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A deep-learning model for predictive archaeology
and archaeological community detection

Abraham Resler!, Reuven Yeshurun?, Filipe Natalio® 3* & Raja Giryes'™

Deep learning is a powerful tool for exploring large datasets and discovering new patterns.
This work presents an account of a metric learning-based deep convolutional neural network
(CNN) applied to an archaeological dataset. The proposed account speaks of three stages:
training, testing/validating, and community detection. Several thousand artefact images,
ranging from the Lower Palaeolithic period (1.4 million years ago) to the Late Islamic period
(fourteenth century AD), were used to train the model (i.e., the CNN), to discern artefacts by
site and period. After training, it attained a comparable accuracy to archaeologists in various
periods. In order to test the model, it was called to identify new query images according to
similarities with known (training) images. Validation blinding experiments showed that while
archaeologists performed as well as the model within their field of expertise, they fell behind
concerning other periods. Lastly, a community detection algorithm based on the confusion
matrix data was used to discern affiliations across sites. A case-study on Levantine Natufian
artefacts demonstrated the algorithm'’s capacity to discern meaningful connections. As such,
the model has the potential to reveal yet unknown patterns in archaeological data.
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Introduction

rchaeology, broadly defined, is the study of the human

past through material remains: artefacts of various

materials (e.g., stone, bone, pottery, metal, glass) that were
manufactured, used, and discarded by ancient societies (Murray
and Evans, 2008; Renfrew and Bahn, 2013). The first and most
basic task of the field’s practitioners is to properly classify the
numerous artefacts they encounter, determining their date, cul-
tural attribution, form, function, socio-economic significance, and
other features (Arkadiev, 2020; Dunnell, 1993; Hermon et al.,
2004; Krieger, 1944; Whittaker et al., 1998). Such classifications
often depend on prior knowledge, expertise, and preference for
certain visual criteria over others (Barcelo, 1995).

In order to automate this process and utilise computers’
excellent pattern recognition capabilities, efforts have been made
to incorporate computer applications into the processes of
archaeological classifications (Derech et al., 2021; Tal, 2014).
Notable among these are experimentations with machine learning
models—computer algorithms that learn from data how to
automatically detect patterns and make accurate decisions
(Mitchell, 1997; Bishop, 2006; Duda and Hart, 1973). Several
attempts were made to apply machine learning to archaeological
materials (Barcelo, 2008, 2016; Barcel6 and Bogdanovic, 2015;
Diez-Pastor et al.,, 2018; Macleod, 2018). However, at first, they
relied on hand-crafted feature extraction, resulting in relatively
poor performance measures (e.g., Boon et al., 2009). More
recently, machine learning algorithms have been used to extract
relevant features automatically. Thus, for instance, Agam et al.
(2020) combined Raman spectroscopy with machine learning
algorithms to quantitatively estimate different degrees of thermal
alteration on flint artefacts.

Of particular interest is deep learning, and more specifically,
Deep Convolutional Neural Networks (CNNs), which are
commonly used to analyse images. CNNs were successfully
applied to various computer vision tasks, as they can auto-
matically extract features from input images (Cifuentes-
Alcobendas and Dominguez-Rodrigo, 2019; He et al., 2016;
Krizhevsky et al., 2017; Taigman et al., 2014). These features,
also known as embeddings, are a set of numbers (1536 num-
bers in this case), that are later used by other computational
layers, to classify/infer other useful information from input
data. The features do not necessarily correspond to a realistic
measure of the data, such as colour or shape. Applied to
archaeological problems, CNNs have shown promise, suc-
cessfully fulfilling tasks of ceramic classification (Itkin et al.,
2019), periodic discrimination of lithic assemblages (Grove
and Blinkhorn, 2020), and differentiation of bone surface
modifications (Dominguez-Rodrigo et al., 2020). However,
these experiments with CNNs focused on narrow ranges of
materials and contexts, consequently failing to seriously
confront the bewildering diversity of the archaeological cir-
cumstances and record.

