Humanities & Social Sciences

Communications

ARTICLE B check o isen,

https://doi.org/10.1057/s41599-022-01305-2 OPEN

Quantifying effects of tasks on group performance
in social learning
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Social learning is a learning process in which new behaviors can be acquired by observing and
imitating others. It is the key to cultural evolution because individuals can exchange profitable
information culturally within the group. Recent studies have over-focused on social learning
strategies but paid rare attention to the learning tasks. In particular, in these studies, indi-
viduals rely on perfect imitation, directly copying the solutions of others, to improve their
performance. However, imperfect imitation, a prevalent form of social learning in cultural
evolution, has received little discussion. In this paper, the effects of three task features (task
types, task complexity, and task granularity) on group performance are simulated with an
agent-based model and quantified with decision trees. In the proposed model, individuals in a
network learn from others via imperfect imitation, which means individuals make a trade-off
between their solutions and socially acquired solutions. Here, status quo bias is introduced to
represent the degree to which individuals adhere to their solutions. Results show that the
performance of a group is not affected by task complexity in hard-to-easy tasks but declines
with the task complexity rising in easy-to-hard tasks. Besides, groups usually perform better
in fine-grained tasks than in coarse-grained ones. The main reason is that in coarse-grained
tasks, conservative individuals encounter learning bottlenecks that prevent them from
exploring superior solutions further. Interestingly, increasing task granularity can mitigate this
disadvantage for conservative individuals. Most strikingly, the importance scores given by
decision trees suggest that tasks play a decisive role in social learning. These findings provide
new insights into social learning and have broad implications for cultural evolution.
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Introduction

ne of the forces driving human cultural evolution is the

transmission of information capable of affecting indivi-

duals’ behavior (Boyd et al., 2011; Flinn, 1997). Many
studies have suggested that social learning, i.e., learning facilitated
by observing and imitating other members’ behavior (Cantor
et al,, 2015; Derex and Boyd, 2016; Rogers, 1988; Van Leeuwen
et al, 2018), plays a central role in human and other animal
species’ cultural evolution (Mesoudi and Thornton, 2018). At a
micro level, individuals relying on social learning can seek
superior solutions by imitating the behavior of others. At a macro
level, such individual-level interactions via social learning allow
for the diffusion of excellent solutions among the population,
resulting in the improvement of group-level performance (Bar-
koczi and Galesic, 2016; Csaszar and Science, 2010; Mason and
Watts, 2012; Rendell et al., 2010).

Recent work has made significant progress in explaining the
mechanisms of how social learning contributes to group perfor-
mance. These studies have extensively discussed the effects of
social learning strategies (how individuals learn from others)
(Barkoczi and Galesic, 2016; Fogarty et al., 2012; Molleman et al.,
2014) and the structure of communication networks (in which
information diffusion occurs) (Shi et al, 2017; Lazer and
Friedman, 2007; Wisdom et al., 2013; Laland, 2004) among
individuals on group performance (Kendal et al., 2018; Shore
et al,, 2015; Lamberson, 2010; Fang et al,, 2010). However, they
still have some limitations in helping us to fully understand social
learning. First, many studies conducted experiments only on a
single type of task, and only a few considered the diversity of task
types (Acerbi et al., 2016; Morgan et al., 2012) or assumed that
different tasks differ only in complexity (Barkoczi et al., 2016;
Almaatougq et al., 2021). However, the difference between tasks is
not only in complexity but also in granularity, a seriously over-
looked feature. Such neglect of task features may lead to a sig-
nificant underestimation of the role of tasks in social learning.

Second, much of the work regards social learning as perfect
imitation, i.e., a simple replication mechanism. For example, in
the study of Barkoczi and Galesic (Barkoczi and Galesic, 2016),
individuals relying on social learning are only responsible for
exploitation (i.e., copying existing solutions), and new solutions
are explored by individuals alone. In contrast, a few recent studies
(Derex et al., 2015; Morin et al., 2021) found that social learning
leads to the generation of new solutions combining information
from multiple sources rather than a simple dichotomous choice of
whether to copy other solutions. This finding suggests that social
learning should be viewed as imperfect imitation, allowing indi-
viduals to diffuse superior solutions and explore new solutions
(Haviland et al., 2013).

Third, many recent studies (Barkoczi and Galesic, 2016; Mason
and Watts, 2012) have revealed complex interactions between
variables, such as social learning strategies and network structure.
These findings make it extremely difficult to quantify the effect of
each variable on social learning. The above problems indicate that
our current understanding of social learning may be incomplete.
Therefore, this paper aims to address the following three ques-
tions on social learning: First, how do tasks affect group perfor-
mance? Second, what performance can be achieved by groups
relying on social learning? Third, how do we quantify the effects
of different variables on group performance?

To address these problems, we develop a multi-agent model of
social learning, where a group consisting of many individuals
repeatedly searches for solutions that can improve group per-
formance. Following previous studies (Kauffman and Levin, 1987;
Levinthal, 1997), we model social learning as the search on rugged
landscapes with peaks and valleys. Individuals are poorly
informed about the rugged landscapes and can only interact with
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their neighbors to explore better solutions. The great challenge
individuals face is not to get stuck in local optima (peaks), which
is common in such environments.

