two parts: interaction — (forum — quiz, upload — download),
Q&A — (resource — download), interaction, forum); The critical
path of IIT knowledge graph is complex, which also includes two
parts: interaction — (data sampling — experience, experience,
cooperation) — (cooperation, Q&A), experience — (Q&A — quiz,
quiz). These paths play important roles in specific temporal
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Table 7 Significance of knowledge graph that learners pass
the assessment.
Knowledge Temporal p-value
graph sequence

interval LC — Concept Concept

classes classes — Feature
class

[3rd, 7th] 0.0361* 0.0033**

[7th, 10th] 0.0402* 0.0049**

[15th, 19th]  0.0224* 0.0022**
Il [3rd, 15th] 0.0110* 0.0013**

[17th, 20th]  0.0219* 0.0017**
I [2nd, Sth] 0.0079* 0.0008***

[9th, 11th] 0.0053** 0.0006***

[11th, 20th] ~ 0.0027** 0.0000***
*+*p<0.001, **p<0.01, *p<0.05.

sequences. Strong correlation is formed between feature classes, and
the correlation interval between the key features is [0.59, 0.89].
Overall, this approach appears to provide a way to understand
learning behavior paths and identify important features that may be
used for improving the learning process.

Q3: according to the classification of different learning con-
tents, the key early warning sequences of learners who fail to pass
the assessment.

It appears that when learners fail to pass the assessment, it may
be due to ineffective learning behavior, especially in the key
temporal sequence intervals, and a failure to form effective
learning methods. For early warning analysis of learners, their
critical path - constructed by those who pass the assessment in
the key temporal sequence intervals—is an important reference.
The I, II, and IIT knowledge graphs appear to form two key early
warning sequence intervals each, with specific temporal sequence
intervals being identified as key ones for each graph. The key
temporal sequence interval is 3 — 7 and 15 — 19 in I knowledge
graph; The key temporal sequence interval is 17 — 15 and

17 — 20 in II knowledge graph; The key temporal sequence
interval is 2 — 9 and 17 — 20 in IIT knowledge graph. It is worth
noting that there may be differences in the early warning
sequences for different learning content classes. This information
may be helpful for educators and instructors to identify potential
learning difficulties and address them in a timely manner.

Q4: according to the classification of different learning con-
tents, the significance of the knowledge graph of the learners who
pass the assessment;

The knowledge graph is built upon the classification of learning
content, concepts, and features, as well as key temporal sequence
intervals. The significance of I, II, and III knowledge graphs were
calculated separately and the results are presented in Table 7. Test
questions were formed based on different temporal sequence
intervals and the assessment results were treated as test variables
for “LC — Concept Classes” and “Concept Classes — Feature
Classes” significances. By training a structural equation model, we
obtained the test results. As shown in Table 7, the knowledge
graph shows significance in the respective temporal sequence
intervals.

Q5: according to the classification of different learning con-
tents, the significance of the knowledge graph of the learners who
fail to pass the assessment.s

It seems that the knowledge graph for learners who fail to pass
the assessment is still constructed using a “Learning Content
Class-Concept Class-Feature Class” framework, with significant
test questions formed from these three classes. The data from
these classes are treated as independent variables, with the
assessment results serving as the observation variable. A corre-
sponding structural equation model is used to test the impact of
relevant data, which is consistent with Q4. After data training, the
test results—as shown in Table 8—indicate that the learners who
fail to pass the assessment do not demonstrate significance in the
corresponding temporal sequence interval. Individual features
appear to have significance on assessment results, but not on
feature classes, and there may even be a reverse effect in terms of
significance. These findings may help educators and instructors
identify specific areas where learners are struggling and provide
targeted support to improve their learning outcome.
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Table 8 Significance of knowledge graph that learners fail to
pass the assessment.
Knowledge Temporal p-value
graph sequence

interval LC—Concept Concept

classes classes — Feature
class

[3rd, 7th] 0.3095 0.2310

[7th, 10th] 0.9927 0.518

[15th, 19th] 0.6545 0.9437
Il [3rd, 15th] —0.0709 —0.7652

[17th, 20th] —0.1659 —0.8701
I [2nd, Sth] —0.1202 —0.90M

[9th, 11th] —0.9233 —0.6115

[1th, 20th] ~ —0.08427 —0.1937

Q6: the interpretable early warning recommendation about the
fusion of Q2 and Q4;

Q2 and Q4 examine the significance of the learning behavior
path and knowledge graph, respectively, when learners pass the
assessment. Figures 4, 5, and 6 show the key roles of concept
classes that are related to the learning contents. These roles
enable the classification of learning contents, which determines
the features and relationships of learning behavior. Similar to the
analysis of learners who pass the assessment, clear significance
can be seen between certain specific temporal sequences. To
improve the pass rate of learners’ assessments, an interpretable
early warning mechanism should be based on concept classes,
strengthen learners’ subjective consciousness, combine temporal
sequence intervals of significant learning behavior, and proac-
tively modify the learning behaviors in a way that is conducive to
relevant intervention and guidance.

