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Human-machine-learning integration and task
allocation in citizen science
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The field of citizen science involves the participation of citizens across different stages of a

scientific project; within this field there is currently a rapid expansion of the integration of

humans and AI computational technologies based on machine learning and/or neural

networking-based paradigms. The distribution of tasks between citizens (“the crowd”),

experts, and this type of technologies has received relatively little attention. To illustrate the

current state of task allocation in citizen science projects that integrate humans and com-

putational technologies, an integrative literature review of 50 peer-reviewed papers was

conducted. A framework was used for characterizing citizen science projects based on two

main dimensions: (a) the nature of the task outsourced to the crowd, and (b) the skills

required by the crowd to perform a task. The framework was extended to include tasks

performed by experts and AI computational technologies as well. Most of the tasks citizens

do in the reported projects are well-structured, involve little interdependence, and require

skills prevalent among the general population. The work of experts is typically structured and

at a higher-level of interdependence than that of citizens, requiring expertize in specific fields.

Unsurprisingly, AI computational technologies are capable of performing mostly well-

structured tasks at a high-level of interdependence. It is argued that the distribution of tasks

that results from the combination of computation and citizen science may disincentivize

certain volunteer groups. Assigning tasks in a meaningful way to citizen scientists alongside

experts and AI computational technologies is an unavoidable design challenge.
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Introduction and background

Over the last few years we have witnessed a large growth in
the capabilities and applications of artificial intelligence
(AI) in citizen science (CS), a broad term referring to the

active engagement of the general public in research tasks in
several scientific fields, including astronomy and astrophysics,
ecology and biodiversity, archeology, biology, and neuroimaging
(Vohland et al., 2021). CS is an expanding field and a promising
arena for the creation of human-machine systems with increasing
computational abilities, as several CS projects generate large
datasets that can be used as training materials for AI streams,
such as machine-learning (ML) models and image and pattern
recognition (Lintott and Reed, 2013). The integration of humans
and AI applications can help process massive amounts of data
more efficiently and accurately and monitor the results. Examples
of AI applications in CS include image recognition as in iNa-
turalist (Van Horn et al., 2018) and Snapshot Serengeti (Willi
et al., 2019), image recognition and classification to map human
proteins in cells and tissues as in Human Atlas (Sullivan et al.,
2018), and consensus algorithms to locate or demarcate objects as
in Galaxy Zoo (Willett et al, 2013) and the Koster Seafloor
Observatory (Anton et al., 2021). The integration of humans and
computational technologies opens up new ways of collaboration
between the two but also raises questions about the distribution of
tasks, and how humans and this type of technologies can com-
plement each other to expand their respective skills. As AI grows
“smarter”, people become increasingly concerned with being
replaced in many domains of activities. Opportunities and risks
for work of digital technologies including AI have been a long-
standing topic of inquiry across research disciplines and in policy
documents. In a recent report for the European Parliament, the
Panel for the Future of Science and Technology (STOA) (2021)
pointed out that technology impacts the distribution of tasks
within jobs; just as technology may help to improve skills and
raise the quality of work, it can also result in deskilling and
creating low paid and low autonomy work. Importantly, while
technology can help to preserve work, it can also impact nega-
tively the qualitative experience of work (Panel for the Future of
Science and Technology (STOA), 2021). In this respect, during a
discussion panel aimed to initiate a dialog on how citizen sci-
entists interact and collaborate with algorithms held at the 3rd
European Citizen Science 2020 Conference, participants expres-
sed concern with the possible negative impact of AI on the
qualitative experience of participation in CS. As mentioned
during that discussion, the current rapid progress in ML for
image recognition and labeling, in particular the use of deep
learning through convolutional neural networks (CNN) and
generative adversarial networks, may be perceived as a threat to
human engagement in CS. If computational technologies can
confidently carry out the tasks required, citizen scientists may feel
that there is no space for authentic engagement in the scientific
process (Ponti et al., 2021). This concern suggests the tension that
arises when “designing a human-machine system serving the dual
goals of carrying out research in the most efficient manner pos-
sible while empowering a broad community to authentically
engage in this research” (Trouille et al., 2019, p.1).

Why task distribution matters and aim of the paper. Task
distribution between humans and machines has always been a
crucial step in the design of human-machine systems and a main
topic of research in human-automation interaction (e.g., Dearden
et al., 2000; Hollnagel and Bye, 2000; Sheridan, 2000). Considered
an “evergreen” topic, task allocation has been covered by a large
body of literature in different fields, including cognitive engi-
neering, human factors, and human-computer interaction, but

continues to be an important area for research on automation
(Janssen et al., 2019). A prominent approach used for years to
decide which tasks are better performed by machines or by
humans has been the HABA-MABA (“Humans are better at,
Machines are better at”) list firstly introduced by Fitts (1951).
This list contains 11 “principles” recommending the functions
that are better performed by machines and should be automated,
while the other functions should be assigned to humans.
Although researchers differ in what they consider appropriate
criteria for task allocation (Sheridan, 2000), the influence of Fitts’s
principles persists today in the human factors’ literature. De
Winter and Dodou (2014) conclude that Fitts’s list is still “an
adequate approximation that captures the most important reg-
ularity of automation” (p. 8). Given the primary interest of
researchers to optimally distribute tasks between humans and
machines to maximize efficiency and speed to achieve a given
goal (Tausch and Kluge, 2020), this conclusion would arguably
hold. However, as Tausch and Kluge (2020) noted, we need more
research on task distribution in order to make decisions that
allow not only an optimal allocation but also a rewarding
experience for humans. This aspect is important in CS projects as
they rely on volunteer engagement and concerns have been raised
over the potential of AI to disengage citizen scientists: the use of
AI can result in a reduction in the range of possible volunteer
contributions or in the allocated tasks becoming either too simple
or too complex (Trouille et al., 2019).

While task distribution to participants in citizen science
projects has been studied by Wiggins and Crowston (2012), task
distribution between experts, citizen scientists, and AI computa-
tional technologies (hereinafter also used interchangeably as
“computational technologies”) does not appear to have been
investigated. Therefore, we present a literature review to illustrate
the current state of the distribution of tasks between humans and
computational technologies in CS. We used an adapted version of
the framework developed by Franzoni and Sauermann (2014) to
analyze the results and highlight the differences in the nature of
the task and the skills contributed by humans and this type of
machines to perform those tasks. Through the analysis, we
answer the following questions:

1. What tasks do citizen scientists, experts, and computational
technologies perform to achieve the goals of citizen science
projects?

2. What type of skills do citizen scientists, experts, and
computational technologies need to perform their tasks?

3. In which activities do citizen scientists, experts, and
computational technologies, respectively, perform their tasks?

We now clarify the terms used in the questions. We use
Theodorou and Dignum’s (2020) definition of AI computational
technologies as systems “able to infer patterns and possibly draw
conclusions from data; currently AI technologies are often based
on machine learning and/or neural networking-based paradigms”
(p. 1). This definition is appropriate in this paper because our
review is focused on technologies based on machine learning and/
or neural networking-based paradigms. For a proper under-
standing of the term “task”, we refer instead to Hackman’s (1969,
p. 113) definition of the term as a function assigned to an
individual (or a group) by an external agent or that can be self-
generated. A task includes a set of instructions that specify which
operations need to be performed by an agent concerning an
input, and/or what goal is to be achieved. We used Hackman’s
(1969) conceptualization of tasks as a behavior description, that
is, a description of what an agent does to achieve a goal. This
conceptualization applies to both humans and machines
performing tasks. The emphasis is placed on the reported
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behavior of the task performed. Regarding the activities included in
our analysis, we discussed the tasks performed within activities of the
research process such as data collection, data processing, and data
analysis (McClure et al., 2020), as CS projects typically involve these
activities. Regarding the term “expert”, we used it in a broad sense, to
include not only professional scientists but also persons responsible
for developing algorithms and running the projects.