We create different rugged landscapes to represent two typical
learning tasks: the hard-to-easy and easy-to-hard tasks (Kurt and
Ehret, 2010; Levinthal, 1997). The learning curves for these two
tasks are the exact opposite (Lieberman, 1987; Kauffman and
Levin, 1987). In the hard-to-easy task, individuals feel difficult at
the beginning of learning and then find it easier as they go along.
In contrast, individuals feel easy at first but find it increasingly
difficult over time in the easy-to-hard task. The two types of tasks
are common in real life. For example, beginner violinists need to
spend substantial time finding pitches, so they have difficulty
playing a complete piece in the early stage of learning. Beginning
pianists, on the other hand, can do this easily. However, they have
to devote more effort to practice as the complexity of the piece
increases. Thus, learning the violin can be viewed as a hard-to-
easy task, while learning the piano can be considered an easy-to-
hard task (Jorda, 2004).

Learning is not always easy, and learners will experience major
or minor setbacks in the process. For example, piano learners can
easily learn to play the beginning repertoire but struggle to master
the more complex techniques (such as chords) required for the
advanced repertoire. They have to face repeated failures before
they can play these advanced pieces. In many studies, the factor
characterizing the degree of this fluctuation is called task com-
plexity. In our model, the complexity of a task is denoted by the
number of peaks (Barkoczi et al, 2016; Barkoczi and Galesic,
2016), which are tunable in the two above tasks. Peaks can be
viewed as locally optimal solutions, and complex tasks contain
more locally optimal solutions than simple ones.

Especially, we introduce task granularity, an important task
feature ignored in previous studies, to quantify the degree to
which a task can be decomposed (Ethiraj et al., 2008; Pil and
Cohen, 2006) or the roughness of individual perception of a task.
Many studies in cognitive science have shown that human cog-
nitive processes require discrete representations (Boyd and
Henrich, 2002; Dietrich and Markman, 2003; Sperber, 1996). One
reason is that there is usually an upper limit to the human per-
ceptual system, and they are not sensitive to subtle changes. For
example, the smallest frequency change that normal-hearing
adults can detect is of the order of 0.2-0.3% (about 8-12 Hz) for
frequencies between 250 and 4000 Hz (Moore, 1974). This means
that an adult cannot accomplish the task of distinguishing
1000 Hz tones and 1001 Hz tones. Similar limitations exist for
manufactured systems, such as the porcelain and precision
industries. In these systems, the measurement and control of
physical quantities such as position and temperature are extre-
mely important. If the sensing or control precision of a system is
not up to the required level, it will not be able to produce qua-
lified products. This partly explains why developing countries
need to import advanced equipment from developed countries.

In our model, all individuals in a group are embedded in a
communication network with a specific structure, and one can
only interact with its neighbors. We consider four typical network
structures: fully connected network, locally connected lattice,
Watts-Strogatz network, and Barabasi-Albert network (Barabasi
and Albert, 1999; Watts and Strogatz, 1998). These networks
cover a broad range of possible social connection patterns
between individuals. Individuals in a network interact with others
through social learning. Here, social learning is regarded as an
imperfect imitation that individuals partially imitate the behavior
of others (Derex et al,, 2015; Posen et al., 2013; Rogers, 2010).
One reason is that individuals usually have status quo bias (SQB)
(Crawford, 1995; Friedkin and Johnsen, 1990; Morin et al., 2021;
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Posen et al.,, 2013), which refers to the preference of individuals
for their current state; so that they do not copy others’” solutions
exactly. In contrast, they will combine information from them-
selves and others to produce new solutions. An individual’s
willingness to imitate the behavior of others depends on its SQB,
and each individual is assigned a value representing its degree of
SQB in our model. Conservative individuals who prefer their
solution strongly have large SQB values, whereas open individuals
are assigned small SQB values. Then, the group conservativeness
can be denoted by the SQB distribution of all individuals in a
group; that is, conservative-biased groups contain more con-
servative individuals than open-biased groups.

Before each simulation starts, we specify the task and the
network structure of a group and its SQB distribution. Initially,
each individual is randomly assigned a solution with a payoff
sampled from the task environment. Then, individuals continue
to find new solutions by learning from their neighbors. On each
step, an individual can use three different strategies to select a
neighbor for learning, including the best strategy (learn from the
best neighbor), conformity strategy (learn from the majority of
neighbors), and the random strategy (learn from anyone neigh-
bor) (Barkoczi and Galesic, 2016; Kendal et al., 2018; Laland,
2004; Zhang and Glascher, 2020). After that, one individual
observes whether the payoff of its neighbor’s solution is higher
than itself. If yes, the individual employs an imperfect imitation
policy and obtains a new solution fused by its solution and the
socially acquired solution; otherwise, the individual holds its
original solution. We iterate the procedure for 500 steps and
record the average payoff in the group on each step separately for
each combination of the task features, group features, and
strategy-related variables. Results reported are averaged across
multiple repetitions.

We first identify five variables greatly affecting group perfor-
mance through extensive simulation experiments: three task
features (task types, task complexity, and task granularity), group
conservativeness, and social learning strategies. Specifically, task
granularity and group conservativeness interact to impact group
performance. Our results show that other variables, which have
been suggested to affect group performance in previous studies,
such as network structure, network density, and group size, do
not have significant effects (Supplementary Note 4). Moreover,
we use a popular machine learning method, the decision tree, to
quantify the importance of the above five variables. As we show
next, three task features account for 78.6% of the importance in
predicting group performance, suggesting that tasks play a deci-
sive role in social learning.

