
ARTICLE

Dynamics of artistic style: a computational analysis
of the Maker’s motoric qualities in a clay-relief
practice
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The artistic style has been extensively discussed within diverse perspectives, usually studying

the physical qualities of existing artifacts as the resource for investigation. This paper pro-

poses a novel analysis of the dynamics of artistic style, as represented by a set of motor

features, techniques, and their temporal interplay. The researchers hypothesize that unique

characteristics of individuals’ styles are represented as transitions between motor activities,

which would allow for computational analysis of style. As a case study, the researchers

tracked a carving knife used in a clay-relief technique in two studies, one comprising (i)

twelve sessions and five novice participants; and the other (ii) twenty-eight sessions with a

single skilled artist. The analysis reveals that dynamic style is (i) unique and consistent in

novices’ creative processes and that (ii) different subcategories of making can be observed in

an experienced participant related to the subject of the work. These offer the possibility of

quantitatively studying the making process irrespective of the esthetic qualities of the fin-

ished artifact, which allows for diverse computational applications.
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Introduction

Personal qualities of artistic style leave unique marks on art
products contributing to the extraordinary qualities of the
artifacts by attributes such as textures and patterns (Davis,

1990); these have been the topic of studies in diverse academic
disciplines (Summers, 2009; Schapiro, 1953). However, due to
technological restraints, prior studies on personal artistic style
neglect quantitative analyses of the making process as a function
of time-variant motor activities. Moreover, although today com-
puters allow for the successful synthesis of artists’ styles, these
studies tend to focus on statistically learning a portfolio of pre-
made products rather than the making process itself.

Nevertheless, digital technologies enable us to detect, monitor,
and classify dynamic characteristics of artists’ ways of working:
the real-time qualities and mathematical characteristics of the
techniques they use, physical features identifying these techni-
ques, and the statistical relationship between them.

In order to formulate a definition of dynamic style, we focus on
personal style and motor skill, presenting a quantitative method
to identify artistic style as a transition between motor states, and
studying the motor performance of an artist working with a
manual tool. The artist’s tool-path is computationally examined
to identify clusters of motor features, and the relationships
between these clusters analyzed with respect to other artists or
other projects by the same artist. Our method can thus be used to
deepen our understanding of style and motor skill as the language
of making (Davis, 1990: see section “Background on personal
style”), supporting the future study of the dynamics of style, as
well as the development of computational creative applications.

This paper presents a two-fold contribution: (1) a computational
method to evaluate the dynamics of personal style; and (2) a proof-
of-concept of this method. In other words, we supply a technical
approach to evaluate the unique and common motor features that
construct one’s way of making artifacts. These allow for the making
process as a whole to be quantitatively observed as an interplay
between various actions regardless of the esthetic qualities of the
artifact. Hence, we analyze the work process itself instead of its final
product—an analysis that is computationally simple, yet manually
almost impossible, due to the amount and resolution of technical
information generated during the working process.

As a case study, we used a magnetic motion tracking system
(MMTS) to track (in 60 Hz) the 6DOF location of a carving knife
in a clay-relief technique, then processed and analyzed the
recorded data using digital signal processing and machine
learning tools. We conducted two studies. In the first, we tracked
and analyzed the work of five novice participants, each per-
forming three simple geometric tasks, demonstrating how one’s
style can be identified using our method. In the second, we
tracked four complex works created by a professional sculptor
executing two different work models, computationally showing
that the artist’s style depends greatly on the subject matter. We
conclude that our method to study style as a transition between
motor states has been proven to be valid, and raise questions for
future research on the dynamics of style, with the aim of con-
structing a theoretical framework for further analysis of the topic.

Motivation
The creative artistic process is subjective, in many respects
unconscious (Stevens, 2014), and depends on complex socio-
cultural and technical conditions (Summers, 2009; Schapiro,
1953). One approach to investigating the style of one’s work is to
consider it as a physical manifestation of the process (Wiessner,
1984).

Davis defines style as a description of a polythetic set of similar
but varying attributes in a group of artifacts (1990, p. 19), and

suggests that style can be seen as explaining the similarities
between the attributes of artifacts. For Davis, style is the language
of making, yet without the historical, social, and technological
conditions for such communication, style cannot encode the
contextual meaning it may represent.