Q7: the interpretable early warning recommendation about the
fusion of Q3 and Q5.

Q3 and Q5 investigate the significance of the key early warning
sequence and knowledge graph when learners have failed to pass
the assessment. According to the behavior topology analysis of
learners who passed the assessment, the test results of learners
who fail the assessment show no significant learning behaviors
that promote success. To reduce the failure rate of learners,
interpretable early warning strategies should also be based on
concept classes. Early warning is not a one-time event, but rather,
it is a continuous process that requires a long-term tracking
mechanism. By regularly monitoring the changes in learning
behaviors, possible risk problems can be identified and addressed.

Figure 7 illustrates the temporal sequences of Q6 and Q7 in
relation to Figs. 4, 5, and 6. It represents the key early warning
temporal sequences associated with I, II, and III knowledge
graphs, respectively. For learners who have passed the assessment,
the relationship between the relevant temporal sequences in a
interpretable early warning mechanism is “OR”. This means that
the system can selectively intervene based on the relevant tem-
poral sequences. On the other hand, for the interpretable early
warning tracking strategy of learners who have failed the
assessment, the relationship between the relevant temporal
sequences is “AND”. This indicates that the system must con-
tinuously track and intervene based on all relevant temporal
sequences.

Discussion

The interpretable early warning recommendation mechanism in
interactive learning processes integrates relevant factors such as
learning contents, concepts, features, attributes, and learners. The
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mechanism utilizes deep-neural network models for data training
and prediction to obtain test conclusions of interpretable early
warning recommendations while identifying potential paths
and trends. The classification of learning contents, concepts, and
features help achieve key early warning recommendations and
tracking intervals (Xia, 2021c).

Findings. One of the crucial problems for learners in completing
learning tasks in an interactive learning environment is breaking
away from direct supervision from instructors (Xia & Wang,
2022). Most of the learning time has formed a self-discovery and
problem-solving behavior, and improving the efficiency requires
giving learners feasible explanations and feedback (Ansyari, 2020;
Er et al, 2021). This necessitates strengthening interpretable
descriptions of relevant courses, concepts, and materials during
the learning process, including providing guidance and strategy
recommendations for key issues and learning content. Learners
hope to acquire necessary content and have relevant learning
problems answered or explained promptly, providing effective
early warning, and timely intervention sequences (Ansyari, 2020).
Therefore, reliable interpretable early warning recommendation
mechanisms are integral for the interactive learning process,
motivating learner interaction and collaboration, enhancing
satisfaction with learning recommendation content, and guiding
and supporting suitable learning behaviors. Nonetheless, research
on interpretable early warning recommendations for interactive
learning processes is limited (Valle et al., 2021).

Although section “Related work” discusses relevant interpre-
table research, effective research integrating interpretable self-
organizing mechanisms into learning contents remains unex-
plored. Some research focuses on small-scale local learning cases,
related methods, and tools, while others remain at the application
level of traditional methods, lacking the design of innovative
methods for large-scale data sets’ learning behavior instances. To
remedy this, the method suggested in this study may be
innovative, and experimental analysis confirms its feasibility.

Through experimental analysis in section “Experiment” and
results in section “Results”, DNNA has the following advantages:

(1) DNNA effectively mines relevant entities, features, and
relationships during interactive learning and provides
interpretable recommendations through key features.
Comparisons with other approximate methods prove
DNNA'’s efficiency and reliability for interpretable early
warning recommendations of interactive learning processes.

(2) We constructed an interpretable knowledge graph relation-
ship between the learning behavior temporal sequences and
key features, implementing a deep-neural network model
for early warning based on the graph. The integration of the
learning process temporal sequences into data analysis
helps achieve accurate temporal sequence intervals and
decision feedback of early warning and recommendation
based on entity-content-concept interpretability.

(3) To improve learners’ assessment passing probability, we
derived early warning and intervention temporal sequence
intervals for those who did not pass based on DNNA
analysis and prediction results. We tested the significance of
the knowledge graph of learners who passed the assessment.

Overall, this study offers implementable strategies for inter-
pretable warning recommendations, tracking, and intervention of
interactive learning processes.

B. Suggestions. After conducting methodological research and
experimental design, our study has identified three key aspects in
interpreting early warning recommendations:
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(1) The concept classes of learning content are a key
component in achieving interpretable early warning
recommendations.

According to Muller and Mildenberger (2021), it is impractical
to analyze the correlation between all concepts in each learning
content and learning behavior instances. It is not feasible or
realistic to interpret and describe every concept in every learning
content using current learning platforms, which lack appropriate
technologies for precise semantic management of learning
content concepts. Furthermore, there are significant differences
in concepts across different learning contents, making it difficult
to directly analyze individual concepts or their relationships.
Concepts are also influenced by other factors. Therefore, the
interpretability of the interactive learning process based on
concept classes is more valuable. Classifying common concepts
and clustering related concepts can facilitate interpretability
tracking, while analyzing associations between different concept
classes is suitable for meaningful testing of concept classes.
Analysis of concepts reveals that integrating “key points of LC”
and “difficulties of LC” improves decision analysis and drives
different learning behavior feature classifications and path
distributions.