Thus, in this paper, we seek to develop a CNN model able to
navigate the full gamut of temporal and cultural diversity
archaeology has to offer (Fig. 1). To do so, large publicly acces-
sible repository of artefact photographs managed and maintained
by the Israel Antiquities Authority (http://www.antiquities.org.il/
t/default_en.aspx) was used. It presents archaeological items that
span a million and a half years of Levantine hominin history.
The base CNN was initially trained to classify everyday objects on
the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) dataset (Russakovsky et al., 2015), which is a large
dataset of natural images. Then, following some modifications to
the CNN, the model was trained to identify archaeological arte-
facts according to period and site (Fig. 1la, b). Next, drawing on
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the model’s acquired capacity to correctly classify artefacts, it was
determined whether it can be effectively used to detect commu-
nities (Fig. 1c)—cohorts of classes with a meaningful common
denominator. Finally, a case-study is offered on communities
found from Natufian culture (ca. 15,000-11,700 years ago) classes
in the Levant, showing that this method found archaeologically
meaningful similarities between different sites.

In this manner, CNN was applied to this diverse archae-
ological dataset. First, it was assessed whether it could predict
artefact’s site and period using its image. Second, the possi-
bility of finding other similar objects for a query image was
investigated. Third, based on the results that the model made
“correct confusion” (e.g., confusion between two different sites
that are dated to similar archaeological period), the possibility
of finding similarities between few sites was examined— which
can potentially open up new avenues of analysis, research, and
cultural interactions.

Below an account of archaeological dataset, procedures, and
estimates of the model’s performances is provided. Towards the
end of the paper, detailed account of the methods employed in
various parts of the workflow is presented. Additional experi-
ments, information, and technical details are provided in the
supplementary material.

Dataset

The dataset is publicly accessible on the Israel Antiquities Authority
(IAA) website (http://www.antiquities.org.il/t/default_en.aspx). It
comprises 12,364 photographs of 6770 artefacts that derive from
across the southern Levant and span the Lower Palaeolithic (1.4
million years ago; Bar-Yosef and Goren-Inbar, 1993) and the Late
Islamic (fourteenth century AD) periods. They include stone tools
(e.g., blades, flakes, bifaces), bone tools (e.g., awls, beads, and pen-
dants), metal objects (e.g., spearheads, coins), pottery vessels, and
figurative art. Most of the artefacts presented are complete, and
every item is designated according to its site and period of origin.
The attribution of periods was provided by archaeologists working
for or within the Israel Antiquities Authority (IAA) and available at
their website.

Artefact categorisation by site and period produced a total of
555 classes (e.g., Early Bronze II Jericho, Iron II Akhziv) of var-
ious sizes. While some were hundreds of artefacts large, others
comprised merely two or three (Fig. S1). In order to maintain a
balanced dataset and provide sufficient conditions for statistical
manipulations, the dataset was narrowed to the 200 largest clas-
ses, encompassing a total of 9909 images of 5450 artefacts, con-
stituting 80.1% of the photographs and 80.5% of the artefacts
(Table S1). Next, the dataset was split in two: one for training,
comprising 8031 images (81%) of 4428 artefacts, and another for
validation, comprising 1878 images (19%) of 1020 artefacts.

Standard image classification relies on visual similarities (dogs,
cats, cars, or faces of different identities). However, in this case,
similar artefacts may belong to different classes (Fig. 2a), and
visually distinct artefacts may belong to the same class (Fig. 2b).
Furthermore, note that temporally adjacent periods are likely to
incorporate visually similar artefacts (e.g., Early Roman and
Roman amphorae). Therefore, to test this model, two levels of
temporal discrimination were established: rough- and fine-period
groups. The fine temporal classification consisted of 21 groups,
while the rough classification observed 13 (Table S1).