Davis, who mostly discusses the style of pre-made artifacts,
does not have access to the casual motor features that generate
the attributes he mentions. To study style as a language, we need
information regarding the temporal relationship between the
attributes, techniques, and gestures produced by the maker. A
study of the dynamic qualities of style goes beyond a comparison
between pre-made artifacts, to the study of the making process
itself. A dynamic style approach allows for comparison between
techniques as a function of the maker in the creative process and
seeks correlations between working patterns within one’s work
and in between various makers. Hence, studying the dynamics of
style allows us to generate comprehensive information about the
“language of making,” and how it changes and evolves over time.

Moreover, our motivation goes beyond a potential contribution
to the theory of style. Today, the use of digital agents for co-
creative purposes with humans is ubiquitous, but usually leads to
the loss of some crucial aspects of the creative process (Zoran,
2016; Zoran et al., 2014a). Incorporating external technological
agents adapted to the specific creative user’s process (in the form
of robotic apprentices assisting a master craftsperson, for
instance), can help artists harness technology without losing vital
aspects of the creative experience. To enable such technology,
there is a need for a computational model of the artist’s motor
style of work (Zoran, 2016). We believe a dynamic approach to
such style analysis lays the groundwork for developing colla-
borative technology that would create new avenues for creative
experience and its products.

Today, with recent advances in machine learning (ML) and
data analysis, people are accustomed to living in a personalized
digital environment: watching television, shopping, listening to
music (Linden et al., 2003)—all become highly personalized
experiences. Tools for creative practice can offer the same sense of
a personalized experience, provided the proper data and com-
putational framework. Furthermore, the predictive abilities ML
provides (Ghahramani, 2015) can be harnessed to infer an artist’s
future progress, given a temporal dynamic record of their style.
As such, dynamic style research may enable technology to predict
and synthesize artists’ future styles before they have reached the
skill level, or achieved the personal progress, to produce it
themselves. This could redefine the meaning of practice and
mastership while furthering the discussion of authenticity and
artistic intent and ownership (Benjamin, 2018; Barthes, 1977).

Hybrid interaction and smart tools. The personal creative
process can be viewed as a continuous feedback loop between
mind and matter (Mace and Ward, 2002). Currently, most digital
agents work exclusively at one end of the loop: fabrication and
3D-printing technologies replace direct contact between creator
and material and focus on the final product. On the other hand,
many computer-aided design platforms allow for planning the
final product in a way that is separate from the manufacturing
process, eliminating all material sensory feedback and replacing it
with a digital interface. Digital technology is augmented to create
tools with “smart” handles, which in some respects bridge the gap
between digital representation and tangible interaction. Such
synergy enables users to express and develop their personal style
while being assisted by the digital agent (Zoran et al., 2014a).

By using digital agents, users outsource some of their creativity
to an external agent. While artificial intelligence agents can style
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images as if they were painted by great artists (Jay et al., 2017),
and even display a form of imagination (Mordvintsev et al.,
2015), current stylization technology takes over creative control,
filtering given inputs without collaborating with the human user
(Zoran, 2016). A hybrid approach to interaction would leave
space for the users to evolve and express their own style.
However, such an approach would require accessing processes
that are yet to be formalized in a computational way—the hidden
control and feedback loops that construct the creative process.

Human-robot interaction. In recent years, the research field of
human-robot interaction (HRI) has experienced significant growth.
The computational frameworks and algorithms that enable com-
munication between humans and robots keep evolving and setting
new goals. These goals are developed and examined in the field of
traditional robotics, but also through the prism of human social
behavior and interaction (Thomaz et al., 2016). Incorporating
robotics into the creative process, given its intimate nature, is
essentially a delicate form of human-robot communication.

Humans and robots are working side-by-side, performing
shared tasks, in many domains. Systems that engage in human-
robot collaboration call for the development of frameworks that
will enable productive teamwork between people and machines.
In such frameworks, the dynamic, non-deterministic human
holds the main part of the robots’ environment. In order to
compute actions within such an environment, a psycho-cognitive
approach is needed (Thomaz et al., 2016; Nikolaidis and Shah,
2012; Görür et al., 2017). Different computational frameworks are
suggested to create such an operative dialog between people and
robots, many of which suggest models for human intention,
recognition, and prediction (Nikolaidis and Shah, 2012; Görür
et al., 2017). When conceptualizing and building robots to take
part in an artist’s creative process, the challenges of human-robot
collaboration become less tangible and more complex, as the
creative process includes factors that the artists themselves may
not be aware of (Stevens, 2014).