Therefore, the interactive learning process should provide clear
and comprehensive management of “key points of LC” and
“difficulties of LC,” including effective descriptions of course
context, application background, theoretical basis, and other
relevant learning content, as well as direct search mechanisms,
resource navigation, concept recommendations, and other
services to enhance learners’ cognition and attention.

(2) Learning behavior feature classes are the essential
components of interpretable early warning recommendations.

The complete interactive learning process includes learning
behavior that is influenced by both the learning content and
concept class. Learning assessment drives the continuity,
volatility, and uncertainty of learning behavior on learning
platforms (Hew et al., 2021). The learning behavior features are
diverse and discrete, often producing many outliers, but their
effectiveness cannot be judged based solely on statistical results
being normal or abnormal. Since each learning behavior feature is
viewed as a computing element, its significance cannot be
represented with a result. However, many learning behavior
features offer similar functions, including resource and material

provision, real-time communication, interaction and collabora-
tion, testing and investigation, and search capabilities, among
others. These functions can serve as classification labels to divide
the massive features into classes, thereby facilitating the analysis
of feature correlation and association routing.

Therefore, the interactive learning process must establish
relevant learning behavior feature classes, classify and label the
features according to their purposes or requirements, provide
learners with timely, effective, and comprehensive feature
descriptions, and build personalized learning behavior indepen-
dently. Combined with historical data, the underlying patterns of
learning behavior can be analyzed, thereby providing appropriate
intervention and guidance at key temporal sequences or intervals.

(3) Effective temporal sequences (intervals) are essential for
establishing interpretable early warning recommendations.

The interactive learning process involves a relatively complete
learning period that is not short-term and consists of long,
continuous temporal sequences, whether online or offline. It is
necessary to realize the deployment of a knowledge system and the
organization of corresponding learning behavior. Typically, the
learning period is divided into different temporal sequences,
which correspond to specific learning tasks and behaviors. These
temporal sequences serve as important nodes for tracking changes
in learning behavior, reflecting both differences in feature classes
and relationships among them. There are noticeable changes
throughout the whole learning period that are directly related to
the learning contents and concept classes. This not only reflects
the differences in feature classes but also the differences in feature
class relationships. Additionally, learning contents with simila-
rities in concept classes can form more regular feature relation-
ships. Temporal sequences not only involve constructing effective
and productive learning behavior but also timely exploration and
intervention to address ineffective learning behavior.

Therefore, the interactive learning process should match multi-
factor analysis, including learning contents, concept classes, and
learning behavior features across different temporal sequences.
This will help determine key temporal sequences or intervals
restricted by the classification of learning contents and inter-
pretable concepts, providing an effective reference for subsequent
learning contents with similar concept classes and knowledge
graphs. Through this approach, effective learning behavior can be
recommended as soon as possible during appropriate temporal
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sequences, or feasible intervention measures can be constructed
during suitable temporal intervals.

Future studies and Implications

This study aims to improve the feasibility and reliability of the
interactive learning process using massive learning behavior
instances. To achieve this, an interpretable early warning
recommendation mechanism is designed. This mechanism is
crucial for deep decision mining and adaptive intervention in
interactive learning environments.

Firstly, we formulate relevant questions, establish correspond-
ing relationships, and define concepts, entities, and knowledge
graphs. Secondly, we design a deep-neural network model based
on the learning behavior knowledge graph to achieve decision-
making and prediction. To evaluate the effectiveness and feasi-
bility of the model, we fully trained, tested, and verified it using
the dataset. Along with relevant approximation methods, we
recorded and calculated indexes, showing that our model is sui-
table for interpretable data analysis of learning behavior. Thirdly,
we demonstrate the test questions applicable to our interpretable
early warning recommendation mechanism and discuss potential
laws and decisions. Our study involves innovative analysis and
design of new methods, and through interpretable early warning
recommendations, it completes data analysis and problem testing.
This provides effective reference points for similar topics.

However, because learning behavior is influenced by group
dynamics as well as individual personality traits, and because data
shows dynamic growth trends, it is unrealistic to evaluate lear-
ners’ knowledge systems and interests. Analyzing complex data
presents additional challenges and constraints. Consequently, the
interactive learning process requires flexible analysis and
recommendation capabilities to effectively support the needs,
interactions, and cooperation of learning behaviors, identify
interpretable and describable topics and concepts, and establish a
flexible temporal tracking mechanism.

Future work will explore feasible analysis schemes, construct an
interpretable temporal tracking process to address feature dif-
ferences, design relevant models and algorithms, verify their
feasibility and reliability, deduce potential data values, further
refine the learning behavior knowledge graph, and create more
in-depth logical designs and topology verifications for concept
classes of learning content. These efforts aim to enhance early
warning accuracy and feedback reliability.

Data availability
The data sets used or analyzed during the current study are
available from the corresponding author on reasonable request.
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