In order to facilitate the training process, the images’ back-
ground and scale were standardised. All photographs were
furnished with homogeneous white background, and the scale
was removed (see Methods section for more details).
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Fig. 1 A schematic representation of the machine learning-based workflow. A The training phase: a dataset of images of archaeological artefacts were
grouped according to period and site, pre-processed, and used to train a Convolutional Neural Network (CNN). B The testing phase: the trained CNN was
used to extract features from a query image and predict its class by identifying k-nearest neighbours in the training set. € Community detection: validation
set predictions are aggregated in a confusion matrix that is later transformed into a weighted graph and fed to a community detection algorithm.

Model construction

In order to optimise the CNN to the task of archaeological
classification, the standard transfer learning procedure was fol-
lowed. Transfer learning is usually used when the available
database size for the target application is relatively small. In this
case, in order to improve performance, a pre-trained CNN on
another larger (unrelated) database is used as the starting point
for the training process.

The CNN model was based on the ImageNet (Russakovsky
et al., 2015) pre-trained image classification model Effi-
cientNetB3 (Tan and Le, 2019), which was chosen for its
superior performance (see below, methods). It was built by
stacking many (hence deep) basic computation layers (con-
volutions, non-linearities, pooling, skip connections, etc.),
striving to achieve the best balance between computation
complexity and prediction accuracy. The model was pre-trained
on the ImageNet ILSVRC dataset to predict an image’s category
(class) out of 1000 possibilities, and reached 81.6% Top-1 and

95.7% Top-5 prediction accuracy (Top-k classification score
computes the number of times the correct label is among the
top k labels predicted). More details on this model are found in
(Tan and Le, 2019).

To perform the transfer learning, the original classification
layers were removed and a customised classification layer was
added (a fully connected layer, that transformed EfficientNetB3
embeddings, of size 1536, to 200 classes). To optimise the
training, five models were trained with the same ImageNet
initialisation, each generating a different feature vector, which we
then used to produce a final feature vector. To improve robust-
ness and enrich the database, a standard data augmentation
techniques was applied. These include: random rotations, spatial
shifts, zoom, and horizontal flips. All CNNs’ layers were trained
for 25 epochs (in each epoch, the model is trained on the entire
training set), using the categorical cross-entropy loss function
(most common loss function for classification tasks). Additional
details can be found in the methods section below.
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Fig. 2 Classification and CNN model performance. A Nearest neighbour pairs of artefacts from different classes (the image on the left derives from the
validation set, and the image on the right derives from the training set). B Pairs of distinct images that derive from the same class. C Validation set query
images (left column) and the top-3 training set nearest neighbours. D A histogram of model performance for fine-period prediction on 63 randomly picked
images (3 images per period); the straight horizontal line marks the average prediction accuracy (69.84%). E A histogram of two archaeologists'
performances (blind experiments) for the same 63 artefact images used for D; the horizontal lines mark the average prediction accuracies for each

archaeologist (44.44, 20.63%).

Results

In the testing phase (Fig. 1b), the CNN was use as an “archae-
ological” feature extractor, and measured the archaeological dis-
similarity between artefacts by calculating the cosine similarity
distance (see methods below) between their feature vectors.
Predictions were made by looking at query image’s nearest
neighbours, from the labelled training set. This procedure is
illustrated in Fig. 2¢ that presents the three nearest neighbours for
five query images. Interestingly, three sorts of outcomes are
notable: (1) a complete match between the query image and the
top three nearest neighbours (Early Roman Caesarea, Lower
Palaeolithic Tabun, and Byzantine En Gedi), (2) a proximal
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match between query and prediction, pertaining to site or period
but not both (Lower Palaeolithic Ubeidiya), and (3) mixed results
where some of the neighbours are a full match and others are
proximal (Crusader Atlit) (see also Fig. S5).

The procedure above was used to measure accuracy on the
validation set and can be used to classify other artefacts in the
future (there was no other test set in the setup). Since each item in
the dataset set had few labels: period/site/period-site/rough, fine-
period group, accuracy on each one of these options is reported,
regardless of the training process.

Table 1 shows the model’s prediction accuracy for all possible
labels on the validation set (i.e., period-site, site, period, fine, and
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Table 1 Prediction accuracy [%] for period-site, site, period,
fine-, and rough-period grouping.