Methods

Task environments. A few studies used the NK model to gen-
erate “tunable rugged” landscapes (Barkoczi and Galesic, 2016;
Csaszar and Science, 2010). The ruggedness of a landscape gen-
erated by the NK model is determined by N, the number of
components that make up each solution, and K, the number of
interdependencies between the N components. In particular, each
solution is represented by an N-length vector composed of binary
digits, leading to a total of 2N possible solutions in a task envir-
onment. The payoff of each solution is calculated as the average of
the payoff contribution of each element, which is determined by
the other K - 1 elements (see for more details). We found that the
NK model has inherent defects in generating task environments
for social learning. First, the payoff contribution of each element
is a random number drawn from a uniform distribution between
0 and 1. Thus, the payoff of a solution, calculated as the average of
payoff contributions of the N elements, is also an uncertain
number each time the landscape is regenerated. This result means

the same solution may have different payoffs even in landscapes
created by the same NK model. Second, interdependencies
between N elements in the NK model are randomly assigned after
the landscape is created. As a result, an element is likely to be
interdependent with different K- 1 other elements across repe-
titions under the same NK model configuration. This further
increases the chance that the payoff of the same solution is dif-
ferent in repeated landscapes. Taken together, the great ran-
domness in the NK model makes the performance of social
learning strategies unstable and unreproducible.

Given the severe uncertainty of the NK model, we use the
popular optimization test functions (Barkoczi et al., 2016; Mason
and Watts, 2012; Mesoudi, 2008) to create multi-peaked task
environments. Optimization test functions are regularly used in
operations research and the field of global optimization to study
how different optimization algorithms perform. These functions
have been designed and studied carefully because they pose
challenges to adaptive optimization algorithms, covering a wide
range of possible environmental structures with regard to the
variability of high-quality solutions, the ruggedness of the
landscape, and the average payoft.

An optimization test function generally consists of two
components, the trend term, and the fluctuation term. The trend
term represents a certain trend of the function, such as an upward
or downward trend, composed of polynomial, exponential or
logarithmic functions. The fluctuation term composed of
trigonometric functions drives the value of the function to
change periodically, leading to many local minima. The trend
term reflects the evolution of learning efficiency, while the
fluctuation term reflects the learning risk.

We chose two popular optimization test functions (Ackley and
Rastrigin) to represent two different task environments. For
simplicity, we only consider the one-dimensional form y = f{x) of
the two functions, where the independent variable x represents
the solution of the task and the dependent variable y represents
the payoff of x. For each function, we transformed it so that both
the solution and the payoff take values in [0, 1], and there is only
one globally optimal solution with the highest payoff (see
Supplementary Note 1 for more details).

In particular, we use the transformed Ackley and Rastrigin
functions to represent the hard-to-easy and the easy-to-hard tasks,
respectively. The hard-to-easy tasks refer to those difficult when the
individuals first learn them and then get easier as they go along.
This characteristic fits well with the shape of the transformed
AcKley function (Fig. 1a), where the function is flat far from the
global optimum while changing rapidly closer to it. As the trend
term of the Ackley function relies on the exponential function.
Thus, in the hard-to-easy tasks, if an individual’s initial solution is
far from the optimal solution, then it can only make small progress
with each step; conversely, if its initial solution is close to the
optimal solution, then it can achieve a large increase in the payoff
each time it moves. The easy-to-hard tasks are the opposite of the
hard-to-easy tasks, which can be depicted by the transformed
Rastrigin function (Fig. 1b). Since the trend term of the Rastrigin
function depends on the quadratic function, this function is flat
near the global optimum while falls rapidly far from it. Therefore, in
the easy-to-hard tasks, individuals with initial solutions far from the
global optimum learn fast at first while they get slow when their
solutions approach the global optimum. We raise the payoft of the
transformed Rastrigin function to the power of 8, following Lazer
and Friedman (Lazer and Friedman, 2007). This operation ensures
there are only a few solutions with high payoffs and most with low
payoffs in the easy-to-hard task.

Task complexity is represented by the number of peaks in each
function. Here, we test both functions with a wide range of
complexity, varying the number of peaks from 1 to 16383. A
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Fig. 1 The hard-to-easy and easy-to-hard tasks with different complexity and granularity. a The hard-to-easy tasks with 1, 7, and 31 peaks. b The easy-
to-hard tasks with 1, 7, and 31 peaks. ¢ Fine-grained and coarse-grained hard-to-easy tasks with 31 peaks. d Fine-grained and coarse-grained easy-to-hard

tasks with 31 peaks. Fine-grained: @ = 3. Coarse-grained: w =1.

function with 16383 peaks is sufficient to represent a task with
very high complexity, and its complexity is greater than that of
the NK models in previous studies (Barkoczi et al., 2016; Barkoczi
and Galesic, 2016). The mapping between task complexity C and
the number of peaks p is defined as C=log,(p + 1), that is,
p=2¢—1(C=12,...,14). This mapping allows us to control
the complexity of a task by adjusting the number of peaks, and
the more complex the task, the more rugged the landscape
becomes (see Fig. la, b). Depending on the value of C, we
categorize the task complexity into three levels, namely low
complexity (1 < C<5), medium complexity (6 < C < 10), and high
complexity (11 <C< 14).

Task granularity is used to represent the number of solutions in a
task. Coarse-grained tasks have a few solutions, while fine-grained
tasks have a great number of solutions (see Fig. 1c, d). As mentioned
above, the optimization test function is defined in the interval [0, 1].
By dividing this interval into 10% parts equally, we can obtain
10 + 1 solutions for a task. Further, w can be used to denote the
granularity level, and a larger w indicates finer granularity and more
solutions. Figure 1c, d show the hard-to-easy and easy-to-hard tasks
under coarse granularity (w=1) and fine granularity (w=3). In
this paper, we vary the value of w from 1 to 10. The task granularity
was designed with reference to the studies in cognitive science (Boyd
and Henrich, 2002; Dietrich and Markman, 2003). (See Supple-
mentary Notes 1 and 2 for more details).