The contribution of this paper is threefold: (1) providing the
scholars studying CS and human computation with a synthesis of
results shedding descriptive insights into the distribution of tasks in
CS; (2) potential broader implications for how we think about work
in general and how we organize work involving “non-experts” and
computational technologies, and 3) point to important questions
for future research.

The paper is organized as follows. We first describe the
methodology used for collecting and assessing the reviewed
papers. We then present the framework used for our analysis of
the results. Building on this framework, in the Discussion section
we propose a matrix to classify CS projects on the basis of the
distribution of tasks between humans and computational
technologies. We also reflect on the role of citizen scientists
borrowing from a labor perspective. The last section presents
conclusions from this study and points to future research.

Methods
Strategies for searching, screening, and assessing the literature.
To answer our questions, we conducted an integrative literature
review, a subcategory of systematic reviews (Torraco, 2016). Inte-
grative reviews follow the principles of systematic reviews to ensure
systematization and transparency in searches, screening, and
assessment processes, but they allow more flexibility regarding
selection and inclusion of literature. The strategy for searching,
screening and assessing the literature followed the systematic
approach of the PRISMA reporting checklist (Fig. 1).

The review corpus was sourced from the Web of Science,
SCOPUS, and the Association for Computing Machinery (ACM)
Digital Library—the single largest source of computer science
literature. These three databases are well-established, multi-
disciplinary research platforms, including a wide variety of peer-
reviewed journals, and they are updated regularly. We used them
because they constitute a baseline for the search of published

peer-reviewed papers. However, we are aware that, in the case of
citizen science publications, the true extent of these publications
can be larger as studies can be published in non-peer-reviewed
literature sources and would not be referred in these three
databases. We did not include preprints.

We employed two search procedures. In the first search procedure
(Table 1), we searched for papers containing “citizen science” and
“artificial intelligence” or “machine learning” in the title, abstract,
and keyword sections. However, after a brief initial scanning of the
resulting papers, we added several other search terms to include the
most widely used computational technologies, such as supervised
learning, unsupervised learning, reinforcement learning, reinforce-
ment algorithm, deep learning, neural network(s), and transfer
learning. The search was limited to papers written in English and
published until July 2020. We collected a total of 170 papers across
the three databases, 99 of which were unique. Table 1 summarizes
the search terms used and the number of results per database during
search procedure 1.

The initial examination of these papers revealed that the
chosen search strategy did not fully cover those focused on citizen
science games. The reason for this is that some authors use game
titles in the abstracts instead of referring to games as ‘citizen
science’. Therefore, a second search procedure was employed
using the same terms related to AI and ML as in the first
procedure, and the titles of 36 citizen science games (Baert, 2019).
The search was performed in two steps. First, the game titles
‘Neo’, ‘Turbulence’, and ‘The Cure’ were excluded, because the
search generated many false-positive results not related to citizen
science games. At the second step, to locate those articles that
discuss ‘Neo’, ‘Turbulence’, and ‘The Cure’ games, an additional
search was implemented using these titles and ‘game’ as search
terms. The search using the ACM Digital Library did not produce
any results, thus we excluded this database from the table. The
searches were limited to articles written in English and published
until July 2020. Table 2 contains the employed search strings and
the number of generated results for both steps of the search
procedure. The searches generated 28 results, 20 of which were
unique. Out of the remaining 20 papers, 17 were not covered by
the search procedure 1.

Exclusion criteria. A single reviewer parsed all the retrieved
papers based on their titles, abstracts, keywords, and, if necessary,

Fig. 1 Prisma flow diagram for paper selection.
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full-text reading. Since we aimed to focus on papers reporting on
projects implementing integrations of human and computa-
tional technologies, as they were more likely to describe how
tasks were distributed, we applied several selection criteria to
filter out irrelevant papers. We excluded papers that provided
no significant focus and discussion on, or application of,
computational technologies in CS. Studies excluded from the
review included, for example, a comparison of the results of
citizen scientist classifications with the results of computational
technology’s models trained on expert-produced data (e.g.,
Wardlaw et al., 2018), or an overview of projects on Zooniverse
with some description of how ML is used in these projects
(Blickhan et al., 2018).

Table 3 presents the exclusion criteria and the number of
excluded papers. As a result of the selection process, 50 papers
were selected for the review (the list of all the included and
excluded papers with reasons for why they were excluded is in
Supporting Information 1, available at https://zenodo.org/record/
5336431#.YSyzFtOA5EJ).

Analysis and synthesis strategy. The process of searching for
relevant studies, filtering, data extraction, and synthesis took
place from April 1st to September 30th 2020. To ensure con-
sistency in the reporting, we used a spreadsheet for the 50 articles
to note the author(s) and title for each article, the publication
year, the source, the research field and type of the CS project.

Table 1 Search procedure 1.

Database Search strings Results

Web of Science TOPIC: ("citizen science" OR "citizen scientist*") AND TOPIC: ("artificial intelligence" OR "machine learning" OR
"supervised learning" OR "unsupervised learning" OR "reinforcement learning" OR "reinforcement algorithm" OR "deep
learning" OR "neural network*" OR "transfer learning")
Refined by: LANGUAGES: (ENGLISH) AND DOCUMENT TYPES: (ARTICLE)
Timespan: All years. Indexes: SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI.

83

SCOPUS (TITLE-ABS-KEY ("citizen science" OR "citizen scientist*") AND TITLE-ABS-KEY ("artificial intelligence" OR "machine learning"
OR "supervised learning" OR "unsupervised learning" OR "reinforcement learning" OR "reinforcement algorithm" OR "deep
learning" OR "neural network*" OR "transfer learning")) AND (LIMIT-TO (DOCTYPE, "ar")) AND (LIMIT-TO (LANGUAGE,
"English"))

86

ACM [[Abstract: "citizen science"] OR [Abstract: "citizen scientist"] OR [Abstract: "citizen scientists"]] AND [[Abstract:
"artificial intelligence"] OR [Abstract: "machine learning"] OR [Abstract: "supervised learning"] OR [Abstract:
"unsupervised learning"] OR [Abstract: "reinforcement learning"] OR [Abstract: "reinforcement algorithm"] OR [Abstract:
"deep learning"] OR [Abstract: "neural network"] OR [Abstract: "neural networks"] OR [Abstract: "transfer learning"]]
Applied filters: Research article, Journals

1

Total 170

Databases, search strings, and result count.

Table 2 Search procedure 2 (citizen science games).

Database Search strings Results

Web of Science TOPIC: (hexxed OR mobot OR "NeMO-net" OR hewmen OR "Skill Lab: Science Detective" OR "Cancer Crusade" OR
"Crowd Water Game" OR mozak OR "Stall Catchers" OR "Colony B" OR "Decodoku Colors" OR decodoku OR "Sea Hero
Quest" OR "MalariaSpot Bubbles" OR "Project Discovery" OR mark2cure OR questagame OR nanocrafter OR "Reverse The
Odds" OR mequanics OR apetopia OR "Quantum Shooter" OR "Alien Game" OR "Quantum Moves" OR malariaspot OR
"Forgotten Island" OR eyewire OR "Quantum Minds" OR nanodoc OR artigo OR phylo OR eterna OR foldit) AND TOPIC:
("artificial intelligence" OR "machine learning" OR "supervised learning" OR "unsupervised learning" OR "reinforcement
learning" OR "reinforcement algorithm*" OR "deep learning" OR "neural network*" OR "transfer learning")
Refined by: LANGUAGES: (ENGLISH) AND DOCUMENT TYPES: (ARTICLE)
Timespan: All years. Indexes: SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI.

9

Web of Science TOPIC: (neo OR turbulence OR "The Cure") AND TOPIC: (game*) AND TOPIC: ("artificial intelligence" OR "machine
learning" OR "supervised learning" OR "unsupervised learning" OR "reinforcement learning" OR "reinforcement algorithm*"
OR "deep learning" OR "neural network*" OR "transfer learning")
Refined by: LANGUAGES: (ENGLISH) AND DOCUMENT TYPES: (ARTICLE)
Timespan: All years. Indexes: SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI.