Having a “shared” mental model of a task promotes effective
teamwork among humans and is thought to do the same in human-
robot collaboration (Nikolaidis and Shah, 2012). If the task is a
creative one, the human artist’s mental model of it is inferred from
their individual creative process (Mace and Ward, 2002). In order to
help machine companions learn and predict mental model features,
it has been suggested that they be expressed as a sequence of actions
over states (Nikolaidis and Shah, 2012). Metrics that allow for
visualizing an artistic style manifest in a finite set of discrete
techniques have the potential to set the groundwork for collaborative
work with robots: dynamic style research supplies the computational
tools required to teach robots to infer the model of an artistic task,
and so collaborate in its making.

Our specific interest is in incorporating robotics into the
domain of craft and creativity. This social domain is highly
autonomous and liberal; as such, it requires a less deterministic
and more flexible style of machine learning (de Miranda et al.,
2016). Robots meant to work within a creative environment
would need to learn how to improvise. For example, Shimon is an
interactive robotic marimba player (Hoffman and Weinberg,
2010): it was specially designed to improvise jazz music, reacting
to a human piano player in a joint performance. This robotic was
modeled according to gestures rather than sounds, meaning that
the robot learns from human dynamic actions, not from their
static outcome. This embodied approach coincides with dynamic
style analysis based on motor documentation of the artist’s
actions. Another robot working in the creative domain is
“YOLO,” a toy-like robot designed to boost creativity in children
(Alves-Oliveira et al., 2017). YOLO is a social robot designed to

inspire creative thinking in terms of innovation and problem
solving, which is different from the more intimate, creative
performance-oriented approach offered by dynamic style analysis
and synthesis.

While many approaches to HRI apply a social framework to the
relationship between humans and robots, a style-aware approach
offers a more personal form of interaction in which the robot is less
an external collaborative entity than an extension of the self. In
addition, the use of AI and robotics suggests some autonomy,
meaning that a style-aware robot might perform an independent
reflection of the artist, which raises new questions about creativity
and technology.

The question concerning style is complex and cannot be
bounded within a controlled motoric investigation. However,
focusing on the time-variant relationship between motor activities
in a controlled environment, our investigation holds the potential
to generate utilitarian insights regarding the synthesis of robotic
application that imitates the motor technique of one’s skills,
allowing for tight and intimate human-robot interaction in
complex creative tasks. While a complete discussion of the
definitions and views of style is beyond our scope, a short
overview is presented here to frame our work within this greater
context.

Background on personal style
One can consider a range of complementary perspectives when
studying style (Davis, 1990; Schapiro, 1953). Acts of artistic
creation generate complex behavioral (Cobbledick, 1996), cogni-
tive (Kozbelt, 2001; Winner and Casey, 1992), and motor (Glazek,
2012; Zoran et al., 2014b) interactions. Artists’ signatures have
been extracted from art products and studied (Gombrich, 1995;
Rigau et al., 2008), while other researchers consider the interac-
tion between style and culture (Clark, 2015). Summers argues that
style, representing the autographic qualities of the artist, holds
only a partial contribution to the product. For Summers, mate-
riality, technology, and their historical and cultural context may
have an even greater influence on the creative practice (2009).

Today, new technologies enable us to investigate the connec-
tions between such aspects of artists’ work (Zoran et al., 2014b;
Mordvintsev et al., 2015; Thomaz et al., 2016), and between
artistic style and skill (Zoran et al., 2014b; Gandon et al., 2013),
including computational analysis of the evolution of style over
time in a controlled environment (Haroch et al., 2019). For our
investigation, we adopt a view of style as a manner of doing
something (Solso, 2001). We do not aim to contribute to the
debate regarding the meaning of the term style but rely on a given
view to better communicate our intention regarding the process
and language of making. We are interested in motoric mechan-
isms and gestural causality that can contribute to a theoretical
(quantitative) framework around personal artistic style.

Style in anthropology. Boas defined style as the consistent and
formal elements of esthetics that appear in culture (Stevenson,
2010), focusing on empiricism and a historical point of view (El-
Or, 2014; Boas, 1995), rather than the attitude and actions of
artists (El-Or, p. 155). Other researchers take more flexible
approaches. For archeologists such as Malinowski (2013, p. 80;
Helm et al., 2001), style is the projection of cultural signals onto
material artifacts and involves a choice among different alter-
natives (Hegmon, 1992, pp. 517–518).