Generating the networks. We consider four kinds of networks,
namely the fully connected (FC) network, locally connected
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lattice (Lattice), Watts-Strogatz (WS) network, and Barabasi-
Albert (BA) network (more details about all networks are pro-
vided in Supplementary Note 4). In the experiments presented in
the main text, we use the FC network with 100 nodes, where each
node represents an individual engaged in social learning. Then,
we investigate the effect of the network size varying the number
of nodes in the FC network from 50 to 5000 (Supplementary Fig.
12). To study the effect of network density on social learning, we
generate various Lattice networks with 100 nodes varying the
average degree of nodes from 10 to 98 (Supplementary Fig. 14).
Note that the degree of a node is defined as the number of its
neighbors. The network density is defined as K/(N — 1), where K
is the average degree of nodes and N is the number of nodes.
Next, we use the WS network to study the effect of connection
randomness, varying the rewiring probability from 0 to 1 (Sup-
plementary Fig. 15). The rewiring probability that a node ran-
domly reconnects to other nodes determines the randomness of
the WS network. Finally, we perform simulation experiments on
the four networks to investigate the effect of network structure on
social learning (Supplementary Fig. 13). All networks are assumed
to have 100 nodes and a fixed average degree of K = 10, except for
the FC network where K= N — 1. The rewiring probability is 0.1
in the WS network.

Setting of group conservativeness. We use the status quo bias
(SQB) to indicate the conservativeness of an individual, that is,
the degree of preference for its current solution. We use ¢ € [0,1]
to represent the SQB, and an individual with a large ¢ prefers to
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believe in itself rather than accept others’ solutions. Then, we
define individuals with ¢ >0.5 as conservative ones and those
with ¢ > 0.5 as open ones. In particular, individuals with ¢ =1 are
ultra-conservative and never accept others’ solutions. Individuals
with ¢ =0 are ultra-open and always copy others’ solutions
directly.

Next, we quantify the conservativeness of a group in terms of
the SQB distribution of all individuals in the group. According to
Rogers’ research (Rogers, 2010), we classify groups into three
types, namely the normal group, the conservative group, and the
open group. The number of conservative and open individuals is
equal in the normal group, and most individuals are biased to
neutrality (i.e., the average SQB of all individuals is close to 0.5).
The conservative group has a majority of conservative individuals
(over 50%), with a mean SQB greater than 0.5. In contrast, the
open population has less than 50% of conservative individuals
with a mean SQB lower than 0.5. Here, we use mathematical tools
to precisely control the SQB distribution. Specifically, we use the
normal distribution, the left-skewed distribution (LSD), and the
right-skewed distribution (RSD) to simulate the SQB distribu-
tions of the normal, conservative, and open groups, respectively
(Supplementary Fig. 5). LSD and RSD are generated by the skew-
normal distribution with a skewness parameter (Azzalini and
Capitanio, 1999). We can control the proportion of conservative
individuals in a group by varying the skewness parameter
(Supplementary Table 1). Here, we study the effect of group
conservativeness by varying the proportion of conservative
individuals from 10 to 90%.

Social learning mechanism. Each individual in a group is ran-
domly assigned an initial solution with a payoff sampled from the
task environment. Most individuals have low payoffs, so they
have to explore new solutions with high payoffs by learning from
their neighbors. In each step, individuals find new solutions by
applying the social learning mechanism consisting of search,
decision-making, and imperfect imitation. First, they search
among their contacts in the network and select m solutions of
their neighbors randomly. Next, they have to decide which one is
chosen from the m solutions. There are three different strategies
available for them, that is, the best strategy (selecting the one with
the highest payoff), the conformity strategy (selecting the one
used by the majority of neighbors), and the random strategy
(selecting one randomly). Note that individuals can use only one
strategy in each experiment. After that, one individual observes
whether the payoff of the selected solution is higher than itself. If
yes, the individual imitates the solution and obtains a new solu-
tion fused by its solution and the socially acquired solution;
otherwise, the individual holds its original solution. The fusion
rule for generating a new solution is as follows (Crawford, 1995;
Friedkin and Johnsen, 1990):

si(t+ 1) = ¢isi(H) + (1= ¢;)s;(0)

where ¢; is the SQB of individual i, s;(t) and si(¢) are the current
solution of individual i and the individual to be imitated, s;(t + 1)
is the new solution that will be adopted by individual i at next
step. It can be seen that conservative individuals’ new solutions
will be closer to their original solutions, while open individuals
will be biased towards others’ solutions.

Simulation procedure. Each simulation experiment consists of
the following steps. First, we generate a group of N individuals
with a specific network structure and a specific SQB distribution.
Then, we assign to this group one task with a specific complexity
C and a specific granularity w. After all individuals in this group
are randomly assigned an initial solution, they select one strategy

to find new solutions with the above social learning mechanism.
We record the average payoff of all individuals as the group
performance on each step, and these steps are repeated 500 times.
We perform multiple experiments for each combination of task
features, group features, and strategy-related variables. Here, we
construct a basic combination where the group consisting of the
FC network has N=100 individuals with the normal SQB dis-
tribution; the task environment is a hard-to-easy task with C=5
and w = 4; individuals learn 500 steps using the best strategy with
sample size m=3. A group can achieve optimal performance
under the basic combination. Unless otherwise specified, we use
this basic combination to study the effect of a variable by
adjusting only its value. The final results reported are averaged
across ten repetitions.