2

SCOPUS (TITLE-ABS-KEY (hexxed OR mobot OR "NeMO-net" OR hewmen OR "Skill Lab: Science Detective" OR "Cancer Crusade"
OR "CrowdWater Game" OR mozak OR "Stall Catchers" OR "Colony B" OR "Decodoku Colors" OR decodoku OR "Sea Hero
Quest" OR "MalariaSpot Bubbles" OR "Project Discovery" OR mark2cure OR questagame OR nanocrafter OR "Reverse The
Odds" OR mequanics OR apetopia OR "Quantum Shooter" OR "Alien Game" OR "Quantum Moves" OR malariaspot OR
"Forgotten Island" OR eyewire OR "Quantum Minds" OR nanodoc OR artigo OR phylo OR eterna OR foldit) AND TITLE-
ABS-KEY ("artificial intelligence" OR "machine learning" OR "supervised learning" OR "unsupervised learning" OR
"reinforcement learning" OR "reinforcement algorithm*" OR "deep learning" OR "neural network*" OR "transfer learning"))
AND (LIMIT-TO (DOCTYPE, "ar")) AND (LIMIT-TO (LANGUAGE, "English"))

15

SCOPUS TITLE-ABS-KEY (neo OR turbulence OR "The Cure") AND TITLE-ABS-KEY (game*) AND TITLE-ABS-KEY ("artificial
intelligence" OR "machine learning" OR "supervised learning" OR "unsupervised learning" OR "reinforcement learning" OR
"reinforcement algorithm*" OR "deep learning" OR "neural network*" OR "transfer learning")) AND (LIMIT-TO (DOCTYPE,
"ar")) AND (LIMIT-TO (LANGUAGE, "English"))

2

Total 28

Databases, search strings, and result count.
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In addition, for each article we annotated the aim of the article,
the computational technologies used, and the tasks assigned to
citizens and experts (this extraction data is in Supporting Infor-
mation File 1). These annotations provided a preliminary over-
view of the aspects relevant to address our research questions.

The framework
We used an adapted version of the conceptual framework
developed by Franzoni and Sauermann (2014) to characterize
citizen science projects with respect to two main dimensions:
(a) the nature of the task outsourced to a crowd, and (b) the
skills that crowd participants need to perform the task. We
generalize this framework in order to map the tasks performed
not only by the crowd but also by experts and AI computa-
tional technologies. We now describe the two dimensions in
more details.

Nature of the task. Franzoni and Sauermann describe this
dimension in an aggregate sense at the level of the crowd, with
each individual making distinct contributions to that task by
performing specific subtasks. They subsume under “nature of the
task” two related attributes: the complexity of the task and the
task structure. In the context of CS projects, Franzoni and
Sauermann define task complexity as the degree of inter-
dependency between the individual subtasks that participants
perform when contributing to a project. In the simplest case, tasks
are independent of each other. Task outputs can be pooled
together in the end to generate the final output. In addition,
contributors can perform their tasks independently. The authors
made the example of Galaxy Zoo, where the correct classification
of an image does not depend on the classifications of other
images. However, when dealing with complex and interdependent
tasks, the best solution to one subtask depends on other subtasks,
so contributors must consider other contributions when working
on their own subtask.

Franzoni and Sauermann define task structure as the degree to
which the overall task outsourced to participants is well-
structured, with clearly defined subtasks, or ill-structured, with
specific subtasks not clearly defined from the start. Ill-structured
tasks are said to provide fewer opportunities for the division of
labor. The two attributes are typically highly correlated and we
follow Franzoni & Sauermann by using a single dimension
ranging from independent/well-structured to interdependent/ill-
structured.

Skills need to perform the task. Franzoni and Sauermann dis-
tinguish three types of human skills: (a) common skills held in the
general population, e.g., recognizing the shape of a plant; (b)
specialized and advanced skills that are less common and not
related to a specific scientific domain, e.g., specialized knowledge
of certain technical tools, and (c) expert skills that are specifically

related to a given scientific or technological domain, e.g., expert
knowledge of mathematics.

This distinction is applicable to humans in general, including
citizens and professional scientists. To be able to apply this
framework to computational technologies as well, we expand this
categorization to include different types of machine skills, in
particular classification and prediction. We define them as the
abilities to perform a task that computational technologies learn
from training. We characterize these skills as being generated
through programs of actions—consisting of goals and intentions
– delegated by developers to technologies (Latour, 1994).

This framework forms a two-dimensional space that can
categorize the tasks performed by citizen scientists, experts, and
computational technologies, and the skills needed by humans
and computational technologies to perform their tasks. We link
these two dimensions to three main research activities/stages in
the research process in which citizen scientists, experts, and
computational technologies perform their tasks. The three
activities include: data collection, data processing, and data
analysis. We define them here as follows. Data collection refers to
acquisition and/or recording of data. Data processing refers to
actions aimed to organize, transform, validate, and filter data in
an appropriate output form for subsequent use (for example, for a
ML training model). Data classification and data validation are
considered data processing actions. Data analysis refers to actions
performed on data to describe facts, detect patterns, develop
explanations, test hypotheses, and predict the distribution of
certain items. Modeling species is considered here a data analysis
action. We refer to data modeling as a process of analyzing data—
for example, on species distribution—and their correlated
variables —for example, bioclimatic variables—to identify areas
where sensitive species exist or not.

The choice of the two dimensions is one aspect we should take
into consideration. Our argument is that the nature of task and
skill are fundamental, not just for mapping the distribution of
tasks, but also to understand how tasks are allocated to citizens
versus experts versus computational technologies. By mapping an
array of papers, we expect to observe certain characteristics. For
example, we can expect that tasks performed by computational
technologies will be on the right side, but it would also be
interesting to see if these technologies are mostly doing well-
structured tasks and at what level of interdependence, while
humans also do ill-structured tasks.

Results
The results section is divided into two parts. First, we provide a
descriptive overview of the dataset, including some basic char-
acteristics of the reviewed publications and the fields of the
reported citizen science projects. Second, we organize the results
around the three review questions of the study, concerned with:
the nature of the task performed by citizens, experts, and com-
putational technologies, the skills needed by both humans and
computational technologies to perform theirs tasks, and the
activities in which citizens, experts, and computational technol-
ogies, respectively, perform their tasks. The type of skills were
mostly inferred from the description of the tasks, as the reviewed
papers generally do not include explicit statements about this
dimension. (Supporting Information 2 provides an overview of
the tasks and the relative references).

Overview of the dataset. The reviewed papers were published
between 2011 and 2020, with the majority (35 out of the 50
papers) published between 2018 and 2020 (Supporting Infor-
mation 1 contains the list of the 50 papers). This increasing
interest in combining AI computational technologies and citizen

Table 3 Exclusion criteria for procedure 1 and 2 and number
of excluded papers.

Exclusion criteria Count

Not related to AI computational technologies 9
Not related to citizen science 18
Citizen science and AI computational technologies not
examined in combination

12

Citizen science data/procedure are simulated 3
Not related to AI computational technologies applied to CS 8
Irrelevant topics 17
Total 66
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science (CS) is also evident from the growing diversity of research
fields with which the described CS projects are associated. The
review demonstrated a considerable variety of citizen science
projects (n= 42) with some papers reporting on using data from
several projects. The three main areas that attract the most
attention across the whole timespan are astronomy and astro-
physics (e.g., Galaxy Zoo, Gravity Spy, and Supernova Hunters),
biology (e.g., EteRNA, EyeWire, and Project Discovery), and
ecology and biodiversity (e.g., eBird, Bat Detective). However,
starting from 2017, we observe a larger variation including
archeology (e.g., Heritage Quest, and field expeditions), neuroi-
maging (Braindr.us), seismology (MyShake app), and environ-
mental issues (recruiting volunteers to measure the quality of air
or water). Table 4 shows the distribution of the reviewed papers
per research area from 2011 to 2020.