Period-site Site Period Fine-period Rough-period
grouping grouping
Top-1 58.10 63.58 67.79 71.03 76.36
Top-3 64.22 6896 7418 77.96 82.70
Top-5 67.36 71.89 77.69 8147 85.41

rough-period accuracy grades). Accuracy values in this table were
obtained after training with the standard period-site classification
objective. Specifically, prediction accuracy was [%] of 58.10 (Top
1), 67.36 (Top-5) for period-site classes, and 76.36 (Topl), 85.41
(Top5) for rough-period groups. Model accuracy for each fine/
rough-period group can be found in Fig. S2. The resulted con-
fusion matrix and embeddings t-SNE visualisation (Van der
Maaten and Hinton, 2008) can be found in Fig. S3 and Fig. $4,
respectively.

Another evaluation strategy entailed pitting the trained model
against two archaeologists. Sixty-three query images of different
artefacts were selected, three for each of the twenty-one fine-
period groups. These images were then presented to two
archaeologists, and the model to be assigned their appropriate
temporal designations. The results indicate that the model per-
formed as well as these two archaeologists within their field of
expertise, and had a higher average accuracy level, when con-
sidering all possible periods. Thus, the model achieved an average
accuracy score of 69.84% (Fig. 2d), while the archaeologists
scored 44.44 and 20.63% (Fig. 2e).

Having attained these results, the best classification choice in
the archaeological dataset was determined. To do so, an experi-
ment was devised that entailed training the model with few
classification objectives—only sites, only periods, or a combina-
tion of sites and periods—and compared their performance (see
the additional classification experiments section in the supple-
mentary material). It was found that (1) When trained on period-
site classes, the model achieved the highest accuracy levels for all
three parameters (period-site, period, and site); (2) When trained
on periods, the model’s periodic attributions remained unchan-
ged (compared to 1), while the precision of its period-site and site
attributions dropped; (3) When trained on sites, the model’s
accuracy levels were nearly as good as in 1.

On these grounds, it can be proposed that information about
artefacts’ sites of origin carries significant weight for effective
network learning. Therefore, it should be used in future works for
classification with the periodic data (see the supplementary
material for further details, Table S2). This is also the reason that
network was train with period-site data also when it is tested only
on the period information.

Community detection

A close review of the model’s prediction accuracy presented
above suggests that most errors entail the confusion of
neighbouring periods (e.g., a Pre-Pottery Neolithic A artefact
mistakenly attributed to the Pre-Pottery Neolithic B). The
propensity for such errors is readily illustrated by a chron-
ologically sorted confusion matrix (Fig. S3), demonstrating
that most errors clustered along the main diagonal (i.e., they
occurred between nearby periods). While this observation can
be read as indicating an inherent weakness in the model, it
also indicates the model’s response to an actual condition: that
visually similar artefacts often derive from temporally adjacent
contexts. On these grounds, model’s ability to discern asso-
ciations among classes (i.e., period-site designations) that can

correspond to meaningful archaeological categories was
explored. Technically, such clusters are termed ‘communities.’

The archaeological community detection method is illustrated
in Fig. lc. It starts by converting the confusion matrix into a
network (i.e., graph) that consists of nodes and edges (i.e., links).
In this case, each node represents a class, and each edge repre-
sents the confusion between classes that was registered in the
confusion matrix. Next, the edges were weighted—they were
given numerical values to capture their different strengths. An
edge’s weight was computed as follows:

(1) Let A € R®*C be the normalised confusion matrix. C is
the number of classes and A; is the relative number of
cases, where the true label is i and the predicted label is j.
Note that this matrix is not necessarily symmetric, i.e., it
may have Aj;# Aj;.

(2) Let B=1(A+ A’) be the symmetrical version of A.

(3) By or B is the weight of the edge that connects nodes i and j.

Next, the Louvain community detection algorithm (Blondel
et al, 2008) was applied to the network (Fig. 1c, Fig. S6, see
methods section for more details), producing clusters—commu-
nities—of similar period-site classes. Twenty-eight communities
were detected with a modularity score—a measure of the net-
work’s division into communities—of 0.77.