Decision trees. We use two popular decision tree algorithms to
evaluate the effect of one variable on group performance, that is,
Classification and Regression Tree (CART) (Li et al., 1984) and
Random Forest (RF) (Breiman, 2001). CART is a classic and well-
explained algorithm, while RF is an ensemble learning algorithm
that combines the output of multiple decision trees to reach a
single result and thus has better prediction accuracy. In parti-
cular, we use CART and RF to build machine learning models
y=f(X) to predict the group performance y given the values of
input variables X. Here, the task granularity, task types, task
complexity, group conservativeness, and social learning strategies
are selected for the input variables of this model. We use the
popular machine learning library based in Python, scikit-learn
(Decision Trees—Scikit-Learn 1.1.0 Documentation, 2022), to
implement CART and RF. Since the scikit-learn implementation
does not support categorical variables for now, we employ one-
hot encoding to convert categorical variables such as task types
and social learning strategies into binary variables. To simplify
the representation in the main text, we use T to represent task
types (T = 0 for the hard-to-easy task; T=1 for the easy-to-hard
task), and S to represent social learning strategies (S=0 for the
best strategy; S=1 for the conformity strategy; S=2 for the
random strategy).

We consider all 7560 parameter combinations of the above five
variables: T=0, 1; w=1, 2,...,,10; C=1, 2,..., 14; p=10,
20, ...,90; S=0, 1, 2. We perform 10 simulation experiments for
each parameter combination and record the final group
performance y. Then, we obtain the full data consisting of
75,600 samples. We use 80% of the data as the training set to train
decision tree models and the remaining 20% as the test set to
validate the accuracy of the models. We chose mean square error
(MSE) as the criterion to measure the quality of a split. MSE and
root MSE (rMSE) are used to evaluate the prediction performance
of the models on the test set. The prediction performance of
decision tree models improves as the depth of the tree increases
(Supplementary Table 2). Here, the depth of a tree refers to the
maximum distance between the root node and any leaf node. A
decision tree with a large depth may lead to overfitting the data.
To avoid this problem, we stop splitting when the reduction in
rMSE is below 0.01 and then obtain a four-layer binary regression
tree, as shown in Fig. 5a. Note that the results for CART and RF
are similar on our simulation data. The prediction error for RF is
only slightly lower than that for CART, but they generate the
same tree (see Supplementary Figs. 20 and 21).

A great advantage of decision trees is their ability to evaluate
the importance of variables to the model. In a decision tree
model, the importance of a variable is related to two indicators.
The first is the MSE, which measures the predictive accuracy of a
variable on the group performance. A lower MSE indicates that
this variable has good predictive performance, and thus it has a
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with N =100 individuals and the normal SQB distribution.

higher importance score. The second one is the sample size of the
node where this variable is located. The greater the number of
samples that rely on this variable for prediction, the more
important this variable is. CART and RF can output the
importance scores of all variables automatically, and the higher
the score, the more important the variable. The importance scores
of all variables sum to 1. The results for CART and RF are similar
on our simulation data (see Supplementary Tables 2 and 3).

Results

The effects of task features. Figures 2 and 3 show the average
performance achieved by each strategy for two distinct tasks: a
hard-to-easy one (Fig. 2) and an easy-to-hard one (Fig. 3). We
first study the role of task complexity on group performance
under the coarsest granularity (w=1) and finest granularity
(w =10). Next, we investigate the effect of reducing granularity
on group performance. Here we focus on the average perfor-
mance of different social learning strategies (with sample size
m=3) in a fully connected network with normal SQB
distribution.

Performance in hard-to-easy tasks. In the hard-to-easy tasks, all
strategies perform equally well since the average performance
achieved by each strategy reaches 1 across complexities (Fig. 2a, b).
The result suggests that no matter how complex the hard-to-easy
task is, a group can find the global optimum by any of the social
learning strategies. This is mainly due to the characteristics of the
hard-to-easy task itself. The hard-to-easy task is modeled by the
Ackley function, in which the trend term plays a larger role than the
fluctuation term (Supplementary Note 1). The increase in com-
plexity will not lead to a great change in the landscape near the
global optimum (Fig. 1a and Supplementary Fig. 2). Consequently,
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as an individual’s solution gets closer to the optimal solution, it is
more influenced by the trend term and less likely to get stuck in local
optima. Once individuals come out of the initial hard learning phase
in this type of task, they pick up later and make great progress very
quickly. As a result, as soon as one individual in the group finds the
optimal solution, the other individuals can quickly follow, regardless
of the social learning strategy.

As for the task granularity, Fig. 2c—e show that groups relying
on social learning have difficulty in coarse-grained tasks (w < 3)
since the performance of all strategies drops significantly when
the task granularity decreases below 3. This occurs because the
number of solutions becomes small, and the variation between
solutions becomes large in coarse-grained tasks, making it more
difficult for individuals to learn new solutions. As a result, many
individuals fail to keep up with better solutions and stay at a low
level of exploration. This phenomenon is evident in conservative
individuals who stop learning prematurely and do not accept any
new solution. For example, the average performance of
conservative individuals stays below 0.4 after step 10 and cannot
be improved in hard-to-easy tasks (w=1) (see Supplementary
Fig. 7). We «call it learning bottleneck and explain this
phenomenon in detail with examples (see Supplementary Note 2).