Schapiro, for instance, defines style as the constant elements,
qualities, and expression in the art of individuals or groups (1953).
For Schapiro, style cannot be generalized, as it is a function of the
observer. Schapiro’s discussion reinforces our motivation to study
style as a function of attributes (techniques and gestures) used over
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time, with respect to the maker and the image in action, seeking a
common ground of similarities and differences as a platform for
understanding makers’ styles. For Schapiro, a historical-psychological
view on style is still awaiting investigation.

Wiessner takes the first steps toward such a psychological view,
defining style as formal variation in material culture that transmits
information about identity (1983). Her theory connects variations
in material culture to individuals’ behavior and cognition, which is
especially relevant to our investigation of the dynamic character-
istics of style (1984. p. 191). We aim at introducing a rigorous,
computational framework for investigating the dynamics of style
as the first stage for a behavioral view of the making practice.

Style in the history of the arts. In the first half of the 20th
century, the style was a dominant concern in art history (Nelson
and Shiff, 2012, p. 98). The meanings and the means (techniques,
materials, and esthetics) were separated, narrowing the definition
of style to consistent esthetics (Helm et al., 2001). Later, Alpers
explored art from a multidisciplinary perspective, trying to reveal
the fundamental forces that made art what it is (1979).

Style and the digital world. Digital tracking techniques connect
style to motor skills, from wearable sensors (Lapinski, 2013; Hoshen
and Peleg, 2016) to smart tools (Zoran et al., 2014b). Such methods
allow the investigation of style beyond its visual properties, through
an examination of the dynamics that yielded them. A body of work
has been dedicated to digitally extracting stylistic features from
images (Sablatnig et al., 1998; Khan et al., 2010; Gatys et al., 2015).
Elgammal et al. used convolutional artificial neural networks to
classify large sets of paintings (2018), and Saleh et al. explored
automated discovery of artistic influences (2016). In computer gra-
phics, such tools are used for stylization—changing a graphical
element in a way that preserves the content but brings its appearance
closer to a reference (LunaPic, n.d.; Kyprianidis, 2013).

Recent works in the realm of digital craft combine real-world
expertise with virtual spaces and call for a deeper investigation of
the dynamics of style. Examples include Arisandi et al.’s frame-
work for creating 3D models by hand using virtual reality (2012)
and other works that take hybrid approaches to make objects
(Zoran et al., 2014b; Devendorf et al., 2015; Shilkrot et al., 2015).

Motor skills as dynamics of style
Our computational model emphasizes the dynamic nature of the
style, as time-dependent with multiple aspects. We define below
the maker’s dynamic style as the set of relevant properties and
techniques, while the static style is a projection of the dynamic
style at a specific time within the space of esthetics:

● The dynamic style denotes an understanding of style as
comprised of a finite set of observable, measurable,
analyzable, and interdependent motor acts within a real-
time temporal order, and as employed in the process of a
maker’s creation. Such a definition of dynamic style allows
for a quantitate analysis via computational tools of stylistic
motor skills, as we propose in this paper.

● The static style is a singular interpretation of the maker’s
esthetics (most cases) analyzed from the finished work. It is
a set of visual features rendered on a produced artifact.

We hypothesize that each maker uses a consistent set of motor
skills. Such skills are embodied in the techniques the maker uses.
With respect to such techniques, we observe a dynamic style in
the making process via the statistical relationship between tech-
niques and their transitions. Hence, we can observe the final
outcome through the dynamics and causalities that contributed to
it in the making process. For example, the tool’s angle varies

between few dominant values (see Fig. 1A), making it possible to
look at the sculptor’s work as a (statistical) transition between a
limited set of states (techniques).

We investigated combinations of dominant motor skills and
how they vary among sessions, observing the making process as a
transition in time between different motor skills. We tracked the
usage of the sculptural tool, then analyzed the principal tool’s
positions and the transitions between them. The framework of all
experiments consisted of the following elements:

i. We rely on clay relief technique, in which details are
sculpted by manipulating a solid background of clay. This
technique is particularly relevant for our work, being
accessible to inexperienced participants, but requiring
practice to master. Moreover, it allows both coarse and
accurate modes of working.

ii. We use a knife-like sculpture tool with a motion-tracking
sensor embedded in the handle. An experienced maker
modeled its tip from epoxy (Fig. 2B). The tool can move
freely in all directions.

iii. A Polhemus FASTRAK is used as the magnetic motion-
tracking device, allowing 6DOF tracked at 60 Hz.

iv. Each session was executed in a 20 × 20 × 4 cm box-like
terracotta clay body. Each was produced using the same
square mold and left in a loose nylon bag to solidify for 24 h
(Fig. 2C, D).

v. For all experiments, we used a similar light setting in the lab
(Fig. 2A).