In an attempt to achieve better communities, two further
adjustments were introduced. The first consisted of rebuilding the
confusion matrix to include ten nearest neighbour predictions for
each query image instead of one. This modification resulted in
more confusion and, by extension, a denser network with more
edges. The second adjustment was to use only certain part of the
confusion matrix, with several neighbour periods, before applying
community detection (e.g., Palaeolithic-Epipalaeolithic periods;
Bronze-Iron Ages). In this manner, irrelevant confusion is pre-
cluded, and a way is paved to explore more nuanced relations
among classes. Thus, for instance, Table S3 presents the com-
munities detected for three periodic groups: Palaeolithic—Natufian,
Bronze-Iron Ages, Hellenistic—Byzantine periods.

Setting out to render these community detection procedures
relevant for archaeological practice, an interactive computer
application was developed geared to visually present classes
and communities against their geographical setting (Fig. 3a).
Thus, for instance, Fig. 3b offers an overview of the commu-
nities detected, Fig. 3¢ demonstrates the application’s node
selection mode, where the user is presented with all commu-
nity members associated with a specific node, and Fig. 3d
presents a community of nine members (archaeological sites)
—eight Roman and one Byzantine—around the Dead Sea.

The resulting communities’ validity may be tested against their
members’ periodic attributions. If the community comprises one
or two successive periods, we may consider the community valid.
However, if the community includes outliers—i.e., members
whose periodic attribution is inconsistent with the rest of the
group— a problem may be assumed, or that there are interesting
similarities that need to be further explored.

For example, community 1 in Table S3, in the Bronze-Iron
ages, has the following members: Early Bronze I Megiddo, Early
Bronze I Mizpah, Early Bronze I ‘Ai, Early Bronze II-III ‘Ai, Early
Bronze III Jericho, Middle Bronze I Megiddo, Iron II Bet Mir-
sham. Iron II Bet Mirsham, is considered a-priori as an outlier
because the periodic assignment is different from the rest Bronze
classes. Therefore, it would be interesting to look at the confusion
between artefacts in this community.

Notably, the number of outliers per community is a func-
tion of the range of periods included in the confusion matrix,
that was used in the community detection. Therefore, the
results should be carefully analysed and validated with
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Fig. 3 Map application for interactive community detection. A Classes in the database are represented by coloured nodes, where the colour represents
period. The menu on the left allows the user to alter the period groups presented and find communities of interest. B Community detection of some period
groups based on ten nearest neighbours. The number above each node represents its community. € Node selection mode: displays the community
members of a selected class; In this example, they include (in period-site format) Iron I-Megiddo, Late Bronze Age Il-Bet Shemesh, Late Bronze Age II-'Ujul,
Late Bronze Age II-Megiddo, Late Bronze Age-Megiddo, Late Bronze Age-'Ujul, Middle Bronze Age ll-Late Bronze Age-Megiddo, and Pre-Pottery Neolithic
B-Jericho. D An example of a community clustered around the Dead Sea; it consists (in period-site format) of Early Roman-Horevot Mazada, Early Roman-
Qumran Caves, Early Roman-'En Gedi, Roman-Horevot Mazada, Roman-Wadi Murabba, Roman-Mezad Rahel, Roman-'En Gedi, Roman-Nahal Mishmar
Cave of the Treasure, Byzantine-Mesad Bogeg, and Roman-Nahal Hever.
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archaeologists to compensate for insufficiently diverse or
imbalanced datasets.