Performance in easy-to-hard tasks. In fine-grained easy-to-hard
tasks, these strategies perform well in low-complexity tasks
(1 £C<5), but as the complexity increases (C>5), they can no
longer maintain the original performance (Fig. 3b). However,
group performance fluctuates as the increase of complexity in
coarse-grained tasks (Fig. 3a). As the easy-to-hard task is gener-
ated by the Rastrigin function where the fluctuation term plays a
larger role than the trend term in the surroundings of the global
optimum (Fig. 1b). In the fine-grained case, numerous peaks of
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with N =100 individuals and the normal SQB distribution.

this Rastrigin function are represented in the easy-to-hard task, so
individuals face a greater risk of trapping in locally optimal
solutions as the complexity increases. In the coarse-grained case
(there are rare solutions), the environments of the easy-to-hard
tasks with different complexity vary greatly (see Supplementary
Fig. 3), leading to the fluctuation of group performance. The
above results are in line with the characteristics of the easy-to-
hard tasks and also highlight the role of task types. Interestingly,
strategies differ in the reduction of group performance in high-
complexity tasks, and the best strategy outperforms the other two
strategies in fine-grained tasks. This result shows that individuals
relying on the best strategy can perform better across various
tasks (Zheng et al., 2020).

As shown in Fig. 3c-e, reducing granularity also decreases the
performance of all strategies in easy-to-hard tasks of low and
medium complexity. However, this reduction in granularity
shows a different pattern in easy-to-hard tasks of high complex-
ity. Groups perform a little better in coarse-grained tasks than in
fine-grained tasks. First, as mentioned above, there are many local
optima near the global optimum in high-complexity tasks.
Conservative individuals tend to fall into local optima, making
the group perform poorly. In particular, the number of solutions
in fine-grained tasks becomes larger, further increasing the
number of local optima near the global optimum, making it more
difficult for conservative individuals to explore the solution space.
The two reasons lead to poorer group performance in fine-
grained tasks of high complexity. Second, the decline in
granularity greatly reduces the number of solutions in the task
environment and decreases local optima near the global
optimum. This reduction of local optima, in turn, alleviates the
interference of individual exploration and increases the con-
servative individuals’ chances of finding the globally optimal
solution. Thus, we see a slight improvement in the group
performance in coarse-grained tasks.

| (2022)9:282 | https://doi.org/10.1057/541599-022-01305-2

Group conservativeness and task granularity interact. We have
seen that different task features can lead to remarkably different
performances within the same group. Here, we focus on the effect
of various group features, including the group size, network
structure, network density, and group conservativeness. Numer-
ous experiments show that only group conservativeness sig-
nificantly affects group performance (Supplementary Note 4). In
both types of tasks, the more conservative individuals in a group,
the worse the average performance of the group (Supplementary
Fig. 6). Conservative individuals hit the learning bottleneck
because they tend to maintain the status quo rather than follow
new solutions, leading to inferior performance (Supplementary
Note 2). This fact can be seen in Fig. 4 and Supplementary Fig. 9,
which show that open individuals always find the optimal solu-
tion and perform better than conservative individuals.

However, Fig. 4 also suggests that increasing task granularity
can reverse this disadvantage for the conservative-biased group.
This occurs because conservative individuals have better
performance in fine-grained tasks than coarse-grained ones. In
particular, the number of solutions becomes large, and the
difference between solutions becomes small in fine-grained tasks.
Conservative individuals can make little progress by accepting
solutions that differ less from their solutions in each step.
Therefore, they can approach what open individuals achieve in a
short time through long-run slow changes (Supplementary Figs. 7
and 8). A rigorous mathematical analysis also demonstrated that
task granularity and group conservativeness interact to influence
the performance of individuals exploring new solutions (Supple-
mentary Note 3).

Feature importance. Controlled simulation experiments allow us
to quantify the effect of each variable on group performance.
Ultimately, we identify five variables affecting group performance
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Fig. 5 The results of decision tree models learned on the simulation data. a A four-layer binary regression tree given by CART. Each gray box with the
below conditional statement is a root node; these gray boxes without conditional statements are leaf nodes. The number in the gray box denotes the
predicted value of group performance, and the conditional statement below the gray box represents the split point on a variable. N (the left of the
conditional statement) and Y (the right of the conditional statement) represent No and Yes, respectively. For simplicity, N and Y are omitted next to other
conditional statements. b Feature importance scores given by Random Forest.

significantly: three task features, group conservativeness, and
social learning strategies (Supplementary Note 4). Which of these
variables has the greatest effect? Simulation experiments cannot
tell us this result. Therefore, we use CART and RF, commonly
used decision tree algorithms, to evaluate the importance of the
above five variables. In particular, CART and RF are used to learn
a model that predicts the group performance given the values of
the five variables. The learned model is represented as a binary
tree where each root node represents a single input variable and a
split point on that variable with a prediction of the target value.
Besides, this tree model gives the importance score of all input
variables.

Figure 5a shows the binary regression tree learned by CART on
the training data. Note that RF generates the same tree as CART
(see Supplementary Figs. 20 and 21). In Fig. 5a, the number in the
gray box denotes the predicted value of group performance, and
the conditional statement below the gray box represents the split
point on a variable. These predictions use the average value y
within each subset, which is selected to minimize the mean square
error, MSE =3, (7— yi)2 /n. For example, the group perfor-
mance can be trivially estimated by its average across the full
training sample, ¥ = 0.918 with MSE = 0.018. The MSE can be
lowered by splitting the sample into two subsets based on the
value of one input variable and minimizing n;MSE;/n + n,MSE,/
n, the weighted average of MSE of both subsets. Doing this, we
find that task granularity is chosen as the variable for the first
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split, and the boundary at w =1 yields the lowest MSE value. This
split forms the first branching in the binary tree, and the newborn
left and right nodes below 0.918 represent two heterogeneous
subsets with homogeneous values of the group performance
inside. New predictions are made by the average value of the
group performance of the sample in each subset. For instance, the
predicted value of group performance for the left subset (w < 1) is
0.735 and for the right subset (w > 1) 0.939. This result indicates
that task granularity greatly affects group performance, and
groups perform poorly in coarse-grained tasks, consistent with
the previous findings.