Citizen scientists: nature of the tasks performed, skills needed,
and activities. The two main categories of tasks performed by
citizen scientists are collecting data and classifying observations.
Other tasks include generating new taxonomies, validating the
algorithm classification results, solving in-game puzzles, and
going through training.

Table 5 provides an overview of the main tasks performed by
citizen scientists and the skills they need.

Data collection. This refers to a set of tasks widely assigned to
citizen scientists in the areas of ecology, biodiversity, and
environmental monitoring. Delegating the collection of data

to volunteers allows researchers to map geographical dis-
tributions of species and spatial variation in unprecedented
scope and detail, which is especially relevant when monitoring
by researchers is not feasible or efficient enough. The most
common types of data contributed by volunteers include
photos of plants or animals, accompanied by some context
information (such as location and date/time of observation),
and sometimes by a description (e.g., Derville et al., 2018;
Capinha 2019). Less common types are videos and audio
recordings (e.g., Zilli et al., 2014; Hardison et al., 2019). These
observations were often accompanied by species classification,
as citizen scientists were asked to submit observations of a
particular species (e.g., Jackson et al., 2015). Alternatively,
volunteers submitted observations that they classified with the
help of an instrument, e.g., the eBird app (Curry et al., 2018),
where the mobile app suggestions were used but no photo
attached. Several papers also reported on citizens sending a
specimen to researchers, e.g., bee trap nests (Kerkow et al.,
2020; Everaars et al., 2011).

Another type is relatively passive data collection that does not
require analysis on the part of the citizens. Lim et al. (2019) and
Adams et al. (2020) reported on projects aimed at sampling air
quality: volunteers were equipped with AirBeam sensors and
asked to sample several routes by walking or cycling there. In
Winter et al. (2019), an Android app was presented that allowed
for identifying and classifying charged papers in camera image
sensors. The only task outsourced to the citizens in this case was
installing the app.

Overall, the reported tasks involve a low-level of complexity as
taking good photos of animals or plants, or collecting quality data
of air pollution do not depend on the data collected by other
volunteers. Regarding the background skills to perform these
tasks, citizen scientists seem to need general/common skills,
required in routine tasks. However, they can be required to have
some training, which was sometimes done face-to-face if citizens
were asked to collect specific types of data in the field (Hardison
et al., 2019). In other cases, this training occurred mainly online,
as citizens went through guidelines prepared by project authors
(Keshavan et al., 2019). The training could also be guided,
facilitated, and assessed using ML algorithms (Zevin et al., 2017).
While we may suggest that all citizen scientists go through some
kind of training, not all of the reviewed papers included related
information.

Table 4 Distribution of the reviewed papers per research
area from 2011 to 2020.

Research area 2011–2020

Archeology 1
Astronomy and Astrophysics 16
Biology 4
Ecology, Biodiversity and Conservation 23
Environment 3
Neuroinformatics, Neuroimaging, Medicine 1
Recording wildlife 1
Seismology 1
Total 50

Table 5 Tasks performed by citizen scientists and skills needed across the activities—examples from the literature.

CS project Specific tasks performed Nature of the tasks Skills

Task
complexity

Task structure

Data collection Marine mammal
observation network

Collect and annotate photos of
plants and animals
(Derville et al., 2018).

Low-level Well-
structured

Common skills (taking
pictures)

AirBeam Passive sensing
(Adams et al., 2020).

Low-level Well-
structured

Common skills (installing a
sensor)

Data
processing

Classify species
(Jackson et al., 2015).

Low-level Well-
structured

Common skills (identify and
count objects)

Gravity Spy Generate new taxonomies Low-level Well-
structured

Specialized skills (identify new
classes of objects)

EyeWire Map 3D structures of retinal
neurons (Kim et al., 2014).

Low-level Well-
structured

Specialized skills (visualization
and manipulation skills)

Validate automatically detected
archeological sites
(Lambers et al., 2019)

Low-level Well-
structured

Common skills (identify
objects)

Data analysis EteRNA Solve two-dimensional puzzles
(Lee et al., 2014)

Low-level Well-
structured

Specialized skills (visualization
and manipulation skills)
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Data processing. The second popular set of tasks performed by
citizen scientists is related to image analysis and includes clas-
sifying images into predefined categories, describing objects by
choosing all relevant categories from a predefined list, as well as
identifying and counting objects. The research fields setting up
citizen science projects to outsource these tasks to volunteers
include astronomy and astrophysics, ecology and biodiversity,
archeology, biology, and neuroimaging. The tasks are performed
in web interfaces: the majority of the projects run on the Zoo-
niverse platform, but there are also separate initiatives such as
the Braindr.us website (Keshavan et al., 2019) and the Project
Discovery implemented in the Eve online game (Sullivan et al.,
2018). Allocating classification tasks to citizen scientists is often
related to the extremely large size of currently available datasets
that makes expert classification unfeasible. The projects leverage
human ability for pattern recognition and benefit from the scope
of citizen science projects. The resulting classifications con-
stitute training datasets for computational analysis. Citizen
scientists classify objects from images into predefined categories.
It can be a binary classification task, e.g., citizens decided
whether a supernova candidate is a real or a ‘bogus’ detection
(Wright et al., 2017; Wright et al., 2019). Alternatively, there
could be a larger number of categories. For example, four studies
reported on the Gravity Spy project, where users were presented
with spectrograms and asked to classify glitches into predefined
categories according to their morphology (Bahaadini et al., 2018;
Crowston et al., 2020; Jackson et al., 2020; Zevin et al., 2017).
Another task performed by citizen scientists was about
describing an object in an image using a set of predefined
characteristics. Examples include describing circumstellar debris
disk candidates (Nguyen et al., 2018); classification of protein
localization patterns in microscopy images (Sullivan et al.,
2018); and morphological classification of galaxies (Jiménez
et al., 2020; Kuminski et al., 2014; Shamir et al., 2016). Lastly,
the projects benefiting from citizen scientists identifying and
counting objects asked citizens to identify and locate animals of
particular species (Bowley et al., 2019; Torney et al., 2019); mark
potential archeological sites (Lambers et al., 2019), and identify
and locate Moon craters (Tar et al., 2017), and interstellar
bubbles on images (Beaumont et al., 2014; Duo and Offner
2017). Kim et al. (2014) reported on the EyeWire game project,
where players contribute to mapping 3D structures of retinal
neurons by coloring the area that belongs to one neuron and
avoiding coloring other neurons on a 2D slice image. These
types of task involve a low-level of complexity as the correct
classification of an object does not depend on the classifications
of other objects. To perform this type of classification, citizen
scientists need common skills, such as identifying and counting
objects. More specialized skills, such as good observation skills,
can be required to perform tasks related to generating new
taxonomies of objects. Coughlin et al. (2019) discussed that
Gravity Spy project volunteers did not only classify spectro-
grams into already known classes of glitches but also suggested
new classes, being aided by computational clustering of mor-
phologically similar objects. Citizen scientists also performed
validation of algorithm classification (Kress et al., 2018), or
object detection results (Lambers et al., 2019). An example is the
Leafsnap project where citizens submitted photos of leaves, and
if the shape-matching algorithm did not classify the plant with
high enough probability, citizens were offered several options to
choose from (Kress et al., 2018). In the field of archeology,
citizen scientists and heritage managers and/or academic
researchers participated in field expeditions to validate dis-
covered archeological objects detected by algorithms in remotely
sensed data (Lambers et al., 2019).

Data analysis. In the reviewed papers on games, citizens can
perform tasks that differ substantially from the tasks performed
in other projects (such as classification). An example is reported
by Koodli et al. (2019) and Lee et al. (2014), who discussed the
EteRNA project, where players solve two-dimensional puzzles to
design sequences that can fold into a target RNA structure. Lee
et al. reported that EteRNA volunteer players outperformed
previous algorithms in discovering RNA design rules.