Community detection—Natufian case-study

To explore the potential of the community detection method, a
case-study of the Natufian culture is presented here. Since its
definition in the 1930s, the Natufian culture of the Levantine late
Epipalaeolithic period (ca. 15,000-11,700 years ago) attracted
considerable scholarly attention. There are two main reasons for
this. First, the Natufian archaeological record suggests a shift
from small nomadic human groups to sedentary hamlets in the
Mediterranean zone, a unique event of settling down shortly
before the transition to farming in the Neolithic Period (Bar-
Yosef, 1998; Bar-Yosef and Valla, 2013). Second, while many
Natufian artefact types resemble those of the early Epipalaeolithic
and Upper Palaeolithic periods (e.g., pointy implements made of
bone), many others are novel, producing unprecedentedly diverse
assemblages that include abundant worked-stone and worked-
bone items, art items, and personal ornaments. Consequently,
Natufian artefacts can be found in museum and web exhibits,
such as this database. A dataset of five rough-period groups was
constructed, spanning the Middle Palaeolithic and the Pre-
Pottery Neolithic B, thus constituting a temporal range up to two
steps removed from Natufian elements (rough-period groups 2-6;
Table S1). In this manner, it may be expected that a query of
Natufian classes will find close ties with other Natufian classes,
weaker ties with classes that are one step removed, and nearly
none with classes two steps removed. Five communities were
detected (all site designations follow the labels of the IAA picture
database): (1) Natufian_Me’arat Kebara, Natufian_Me’arat ha-
Nahal, Natufian_Magharat Shugba, Pottery Neolithic A_Jericho-
T. (2) Upper Palaeolithic_Me’arot Hayonim, Natufian_Me’arot
Hayonim, Pre-Pottery Neolithic B_Nahal Hemar (3) Middle
Palaeolithic_Me’arat Tannur, Middle Palaeolithic_Har Qedumim,
Natufian_’Enot’ Eynan, Pre-Pottery Neolithic A_Har Harif (4)
Upper Palaeolithic_Me’arat Kebara (5) Natufian_Me’arat Oren.

These communities demonstrate few interesting insights: first,
in communities 4 and 5 there is only one class. It means that
probably there was no confusion between this class to others,
resulting in self-loops in the network. Second, in community 1,
Pottery Neolithic A_Jericho is most likely an outlier, because it
doesn’t belong to the Natufian period, like the rest of the mem-
bers. Third, in community 2, there are two classes from the same
archaeological site (Me’arot Hayonim), one dated to Upper
Palaeolithic, and the second to the Natufian culture.

A close review of the details demonstrates that many of the
affiliations among artefact images, upon which communities
are subsequently established, were both visually similar and
archaeologically significant. Figure 4 presents some examples of
confusion between artefact images. Thus, Community 1
includes similar Natufian bone implements from different sites
(Fig. 4a), Community 2 encompasses worked animal teeth from
Upper Palaeolithic and Natufian Me’arot Hayonim (Fig. 4c),
Community 3 contains flint tools from Middle Palaeolithic Har
Qedumim and Me’arat Tannur (Fig. 4e), Community 4 consists
of Upper Palaeolithic bone awls from Kebara Cave (Fig. 4g), and
Community 5 includes Natufian worked-stone items from
Nahal Oren (Fig. 4h).

However, on several occasions, visual similarities among
artefacts produced archaeologically false (or problematic) asso-
ciations. In Community 2, Natufian bone awls were grouped
with Pre-Pottery Neolithic B flint arrowheads, which were of
similar shape and colour (ca. 10,000 years ago; Fig. 4d). In
Community 3, Natufian implements made on ungulate long
bones from ‘Eynan (Hula Valley, northern Israel) were grouped

with similar Pre-Pottery Neolithic A artefacts from Har Harif
(Negev Desert, southern Israel) (Fig. 4f).

The analysis above is only the tip of the iceberg, as it
examined thoroughly some examples of confusion between
community members. Researchers are encouraged to follow
this procedure with other communities in the dataset (e.g.,
Table S3), or apply the community detection workflow on other
archaeological databases.

Methods

This section provides additional technical details for particular
parts of this work. Each subsection is concerned with a specific
methodological or procedural component and does not com-
municate directly with the others.