Once the first split is chosen, each of the two subsets is split
again using the same approach, and the process continues
iteratively. As we split the regression tree, we get more nodes as
well as a lower MSE (with relative rMSE). To avoid overfitting the
data, we stop splitting when the reduction in rMSE is below 0.01
and then obtain a four-layer binary regression tree as shown in
Fig. 5a (see Supplementary Fig. 17 for the full tree; Supplementary
Table 2 for the results of other depths). The tree goes through a
total of seven splits. Among them, task granularity is chosen for
two splits (w>1 and w > 2), task type for two splits (T'< 0.5 and
T>0.5), group conservativeness also for two splits (p <55 and
p <25), and task complexity for once (C < 10).

Figure 5b shows the importance score of the five input
variables given by RF. As mentioned above, the results for CART
and RF are similar on our simulation data (Supplementary Tables
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2 and 3). We obtain two striking results from Fig. 5b. First, the
three task features together account for 78.6% of the importance,
with task granularity alone contributing 36.1% of the importance
(24.7% for task complexity and 17.8% for task type). This result
highlights the role of tasks in social learning. Especially, task
granularity, a previously neglected variable, plays the largest role.
Second, group conservativeness shares the remaining 21.4% of
importance though its effect is significant only in the coarse-
grained tasks (Fig. 4). Surprisingly, the importance of the social
learning strategy is O since it is absent from the regression tree
(Fig. 5a). It is worth noting that this result does not imply that
social learning strategies have no effect on group performance. If
we focus on the group performance in the high-complexity easy-
to-hard task (Fig. 3e), the three social learning strategies show a
slight difference. The result only suggests that the effect of social
learning strategies on group performance is negligible compared
to task features and group conservativeness.

Discussion
We have figured out three questions in this paper. First, what is the
role of tasks in social learning? Our work provides a detailed analysis
of task features. Previous studies on social learning have either
ignored task types or confused task types with task complexity
(Almaatouq et al., 2021; Barkoczi et al., 2016; Barkoczi and Galesic,
2016). For example, these studies dichotomized tasks into simple
and complex ones by complexity (Zheng et al., 2020; Flynn et al.,
2016; McElreath et al.,, 2005). We distinguished them for the first
time and found the interaction between task types and task com-
plexity. Generally, groups relying on social learning can achieve
excellent performance in low-complexity tasks; however, they may
fail to do this in high-complexity tasks due to different types of tasks.
In the easy-to-hard tasks, the local environment near the globally
optimal solution changes drastically, which means that there are
many locally optimal solutions, leading to an increased difficulty for
individuals to find the global optimum. Boosting the complexity can
worsen this problem and bring down the group performance.
Disentangling task complexity from task types helps us
understand many common learning activities in cultural evolu-
tion. For example, learning to ride a bike or drive a car can be
regarded as a proxy for hard-to-easy tasks (Wulff et al., 2009).
Such tasks are associated with procedural memory (Sun et al,
2001), which is difficult to acquire at the beginning of learning.
Once individuals acquire procedural memory through tons of
practice, they do not easily forget it even if the complexity of the
task changes. For instance, driving a car is more complicated than
riding a bicycle, but this does not prevent most people from
obtaining a driver’s license. In contrast to the tasks above,
learning mathematics can be considered an easy-to-hard task. It
requires learners to follow a strict sequence because the content of
advanced courses is often a combination of content from primary
courses (Zeps, 2009). For example, students should learn simple
algebra before calculus and master single-variable calculus before
learning multivariable calculus. For such tasks, the low-
complexity ones tend to be easier than the high-complexity ones.
In addition, we introduce task granularity, a variable that has
been overlooked in social learning but received extensive attention
in other fields (Janssen et al., 2015; Rosa et al., 2019; Tran et al,,
2016). Task granularity determines the perceived granularity of a
group to one task. We found that groups perform poorly on coarse-
grained tasks (with a small number of solutions), while increasing
task granularity can greatly improve group performance. The surge
in the number of solutions allows individuals to fully explore the
solution space, which leads to higher group performance. This
finding is supported by many cases in the evolution of human
culture or technology. During the Ming Dynasty in China

(1368-1644), a beautifully crafted porcelain came from the Jing-
dezhen official kiln, called underglaze red, whose coloring required
the temperature of fire to be controlled between 1280 and 1300
degrees Celsius (Nanjing Museum, 2022). This requirement was
beyond the capacity of the artisans of the time, so there were very
few qualified products. A recent example is that after the scientific
and industrial revolution, Europeans were able to exactly calculate
the proportions of the various fuels used in the steelmaking process
through chemical analysis (Barraclough, 1990) (such as the
Siemens-Martins method, born in 1856), which allowed the Eur-
opeans to surpass the Chinese who had been ahead for thousands of
years. Another famous case is the Toshiba-Kongsberg incident,
which also suggests the importance of granularity (i.e., precision) to
manufacturing. Throughout the cold war, large-sized powers were
looking to build nuclear-powered submarines that were quieter, and
therefore more difficult to track and intercept. Soviet CNC (com-
puter numerically controlled) machines could not meet the
machining precision of cutting propellers, resulting in its sub-
marines being consistently noisy. Subsequently, the Soviet govern-
ment secretly imported highly advanced milling machines made by
Toshiba because they cut smoother propellers, hence making the
nuclear submarine propulsion quieter (Wrubel, 2011).