Experts: nature of the tasks performed, skills needed, and
activities. Tasks performed by experts are the most varied. They
include collecting and processing the original data before it is
presented to volunteers or algorithms, creating the gold-standard
datasets, processing and curating the data collected or classified
by citizen scientists, and preparing the training datasets for ML
models. Several tasks are related to recruiting, training, and
supporting volunteers. Finally, researchers are involved in the
evaluation and validation of results. It is important to note that
some tasks performed by researchers may not be discussed in
papers in detail, since they occur naturally in every project, or
because they may not be relevant for the discussion. Therefore,
this section outlines only those tasks that are discussed in suffi-
cient detail.

Table 6 provides some examples of the main tasks performed
by experts and the skills they need.

Data collection. Several studies on biodiversity reported on
researchers collecting observation data of species occurrence in
the field (Derville et al., 2018; Jackson et al., 2015; Zilli et al.,
2014). Researchers also obtained pre-classified data from external
sources, such as the records of ladybirds sourced from the UK
Biological Records Centre (Terry et al., 2020). These observations
together with observational data collected by citizen scientists
were further used to train and test computational technologies.
When ML methods were used to predict species distribution or
environmental conditions (e.g., coral bleaching), researchers
were also responsible for sourcing data related to the char-
acteristics of the environment. Examples of such data were mean
temperature and precipitation (Capinha, 2019; Jackson et al.,
2015), and geospatial data including roads and types of land
usage (Lim et al., 2019).

Researchers involved in the development of citizen science
projects were responsible for recruiting, training, and supporting
volunteers. In those projects where volunteers were asked to
collect data in a specific location (e.g., air quality measurements
along certain routes, or coral bleaching measures on specific
beaches), researchers recruited volunteers and performed face-to-
face training (Adams et al., 2020; Hardison et al., 2019; Kumagai
et al., 2018). When citizen participation was not bound to a
particular space, volunteers received written guidelines (Bowley
et al., 2019; Torney et al., 2019; Wright et al., 2017). Supporting
user motivation and engagement was another task performed by
researchers. Examples include ensuring that volunteers were
involved in real classification tasks that led to the advancement of
the project (Crowston et al., 2020). In projects that required
volunteers to collect observations in the field, researchers
followed up on citizens’ contributions (Jackson et al., 2015;
Kerkow et al., 2020), and provided online support and feedback
(Lambers et al., 2019).

The tasks performed by experts regarding data collection
generally require specialized skills to train citizens to use bespoke
technologies like in the case of sampling a toxic microalga
(Hardison et al., 2019), or to source data with certain
environmental characteristics (e.g., Jackson et al., 2015).
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Data processing. The data provided by citizen scientists, be it
observations or classifications, was processed and curated by
researchers. The observations provided by citizen scientists, such
as cicada call recordings or ladybird recordings, were classified by
field experts to be further used by an ML algorithm (Terry et al.,
2020; Zilli et al., 2014). In some projects, original data obtained
from cameras or sensors was preprocessed by researchers to be
further presented to citizen scientists. For example, the audio
recordings from bat observations were split into short sound clips
and converted to spectrograms for the Bat Detective project (Mac
Aodha et al., 2018), while in the Serengeti Wildebeest Count
project, images from trap cameras were filtered to remove the
empty ones and thereby reduce the number of images for citizen
scientists to classify (Torney et al., 2019).

Other related tasks included processing citizen scientist
contributions (e.g., returned bee nests) for future analysis
(Everaars et al., 2011; Kerkow et al., 2020); deciding on the
number of volunteer votes required before the final classification
label for an image was generated and used to train or test ML
algorithms (Sullivan et al., 2018; Wright et al., 2019; Wright et al.,
2017); and choosing a limited amount of volunteer-produced data
for training an algorithm (Koodli et al., 2019). Preparing the
training dataset for ML also included tasks such as generating
pseudo-absences when the information provided by volunteers
only indicates presences observed (Jackson et al., 2015);
generating synthetic observations of bubbles in dust emission to
improve ML classification (Duo and Offner, 2017); or augment-
ing the training dataset by transforming existing images to
increase the accuracy of ML classification (Dou and Offner,
2017). Performing initial training of algorithms, or calibrating
and fine-tuning machine-learning performance involve a high-
level of complexity because they depend on the classifications of
data done by citizens or experts.

Expert classifications refer to the so called “gold-standard”,
which is a quality dataset approved as the most accurate and
reliable of its kind and that could be used to measure accuracy and
reliability of algorithm results. The development of a gold-standard
can be considered a high-level complexity task, as it usually relies

on multiple experts agreeing on classifying certain topics with a
high degree of certainty. Expert classifications were used to
perform the initial training of the algorithm (Crowston et al., 2020;
Jackson et al., 2020), to calibrate and fine-tune the machine-
learning performance (Beaumont et al., 2014; Jiménez et al., 2020),
or to provide the testing set for computational classification
methods (Crowston et al., 2020; Tar et al., 2017). Expert
classifications were also included in the guidelines for volunteers
(Keshavan et al., 2019), used to assess the accuracy of citizen
scientists’ classifications and give feedback to volunteers (Jackson
et al., 2020; Zevin et al., 2017), as well as to weight each citizen
scientist’s vote in the final label based on how much their labels
corresponded to the gold-standard set (Keshavan et al., 2019).

Data analysis. Experts were involved in the evaluation of
results generated by ML using citizen data. A low error level
demonstrated the viability of involving citizen scientists to
produce training data for ML. For example, researchers eval-
uated the predictive accuracy of species distribution models
based on the automated identification of citizen observations
using CNN (Botella et al., 2018), and the climatic niche of
invasive mosquitoes using a support vector machine (Kerkow
et al., 2020). Bowley et al. (2019) reported on comparing the
results of ML training using citizen data and using expert
classifications. Other authors such as Curry et al. (2018) and
Jackson et al. (2015) reported on comparing the performance
of different ML methods to predict species distribution using
citizen data.

Furthermore, the results of ML classifications were com-
pared with manual classifications done by field experts
(Nguyen et al., 2018; Pearse et al., 2018; Wright et al., 2017).
A similar approach was reported on by Kress et al. (2018) in
relation to the Leafsnap, where a deep learning algorithm
was used to define the contours of a leaf and visual recognition
software was employed to find an ordered set of possible
matches for it in the database. However, Leafsnap participants
needed to confirm the classification suggestions made by
the algorithm. Therefore, in this project, the validation of

Table 6 Tasks performed by experts and skills needed across the activities—examples from the literature.

CS project Specific tasks performed Nature of the tasks Skills

Task
complexity

Task structure

Data collection UK Ladybird Obtain pre-classified data (Terry et al., 2020). Medium-level Well-structured Expert skills
Train citizens (Hardison et al., 2019) Low-level Well-structured Specialized skills
Source data with certain characteristics
(Capinha, 2019).

Low-level Well-structured Expert skills

Data processing Detection of
Karenia Brevis

Train and test ML models (Crowston et al., 2020) High-level Well-structured Expert skills

Braindr.us Create the gold-standard dataset
(Keshavan et al., 2019)

High-level Well-structured Expert skills

UK Ladybird Classify data from citizen scientists
(Terry et al., 2020)

Medium-level Well-structured Expert skills

HeritageQuest Assist citizens in validating objects
(Lambers et al., 2019)

Medium-level Well-structured Specialized skills/
Expert skills

Supernova
Hunters

Decide on the number of volunteer votes to generate
a final classification label for an image to be used to
train ML algorithms (Wright et al., 2019)

Low-level Well-structured Expert skills

Data analysis Pl@ntNet Evaluate predictive accuracy of results
(Botella et al., 2018)

High-level Well-structured Expert skills

eBird Compare the performance of different ML methods
and statistical models to predict species distribution
(Curry et al., 2018)

High-level Well-structures Expert Skills
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accuracy referred to the results from both citizen scientists
and ML models. Unique among these tasks were the validation
procedures reported by Lambers et al. (2019), where experts
and citizen scientists together validated the new potential
archeological objects identified using ML by going into
the field.