Image pre-processing. The images that populated the database
were collected without an image capturing protocol. Conse-
quently, image capturing conditions varied considerably from
one case to the next, mainly pertaining to issues of background
and scale. To overcome this, homogeneous white background
was implemented and removed the scale following one of two
procedures: (1) automatic contour retrieval (Suzuki, 1985) per-
formed on the output of the Canny edge detector (Canny, 1986)
on the input image, or (2) the interactive GrabCut method
(Rother et al., 2004). The second procedure is comparatively
manual and used whenever the first procedure failed. To fit
images to the model input spatial dimensions, the images were
resized to 300x300 pixels.

Base network. To choose the base network, three ImageNet pre-
trained models were evaluated. These include VGG (Simonyan
and Zisserman, 2014), InceptionResNetV2 (Szegedy et al., 2017),
and EfficientNetB3 (Tan and Le, 2019). We found that Effi-
cientNetB3 was 1% more precise than the other two and needed
fewer epochs for training.

Loss functions. Large Margin Cosine Loss (Wang et al., 2018)
and cross-entropy loss functions resulted in similar classification
accuracy measures while further training with online triplet
mining and triplet loss (Schroff et al., 2015) improved results by
around 1% on VGG and InceptionResNetV2. The final model
was trained with the cross-entropy loss alone on EfficientNetB3.

Distance metric. Predictions for the query images were generated
by determining their k-nearest training-set neighbours (k=1 in
this setup). For this purpose, the cosine similarity distance mea-
sure was used:

x-y
llxll - ||y

where x,y € R is the feature vectors of two different input
images, and D is the embedding vector length.

d(x,y) = cos(x,y) =

bl

Voting of five CNNs. To optimise these results, five models with
the same ImageNet initialisation were trained, each generating a
different feature vector, which was then used to produce the final
feature vector (ZRP). To do so, (1) the five feature vectors were
concatenated, achieving Z € R°", where D is the single model
feature vector length, and (2) randomly projected Z to a lower-
dimensional space (due to memory limitations) by multiplying it
with the random Gaussian matrix

RP __
ZDxl - GD>< SDZSDXI

where ZRP is Z projected onto a lower D-dimensional subspace,
and Gpysp is a random Gaussian matrix.
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Fig. 4 Natufian artefact image confusion in community detection case-study. The query images are presented in the left column, while, to their right, the
nearest training-set neighbours are presented in order. If the neighbour is of the same class as the query (i.e., of the same site and period), it is placed in a
green frame. Otherwise, a blue frame is used. A blank space indicates that the neighbour image detected by the model was assigned to a different
community. A more detailed description of this figure can be found in supplementary material (Additional information for Fig. section). A Community 1,
archaeologically meaningful confusion. B Community 1, wrong confusion. € Community 2, archaeologically meaningful confusion. D Community 2, wrong
confusion. E Community 3, archaeologically meaningful confusion. F Community 3, confusion. G Community 4, correct predictions. H Community 5,

correct predictions.

Training details. CNN weights were optimised by the AdamW
optimizer (Loshchilov and Hutter, 2019) with an initial learning
rate of 0.0001 divided by 10 when validation loss was not
improving. The hardware used throughout these experiments is a
single Nvidia GeForce 2080 Ti GPU, and the batch size was 20.

Community detection. A modularity score measures the quality
of a network’s partition into communities (Blondel et al., 2008;
Newman and Girvan, 2004). A high score indicates dense con-
nections within communities and sparse connections between
them. It is defined as the fraction of edges within communities
minus the expected fraction had their distribution been random.

Derivation of the modularity formula starts with two nodes, v
and w. The difference between the actual and expected weight
between nodes v and w is calculated as follows:

where (1) A,,, is the weight between v and w, (2) k;=2_,A; is
equivalent to the degree of node i, and (3) m = %Zij Aij is the sum

8

of all weights in the graph (number of edges in a uniform-weights
graph).

Summation over all pairs that belong to the same community
will yield the modularity score Q:

k,k
Q= _m% [ me} O(cc)
where ¢; is the community of node i, and &(c,, c,,) equals one or
zero if nodes v and w belong to the same or different
communities, respectively.