The research and the following studies have been approved by
the Ethics Committee for Non-Medical Human Studies in the
Faculty of Natural Sciences of the Hebrew University of Jerusalem
(26052021). We confirm that informed consent was obtained
from all participants and/or their legal guardians. The datasets
generated and analyzed during the current study are not publicly
available to protect participants privacy but are available from the
corresponding author on reasonable request.

Algorithmic framework
To identify the main tool’s states, we characterized each time
sample with specific features and extracted the states from the

Fig. 1 Tool’s roll angle and height features. A Example of the way a tool’s
roll angle changes while a maker works with it. B Part of the height signal
and its corresponding CWT for frequencies greater than 0.5 Hz.
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normalized features space. Our data analysis consists of con-
tinuous wavelets transform (CWT), and unsupervised machine
learning (k-Means and Gaussian mixture model, GMM). The use
of such concepts for behavior analysis can be found in other
works (Linden et al., 2003; Lapinski, 2013).

Features space. To define which features should be quantita-
tively measured, we characterize the tool’s dynamics, focusing on
the maker’s typical motor skills. We characterized the tool’s state
by its height, orientation, and signature of its local behavior at
each time sample. The transitions between different parts on the
working surface can also reveal significant information.

i. Height: The height of the tool is approximately the tool-tip’s
Z coordinate (as the sensor is on the other side of the tool).
This feature contains data such as the depth of the relief or
distribution between different heights throughout the
process, including during idle working modes. Figure 1B
shows part of the tool’s height signal and the corresponding
CWT in the range of relevant frequencies. In the data
analysis of our presented work, we used only the high
frequency of the height feature.

ii. Euler angles: These features are connected to a variety of
aspects, including the angle of the plane currently being
manipulated and the makers’ preference for which part of
the tool’s tip to work with. Due to the cyclic nature of
angles, an artificial discontinuity point occurs when cross-
ing the feature’s range of the original signal. We handle this
phenomenon in two different ways: the first is embedding
the signal in a 2D unit circle, and the second is minimizing
the number of these discontinuity points by cyclically
shifting the signal in its original range. The method used
depends on the clustering method in further stages in the
algorithm: we use the embedding method when using k-
means, and shift the signal when using GMM.

iii. High-frequency features: As an indication of the local
behavior of a feature, we calculated its high-frequency
corresponding feature. The high-frequency feature for a feature
f is the absolute of the continuous 1-D wavelet transform
coefficients of f, corresponding to frequencies greater than a
threshold s= 0.5Hz, projected into smaller dimensionality
space using PCA, such that 85% of the variance is explained.

Normalization of the feature space: Different features needed to
be normalized before clustering the data. Given a feature, we transform
each sample to distribution between its main clusters, making our
feature space a space of distributions between different clusters of each
feature f. First, we estimated the number of clusters in f. As the number
of clusters is not a well-defined property of the data, by using both
Elbow methods and Silhouette criteria variants, we decided that three
clusters for regular features and five for high-frequency features will be

a reasonable choice. We then clustered the data and transformed each
sample to distribution between the clusters of the signal.

Overall, we used two main strategies for establishing the fea-
tures space:

i. GMM-based analysis. We fixed the angular features by
shifting, then used GMM on each feature in order to
transform each sample to a distribution.

ii. k-Means based analysis. We embedded the angular features
in the 2D unit circle, then used k-Means to transform each
sample to distribution between the main clusters.

As we were interested in both methods, we checked both for the
establishment of the feature space. When a GMM variant was used
for clustering, the posteriors are part of the standard output. When
k-Means was used, the probability for the sample fi to belong to
cluster j with center cj is proportional to d�1

i;j , where di;j ¼ jfi � cjj.
The principal tool’s states: For each experiment, we used k-

Means to cluster the normalized feature space to k̂ clusters,
explaining 90% of the variance (see. Fig. 3A).