AI computational technologies: nature of the tasks performed,
skills needed, and activities. In the reviewed papers, there is a
variety of computational technologies using machine learning
and/or neural network-based paradigms. Interested readers can
find more details about the types of technologies and their
reported use in the Supplemental Information 1 (Annotated
review articles). These technologies used several common ML
methods such as classification, regression, transfer learning, deep
learning, and clustering. For the definitions of these methods, we
refer the readers to Castañón (2019).

The skills developed by computational technologies can be
grouped in two main categories: recognition and prediction.
Recognition refers to classification and detection of objects in
images, but also to clustering to classify data into specific
groups. Classification and object detection are the most
popular tasks performed by these technologies in a variety
of projects in the fields of ecology and biodiversity, astronomy
and astrophysics. Classification and object detection use
various ML algorithms (e.g., Brut algorithm based on random
forest, CNN), which are often based on a supervised paradigm
and consist of two main steps: training a classifier with
samples that are considered as “gold-standard” (expert
classifications) or volunteer consensus data (“ground truth”)
or a combination of both, and testing the effectiveness of the
classifier using other samples, ensuring that none of the
samples of the test set are also used for training.

Prediction refers to making predictions of future outcomes by
given data, or reducing the errors of a model. Prediction tasks
include predicting environmental conditions (e.g., air quality, or
variations in the data); addressing biases in the original data or in
citizen scientist classification and detection results; improving
performance by learning from citizen scientist contributions,
modeling species geographical distribution, and learning from

player moves in a game. Table 7 provides some examples of the
main tasks performed by technologies and the skills they need.

Data processing. Examples of classification and object detection
include a convolutional neural network and a residual neural
network trained on both citizen scientist and expert labels to
classify galaxy images (Jiménez et al., 2020), or a deep learning
algorithm trained on Serengeti Wildebeest Count project data used
for counting wildlife in aerial survey images (Torney et al., 2019).
It was argued that with the limited number of citizen scientists and
increasingly large databases of images, computational technologies
offer an approach to scale up data processing, overcome the ana-
lysis ‘bottleneck’ problem, and also relieve some burden from
researchers and citizen scientists who would only have to classify
enough images for training ML, rather than the whole dataset
(Torney et al., 2019; Wright et al., 2017).

Clustering is another task performed by ML (Coughlin et al.,
2019; Wright et al., 2019). Coughlin et al. (2019) reported on
DIRECT, a transfer learning algorithm, which is a ML method
consisting of reusing a model previously developed for a
different task. The aim of DIRECT was facilitating the discovery
of new glitches by citizen scientists in the Gravity Spy project.
Owing to the sheer volume of available images, it is extremely
difficult for volunteers to identify new classes by finding a
sufficient number of similar objects that do not belong to any of
the known classes. Thus, DIRECT clustered similar images
together and offered this set to volunteers to make their
judgment. Wright et al. (2019) reported on using Deep
Embedded Clustering (DEC), a method that learns feature
representations and cluster assignments, to produce an initial
grouping of similar images. In the Supernova Hunters project,
grouped images were shown to citizen scientists, who had to
mark all of the objects belonging to one glitch class. Then,
citizen scientists’ labels were fed back to the DEC algorithm to
make clustering purer. Compared to the standard image-by-
image presentation, Wright et al. found that the DEC model
helped reduce volunteer effort to label a new dataset to about
18% of the standard approach for gathering labels.

Lambers et al. (2019) also reported on using contributions
from citizen scientists to improve the results of a multi-class
archeological object detection based on CNN. In their project,

Table 7 Tasks performed by AI computational technologies and skills needed across the activities—examples from the literature.

CS project Specific tasks performed Nature of the tasks Skills

Task complexity Task structure

Data collection
Data processing Galaxy Zoo 1 Classify galaxy images using CNN

(Jiménez et al., 2020)
High-level Well-structured Object recognition

Gravity Spy Clustering galaxy images using transfer
learning (Coughlin et al., 2019)

High-level Well-structured Object recognition

EteRNA Design molecules using CNN
(Koodli et al., 2019)

High-level Well-structured Prediction

AirBeam Mitigate errors and biases using
automated ML (Adams et al., 2020)

High-level Well-structured Prediction

FreshWater Watch Predict water quality using a regression
model (Thornhill et al., 2017)

High-level Well-structured Prediction

Heritage Quest Detect objects in remotely sensed data
using CNN (Lambers et al., 2019).

High-level Well-structured Object recognition

Coral Map Predict coral bleaching using a regression
model (Kumagai et al., 2018).

High-level Well-structured Prediction

Serengeti Wildebeest Count Count wildebeests on images using deep
learning (Torney et al., 2019).

High-level Well-structured Object recognition

Data analysis Galaxy Zoo Evaluate consistency of volunteer
annotations (Shamir et al., 2016).

High-level Well-structured Pattern recognition
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volunteers participated in field expeditions to validate arche-
ological objects detected by the algorithm, and the results were
used to tune the algorithm object detection results. In other fields,
computational technologies such as random forest classification
(Thornhill et al., 2017), stacked ensemble model (Lim et al.,
2019), and generalized linear model (Kumagai et al., 2018) have
been used on data collected by citizen scientists and environ-
mental or urban data collected by scientists, to predict water
quality, air quality, and coral bleaching respectively. A CNN has
been used to model the distribution of species in biodiversity
research, such as the White-tailed Ptarmigan distribution over
Vancouver Island (Jackson et al., 2015) or the Asian bush
mosquito distribution area (Kerkow et al., 2020). The datasets
used for training were usually combined from different sources:
observations collected and reported by citizen scientists and
sometimes by experts as well, and environmental or climate data
extracted by the researchers. In another project, Adams et al.
(2020) used an automated ML process to adjust AirBeam sensor
measurements, which showed errors during times of high
humidity. They employed a temporal adjustment algorithm to
mitigate biases or errors in the data collected and/or classified by
citizen scientists.

In the area of games, the papers on EteRNA emphasize the
development of algorithmic approaches that learn from player
actions. Lee et al. (2014) developed and trained the EteRNABot
algorithm, incorporating machine-learning regression with five
selected and cross-validated design rules discovered by players
and used to predict the design of RNA structures. An
EternaBrain convolutional neural network (CNN) trained on
expert moves was described by Koodli et al. (2019). Based
on the test results, the algorithm achieved accuracy levels of
51% in base prediction and 34% in location prediction,
indicating that top players’ moves were sufficiently stereotyped
to allow a neural network to predict moves with a level of
accuracy much higher than chance (p. 2). Data Analysis. A
concern addressed through the use of AI computational
technologies is that citizen scientists’ participation in data
collection may not be uniformly distributed in space and can be
skewed toward capturing observations rather than absences.
For example, Derville et al. (2018) compared five species
distribution models to see how they account for the sampling
bias present in nonsystematic citizen science observations of
humpback whales. Other papers also discussed employing
transfer learning when only a small training dataset was
available. An example is Willi et al. (2019), who developed a
model based on the data from the Snapshot Serengeti citizen
science project, and then applied it in another project where
only smaller datasets were available to improve accuracy.

Another reason for applying AI computational technologies is
that volunteers may misclassify data due to their varying expertize
levels and proneness to human error. The issue is addressed in
several ways. Tar et al. (2017) evaluated the false-positive
contamination in the Moon Zoo project by utilizing predictive
error modeling. Keshavan et al. (2019) compared the citizen
science ratings to the golden standard created by experts. In the
Galaxy Zoo project, Shamir et al. (2016) proposed using a pattern
recognition algorithm to evaluate the consistency of annotations
made by individual volunteers.