Based on this metric, Blondel et al. (2008) introduced a popular
community detection algorithm (Fig. S6). It is based on the
iteration of two phases. First, each node is assigned to a different
community, and the modularity gain of node i is calculated,
should it be found to be in the same community as its neighbour
j. After considering all possible neighbours, node i is placed in the
community that produced the highest modularity gain. This
process is repeated until no further improvement in modularity
score is noted.

The second phase entails establishing a new network based on
the communities detected in the first phase. Each community is
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represented by a node, and edges’ weights are determined by
summating all the edges between communities, while edges
within communities produce self-loops.

The combination of these two phases is called a “pass,” and it is
repeated until the modularity score stabilises and maximum
modularity is achieved (Fig. S6).

Prior confusion. Ambiguities concerning periodic attribution
(e.g., Roman/Early Roman) may be considered a type of label
noise. However, in practice, they are attributable to several closely
related features of the archaeological record: (1) Most artefact
types span several periods, (2) archaeological periods usually have
vague boundaries, and (3) artefacts may vary in frequency across
time and space while retaining their formal properties.
Motivated by Kaneko et al. (2019), attempts were performed to
enhance the loss function with prior confusion knowledge. Let (x;y;)
be an image-label pair; given x; the probability for label y; will be

p(nfs) = Ze(yl)e(ofs)

where p(yjx)) is the i output of the neural network’s final layer,
when the input image is x;, and p(yy;) is the measure of ambiguity
between labels y; and y;. For example, if there is 50% indeterminacy
between Persian-Hellenistic and Hellenistic labels, it would be 0.5.
The final cross-entropy loss for mini-batch with B images and C
classes is

Loss = — %SZZT: tilogp (yj‘xj) )

where t;; is the i one hot encoding element of the label y;.
Notwithstanding the method’s potential, quantifying the prior
ambiguity measure— p(y|y;)—proved difficult, rendering it
useless for this purposes.
Attempts were made to manage periodic indeterminacies by
setting p(y;|y;) according to a Gaussian function. Unfortunately,
this method did not improve the model’s accuracy measures.

Website for archaeological predictions

A website containing the pre-trained CNN model is available'.
Researchers are invited to upload their query images and receive
images of similarly labelled artefacts from the training set.

Conclusion

Machine learning is a powerful tool to explore large datasets. This
paper describes the development of a deep-learning-based model
for a diverse archaeological dataset that spans more than a million
years of south Levantine material culture. It is particularly well-
suited for purposes of artefact classification, potentially accel-
erating the interpretation of archaeological contexts. Moreover,
based on the model, meaningful connections across artefacts,
assemblages, and sites were automatically found.

Notably, archaeological classification is uniquely challenging. It
is often ambiguous, and there is considerable room for con-
troversy over dating. Moreover, archaeological assemblages are
synchronically variegated, encompassing materially and visually
distinct objects, but often diachronically similar. Harnessed this
inherent quality of temporal ambiguity is key to find meaningful
archaeological communities, recognising that the confusion of
classes can underscore real connections.

At its most basic, this CNN can help archaeologists find similar
artefacts and efficiently complete some of the more tedious and
humdrum tasks of the profession. At its more advanced appli-
cations, the model can help archaeologists analyse large data
bodies, find new previously unknown relations, and raise new
archaeological questions. This workflow presented here can be

applied to other datasets worldwide and has the potential to make
way for significant archaeological insights.

Data availability

All images used in this work are available at the National
Treasures page of the Israel Antiquities Authority (IAA) website
http://www.antiquities.org.il/t/default_en.aspx. Thumbnail ver-
sions of the images, split into classes, can be downloaded from
https://drive.google.com/file/d/1V8Zdr6tAdm_QoEk39BcYRupo

HYI2PoL2/view?usp=sharing. In order to get the full resolution
images (up to about 600 pixels width/height), please contact us:
aviresler@gmail.com

Code availability
https://github.com/aviresler/antique-gen.

Received: 22 December 2020; Accepted: 2 November 2021;
Published online: 25 November 2021

Note

1 See: https://github.com/aviresler/antique-gen. We recommending visiting the
“Prediction of archaeological period/site” section.
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