Second, how does individuals’ status quo bias affect their
performance in social learning? Our results show that con-
servative individuals are less likely to find the globally optimal
solution due to their low preference for socially acquired solu-
tions. This makes them perform inferior to open individuals who
always achieve high-level performance. As a result, a group with
more conservative individuals performs worse. However, this
drawback of conservative individuals can be mitigated by
increasing task granularity. The intuition underlying the result is
the following. The proliferation of the number of solutions
instead narrows the difference between solutions. Conservative
individuals can accept solutions that are less different from their
own and thus achieve slow progress. After a slow long-run effort,
conservative individuals gradually catch up with open individuals.
This finding also coincides with relevant studies in cognitive
psychology. In these studies, fine-grained tasks are described as
tasks with fast and immediate feedback (Epstein et al., 2002).
Some individuals who have poor performance or negative emo-
tions (e.g., resistance to learning) will achieve better learning
outcomes if they receive immediate and positive feedback from
their teachers (Muis et al., 2015).

Third, how do we quantify the effects of different variables on
group performance? Few studies focused on this problem. On the
one hand, there are so many variables that affect the performance
of a group relying on social learning. It is difficult and expensive
to conduct behavioral experiments to measure these variables'
effects. On the other hand, previous studies and our work showed
the interactions between variables, which pose great challenges in
disentangling their effects. In this paper, we presented a method
to comprehensively examine the effects of different factors on
group performance in social learning. This approach consists of
two phases. In the first stage, we conducted a simulation
experiment to examine the effect of a single variable by changing
its value and then observe the significance of its effect on group
performance. Five variables that significantly impact group per-
formance are figured out: three task features, group conservatism,
and social learning strategies. Then, we used decision tree models
to quantify the predictive performance of these variables on group
performance. The feature importance scores given by the models
show the impact of these variables. Our results suggest that task
features have the highest influence on group performance, at over
78%, which reveals the decisive role of tasks in social learning. In
particular, our method has two distinct advantages. One is
brought by the agent-based simulation model, which gives good
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reproducibility to the experimental results. The other is that
decision tree models offer an opportunity to estimate each vari-
able’s importance. Computational sociologists can benefit a lot
from this machine learning approach.

Notably, we obtained some results that are different from
previous studies. For example, we found that group-related
variables, such as network structure (Barkoczi and Galesic, 2016;
Lazer and Friedman, 2007), network density (Shi et al., 2017), and
network size (Ausloos, 2015), had low impacts on group per-
formance. One possible reason is that previous studies did not
take task granularity into account. In their experiments, the task
granularity was generally designed to be low, i.e., the number of
solutions available to individuals was small, which limited the
group performance. They may have misattributed the observed
changes in group performance to other variables. In addition, all
three strategies achieved high performance in most cases, with
little difference between them. This may be because we regard
social learning as imperfect imitation, which allows individuals to
explore new solutions by a trade-off between their solutions and
others’ solutions (Posen and Martignoni, 2018). This differs from
studies (Fang et al., 2010; Lazer and Friedman, 2007) in which
individuals used two learning patterns simultaneously: individual
learning for exploring new solutions and social learning for dis-
seminating them. However, it is hard to distinguish the roles of
the two learning modes in these studies.

It is worth mentioning that our results do not negate the role of
social learning strategies but show that there is little difference
between these strategies. Frankly, individuals can improve their
payoffs as long as they consistently learn from individuals who are
better than themy; it is less important which strategy is used to choose
these individuals. It is undeniable that one strategy may outperform
others in some cases. For example, the best strategy is better than the
other two strategies in fine-grained easy-to-hard tasks of high
complexity. This phenomenon is particularly evident in higher
education, where top scientists tend to promote the rapid develop-
ment of the discipline and identify and develop outstanding talent.
For example, Leonhard Euler, the Swiss mathematician recognized
as the most brilliant in the 18th century, made considerably high-
level research in Saint Petersburg. He played a huge role in advan-
cing the development of Russian mathematics and got the highest
possible recognition from Russia (Schulze, 1985).

Our study shows that social learning enables groups to achieve
high-level performance (Posen et al., 2013). However, individuals
can also learn from their own trial-and-error experience, an
important component of human decision-making. In this study,
we assume that individuals rely only on social learning without
independent exploration, which is a limitation of the present
study. Future work can explore the mixture of the two different
learning styles and examine which plays a greater role in human
decision-making (Zhang and Glascher, 2020). In addition, the
tasks studied in this paper have only one independent variable,
whereas real-world tasks may include multiple independent
variables. Future research can investigate the effect of task
dimensionality on group performance.

Taken together, our results provide new insights into social
learning. First, the result that task features contribute nearly 80% to
predicting group performance suggests that tasks almost determine
the performance a group can achieve via social learning. Second,
increasing task granularity helps conservative individuals avoid hit-
ting the learning bottleneck, which means that groups can achieve
the performance they otherwise would not by changing task features.
These results have broad implications for cultural transmission and
evolution. For example, empirical studies by cultural anthropologists
have shown that new solutions with high payoffs are resisted by
conservatives when they are disseminated within groups
(Rogers, 2010). Promoters of these new solutions typically employ
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psychological methods to persuade conservative individuals,
although these methods are laborious. Our work offers an alternative
approach. Promoters preferably split the solution they spread and
recommend only a portion of them to conservative individuals at a
time. In this way, conservative individuals will not show a strong
tendency to resist and will gradually accept the new solution.

Data availability
Code and data are available in an open repository (https://github.
com/networkanddatasciencelab/social-learning).
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