To measure the expertize of eBird volunteer observers, Kelling
et al. (2012) used a probabilistic machine-learning approach. In
their study, they used the occupancy-detection experience model
to measure the probability of a given species being detected at a
given site, and to distinguish expert observers from novice
observers who are more likely to misidentify common bird
species. Researchers used this approach to provide volunteers
with feedback on their observation accuracy and to improve a

training dataset for an ML algorithm. In addition to eBird,
mentioned above, Gravity Spy is one of the few projects that
used feedback and training to evaluate citizen contributions
(Crowston et al., 2020; Jackson et al., 2020; Zevin et al., 2017).
Volunteers were guided through several training levels with the
ML system: first showing glitches belonging to two classes with a
high-level of ML-determined probability, and later increasing
the number of classes and offering images with lower ML
confidence scores as they learned to classify them.

A project profile matrix based on distribution of work:
discussion
The interdependence of AI computational technologies and
domain experts. The results of the review guided our develop-
ment of a matrix to classify CS projects on the basis of our
adaptation of Franzoni and Sauermann’s (2014) framework.
Table 8 presents a summary of examples. Since ill-structured
tasks were not found in the reported projects, this sub-dimension
is not included in the matrix.

We have plotted some of these examples on two axes in Fig. 2.
The horizontal axis represents the nature of the task and is
broken into three levels of interdependence, while the vertical axis
represents ths skills requirements, and is also broken into three.

While task complexity is largely defined by Franzoni and
Sauermann (2014) from a social perspective, the degree of
complexity of tasks changes in CS projects using computational
technologies (i.e., experts perform tasks with a high-level of
complexity, while citizens and technologies can be assigned tasks
with a lower level of complexity). In our review we found that a
large share of the CS projects involve citizens in performing tasks
that tend to be of low complexity, well-structured, and requiring
only skills that are common among the general population.
Classifying species or marking potential archeological sites, for
example, can involve a large number of individuals working in
parallel, independently. At a medium-level of complexity is a
moderately complex and relatively well-structured task, such as
solving two-dimensional puzzles, which citizens perform in the
EteRNA game. In this task, players work individually or in groups
to explore different solutions collaboratively. Despite the fact that
the game can be played without background scientific knowledge,
success lies in visualizing and manipulating the design interface to
create two-dimensional structures that can include complex
patterns such as lattices, knots and switches (Lee et al., 2014).
Moreover, players seem to adapt their puzzle strategies based on
the results of the laboratory experiments (Lee et al., 2014). The
case suggests some interdependence, as the results reached by
individual players can be aggregated into a single outcome, which
can be referred to as additive/pooled coordination (Nakatsu et al.,
2014), and then reused/adapted by other players.

Unlike citizen scientists, experts primarily work on well-
structured and medium- and high-level tasks that require expert
skills in specific domains. For example, trained neuroimaging
experts created cooperatively a gold-standard dataset to be used
by citizens for "amplifying" expert decisions (Keshavan et al.,
2019). In this task, expert workers are highly interdependent and
are expected to consider what each is doing. Interdependence is
demonstrated again by the involvement of trained life scientists
who collaborate to compare the predictive accuracy of ML species
distribution models. The tasks performed by experts and reported
in the reviewed literature did not require common skills. Now let
us consider the tasks that computational technologies perform.
Unsurprisingly, we see that these tasks are on the right side of the
diagram. The results of our study indicate that these technologies
are capable of performing mostly well-structured, high-level tasks.
Tasks appear interdependent in a sequential manner or reciprocal

ARTICLE HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-022-01049-z

10 HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |            (2022) 9:48 | https://doi.org/10.1057/s41599-022-01049-z



manner. Sequential interdependence takes place when the output
of a task serves as the input into another (Haeussler and
Sauermann, 2015). This seems to be the case when computational
technologies mitigate errors in the data provided by citizens.
Reciprocal interdependence refers to tasks that depend on each
other and can require a mutual adjustment (Haeussler and
Sauermann, 2015). For example, when performing tasks like
clustering and classifying images, or predicting environmental
conditions, these technologies need to build on human work in a
reciprocal fashion, as they must be trained on specific datasets to
develop a predictive model and then deploy it. Then experts need
to check and validate the results produced by the algorithmic
model and adjust such a model when necessary.

The skills of computational technologies make them a scalable
complement to citizens and researchers, for example by
structuring large amounts of unfiltered data into information,
or estimating the probability of an occurrence of an event based
on input data. However, to assume that machine learning and
other computational technologies can replace humans entirely in
citizen science is to downplay their current limited autonomy and
“smartness”, as they still require human intervention of experts
and engaged citizens. The distribution of tasks resulting from the
review indicates that experts work on and with computational
technologies. For example, they work on them by training models,
but once models are trained, they still require a human expert-in-
the-loop to work with them to interpret their predictions and
possibly refine them to acquire the most accurate results for
unseen and unknown data (Budda et al., 2021).

Having examined the tasks performed by computational
technologies and the rationale on which functions are allocated
to them in CS projects, we can infer mechanisms that make
certain tasks more suitable for existing computational methods.
According to these mechanisms, Brynjolfsson and Mitchell (2017)

set criteria to identify tasks that are likely to be suitable for ML,
based on the currently dominant paradigm, particularly super-
vised learning. Brynjolfsson and Mitchell’s criteria include (a)
learning a function that maps well-defined inputs to well-defined
outputs, as in the classification of images, and the prediction of
the likelihood of events; (b) the task provides a clear feedback,
and goals and metrics for performance are clearly defined. When
training data are labeled according to gold standards, for example,
ML is particularly powerful to achieve its set goals; (c) ML excels
when learning empirical associations in data, but is less successful
when long chains of reasoning or complex planning require
common sense or background knowledge that is unknown to the
computer; (d) tolerance to errors of the learned system, as most
ML algorithms derive their solutions statistically and probabil-
istically. As a result, it is seldom possible to train them to obtain
total accuracy - even the best object recognition computer
systems make errors, and (e) performing tasks where the inability
of ML to explain why or how they made a certain decision is not
critical. Brynjolfsson and Mitchell made the example of systems
capable of diagnosing types of cancer as well as or better than
expert doctors, but unable to explain why or how they came up
with the diagnosis.

However, ML will be advanced, and other methods will be
more suitable for different tasks. Cognitive work between humans
and computational technologies will be shifting, challenging the
ontological boundaries between them. Hence, we should be
careful not to essentialize the qualities of humans and machines,
both of which are constantly evolving, and whose lists of what
each is "good at" (whether relative or absolute) are constantly
changing. The processing power and the sophistication of
algorithms have already increased at previously unimaginable
levels, and, for example, some computer programs outperform
humans in abstract games (Gibney, 2016), or at image recognition

Table 8 Project profile matrix—examples.

Human skills AI computational technologies skills

Common Specialized Expert Recognition Prediction

Nature of the task
Low-level of complexity
—Well-structured tasks

Data collection
- Audio recording and
taking photos
(Citizens)
Data Processing
- Classification
(Citizens)

Data collection
- Train citizens to
collect data (Experts)
Data processing
- Map 3D structures
of retinal neurons
(Citizens)
Data Analysis
- Solve two-
dimensional puzzles

Data processing
- Assist citizens in
validating objects
(Specialized/Experts)
Data Processing
- Volunteer data
classification (Experts)
Data analysis
- Solve two-dimensional
puzzles (Citizens)

Medium-level of
complexity —Well-
structured tasks

Data collection
- Obtain pre-classified
data (Experts)
- Assist citizens in
validating objects
(Experts)

High-level of complexity
—Well-structured tasks

Data processing
- Gold-standard dataset
creation (Experts)
Data analysis
- Validate results
(Experts)
- Compare different ML
and statistical
approaches (Experts)

Data Processing
- Classification
- Clustering objects
- Count objects
on images
- Object detection
Data Analysis
- Evaluate
consistency of citizen
annotations

Data Processing
- Mitigate errors
and biases
- Design of molecules
- Predict
environmental
conditions
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(Johnson, 2015). However, some scholars might argue that these
are rather narrow domains, which cannot compare to the
complexities of cognitive, emotional, and social human abilities
(e.g., Dignum, 2019).

Scientists and AI computational technologies: will the role of
citizens become unnecessary? A large share of the CS projects
involve citizens in performing tasks in contributory projects that
are “designed by scientists and for which members of the public
primarily contribute data” (Shirk et al., 2012). The results of our
review indicate a trend towards task polarization, with citizens
performing well-structured and low-complexity tasks requiring
primarily common skills, and experts performing well-structured
and higher-level of complexity tasks requiring training and spe-
cialization. As technology races ahead, both types of task seem
susceptible to computerization though, with both citizens and
experts being reallocated to tasks that are not or less susceptible to
computerization, i.e., tasks requiring creative and social intelli-
gence. To this regard, the differentiation between task and skill
made by Autor et al. (2003) is useful: task denotes a unit of activity
performed at work and it produces output, while the concept of
skill refers to the human capabilities required to perform a task.
The Routine-Biased Technological Change (RBTC) (Arntz et al.,
2016) approach builds on this differentiation and analyzes tasks
according to the routine and nonroutine axis. Following this
approach, a job’s substitutability is determined by the number of
routine tasks it requires, as opposed to the level of skills it needs
(Arntz et al., 2016). Routine tasks can be performed both manually
or cognitively, while nonroutine tasks, also known as abstract tasks,
involve problem-solving, intuition, and creativity. Routine tasks

that follow a well-defined practice can be more easily codified and
performed automatically by algorithms. In the reviewed CS pro-
jects, routine tasks, such as collecting data, counting or demar-
cating objects in images, seem to be prevalent—although not
exclusively—in citizens’ contributions. Even classification of objects
following authoritative taxonomies can be considered a routine
task that can be codified and performed by algorithms. Almost any
task in CS projects reliant on pattern recognition is susceptible to
automation, as long as adequate data are collected for training
algorithms (Frey and Osborne, 2013).

Citizens are more likely to be involved in nonroutine tasks
when playing games. Exemplary is Foldit where players have the
opportunity to use and write and adapt recipes to manage the
increasing complexity of the game (Cooper et al., 2011). Recipes
are computer programs that allow players to interact automatically
with a protein and repeat simple routines consistently, or perform
a series of complex routines, which keep running in the
background for ever. Although recipes embed a number of
simple, time-consuming and repetitive manual actions, they have
not yet replaced the skills that citizens learn over time, through
training and playing the game intensively, and that are needed to
perform nonroutine tasks in the game (Ponti et al., 2018). When it
comes to designing RNA sequences that fold into particular
shapes, computational technologies have proved to be second to
humans, even after being endowed with insights from the human
folders (Lee et al., 2014).

Regarding the use of skills, automation literature authors (e.g.,
Brynjolffson and Mcafee, 2016; Eurofound 2018; Goos et al., 2019)
commonly assert that technological developments have upgraded
the skill requirements for occupations by complementing the skills

Fig. 2 Nature of the task outsourced to humans and AI computational technologies.
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of highly skilled, highly educated professionals. However, these
technologies have lowered the demand for lower-skilled, less
educated workers, as the tasks they perform are more susceptible to
replacement by technologies. In the context of CS, though, it is not
clear whether the use of algorithms could result in the
disappearance of "low skill" roles and, by any means, it is unclear
what we refer to when we talk about low-skilled or unskilled work
in this specific area. Even tasks that are considered low-skill may
not mean they can be done easily by computational technologies.

Conclusion and future research
A growing number of CS projects use human efforts and compu-
tational technologies. Yet the distribution of tasks among experts,
citizen scientists, and this type of technologies does not seem to
have been considered. Even though task allocation has long been a
central topic in the literature, we are unaware of previous studies
examining this topic in the context of citizen science.

We summarized the results of an integrative review to illustrate
the current state of the distribution of tasks between humans and
computational technologies in CS. We used an adapted version of
the framework developed by Franzoni and Sauermann (2014) to
analyze the results and highlight the differences in the nature of
the task and the skills contributed by humans and computational
technologies to perform those tasks. We hope that this framework
may provide a useful tool for analyzing task allocation not just in
citizen science but also in other contexts where knowledge pro-
duction involves a crowd and computational technologies. The
presented framework may also be useful not only for “mapping”
projects, but also for inferring underlying causal mechanisms,
such as, for example, that computational technologies seem to be
better at certain tasks. An important next step would be to learn
why certain CS projects cannot be entirely performed algor-
ithmically and still require human contribution, while others are
already suited for full automation (Rafner et al., 2021).

Although we conducted this review to include all relevant
papers, there can be papers we did not include as we left out
preprints, reports, and other types of non-peer-reviewed litera-
ture. Future research could consider using a larger number of
databases, publication types and publication languages, in order
to widen the scope of the review. Furthermore, we have two
limitations related to our sampling strategy. First, we did not
search catalogs of CS projects (e.g., Scistarter). Our current
approach to search on publication databases has only retrieved
articles that have been written about projects. This strategy may
have introduced certain biases—for example, we may not have
captured projects run by non-scientists (since they may not care
to publish a paper about their project). We can assume that most
research papers report on successful rather than unsuccessful
projects, meaning we have been exposed to mostly successful
divisions of labor instead of divisions that did not work. Second,
we acknowledge that using Baert’s (2019) game list has resulted in
selection bias. As to our knowledge, there is not a complete
sampling frame listing all the existing citizen science games from
which to draw a representative sample. Therefore, we opted for a
convenience sample, where the sample is taken from the game
list, in addition to the articles selected for this review. Specifically,
our convenience sample is a purposive sample, as we relied on
our judgment when choosing the games to include in the sample
(Fricker, 2012).

Overall, the projects reported in the literature put an emphasis
on process optimization. The use of computational technologies
presents opportunities in citizen science to improve speed,
accuracy, and efficiency to analyze massive datasets and improve
scientific discovery. However, as mentioned earlier in this paper,
concerns have been raised over the potential risks of disengaging

citizen scientists by reducing the range of their possible con-
tributions or making them either too simple or too complex
(Trouille et al., 2019; Leach et al., 2020). If citizens come to think
that the only thing they are good at can be replaced by machine
learning, they may feel left out and useless (Ponti et al., 2021).

Citizen science projects are not ordinary workplaces.
Unpaid citizens volunteer time and effort, therefore, deriving
personal meaning and value from performing a task is
important to sustain engagement. Arguably, if the organizers
of CS projects focus primarily on efficiency and productivity
goals, they may replace citizens as much as possible, and only
make tasks as meaningful as needed to keep volunteers
engaged. In contrast, if organizers also want to achieve
“democratization” goals, they will use computational tech-
nologies more for the benefit of human engagement and may
even use citizens if those technologies could do a more effi-
cient job. Currently, the difference may not matter much
because computational technologies are not yet capable to
replace humans entirely. However, this difference can become
critical once AI is more powerful—then organizers will have to
decide if they intend to maximize efficiency by replacing
citizens, or try to achieve/maximize engagement by keeping
citizens in the loop and use computational technologies to
make tasks more interesting and meaningful for people.
Future research could look more closely on whether the use of
computation technologies benefits a variety of citizens or only
certain groups (e.g., those with more technical expertize), and
whether certain cultural domains are more facilitated.

We are aware that one size does not fit all. A boring task for
one person can be a joy for another, while some volunteers may
prefer to engage their brains and choose more complex tasks.
Nevertheless, taking into account meaningful roles that citizen
scientists can play alongside experts and computational technol-
ogies, for example in the form of additional data validation and
other types of human-based analysis that strengthen analytical
rigor or the diversity of analytical lenses, remains an unavoidable
design issue of task assignment. It may be useful to complement
the focus on efficiency and speed with greater attention to other
goals such as volunteer learning and development, an issue that
becomes particularly salient when we think about division of
labor in the context of democratization of science, diversity, and
inclusion, which are long-standing challenges in citizen science
(Cooper et al., 2021).

Data availability
The authors declare that all the data supporting the findings of
this study are in the following supplementary files.
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