Comparing between different working sessions. After the
previous step, each time slice can be regarded as a series of
principal working states (see Fig. 4). For exploring motor skills in
creative processes from a statistical point of view, we transformed
a working series in time to distribution between the k̂ working
states of feature space, and the probabilities of changing from one
working set to another between them. We used the Jensen-
Shannon divergence to quantify the difference between time
segments according to the distribution between the working
states, the distribution of transitions between the working states,
and both distributions.

Short-term tasks by unskilled participants
We assume that even unskilled makers have a consistent set of
working states, and examine whether these can be detected using
our proposed framework. To validate this assumption and
examine the robustness of our method, we conducted an
experiment involving a group of five unskilled participants; all
had some experience with craft techniques, but none had worked
with clay relief.

All participants performed three relatively simple tasks with
increasing complexity, executing a specific geometric pattern for each:
a two-sided, leaf-shaped ornament; a circular ornament divided into
four equal sections; and a purely circular ornament (see Fig. 5A–C).

Each session lasted 30 min, and we notified the participants of
the time remaining at 15, 25, and 29 min. Each participant waited
for one to two weeks between tasks. At each session, a physical
one-to-one model of the desired output was located next to the
participant, and a sketch of the desired pattern appeared on the
clay surface (see Fig. 5D).

Fig. 2 The lab’s settings during the experiments. A The participants’ workspace, including the tracking device, and the constant light configuration from
the side room. B Main elements of the tool, including the tip, which does all of the clay manipulations; the sensor location; and the power cable for the
sensor. C–D An example of the clay body: a terracotta variety of grayscales formed by light and orientation.

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-021-00838-2 ARTICLE

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |           (2021) 8:160 | https://doi.org/10.1057/s41599-021-00838-2 5



We calculated the distances (as explained in the “Algorithmic
framework” section) between the working sessions, repeating this
process 10 times; averaged the distance matrices; and embedded
the sessions in 2D using the averaged distance matrix and non-
classical MDS (see Fig. 7A).

Fig. 4B shows a 2D histogram of each session’s contribution to the
2D histogram of the entire normalized features space. Participant 5
demonstrates an individual set of different tool states, while the four
remaining participants are relatively similar, although participant 1
visits 5’s unique set of tool states from time to time, and 4’s con-
tribution exists mainly in the upper right of the histogram.

The results emphasize not only that the unskilled participants
are relatively consistent in their motor skills and the use of the

tool, but that these similarities can be detected by the morphology
(Fig. 4B) of the field participants’ span by their motoric actions,
and the distance between such fields (Fig. 7A). The formal
representation of dynamic style as a function of features extracted
from ones’ motor actions generates both inner field analytics (the
morphology of one’s field of motoric actions) and external,
relative analytics (compression between others), an observation
that can be used for temporal and relative classifications of one’s
working style, per subject matter.

Long-term process of a skilled sculptor
Within this experiment, we investigate whether we can differ-
entiate between sets of techniques defined by their set of features
when observing an experienced maker. This involves an in-depth
study with a single skilled participant, a professional sculptor who
teaches clay relief at a leading art academy.

The participant performed four advanced, long-term tasks: two
translation tasks of a 3D object (flower) to relief, and two flower-like
geometric patterns (see Fig. 6). Both required the participant to
produce a number of areas with different orientations, and interpret
a 3D/2D image to 2.5D. Yet some challenges are different: in the
flowers tasks (3D to 2.5D), the image is less symmetric and more
organic, and the task calls for additional decisions regarding orga-
nization and interpretation. In the patterns tasks (2D to 2.5D), the
image and process are more structured.

The whole process was divided into seven weekly meetings of
two hours each, with a 30-min session dedicated to each task,
allowing a total of 3.5 h for each one. In each meeting, the order
of the tasks was different. We calculated the distances between all
the working sessions, repeated this process for 10 repetitions,
averaged the distance matrices, and embedded the sessions in 2D
using the averaged distance matrix and non-classical MDS (see
Fig. 7B).

Fig. 4 Features space histograms. A 200 × 200 histogram (log-scaled) of
the normalized features space projected into 2D using PCA, and principal
tool’s states in the normalized features space. B Each session’s contribution
to the 2D histogram of the entire normalized features space.

Fig. 5 The first experiment. A–C Diagrams of the first experiment’s
sculpting tasks. D Reliefs from the first experiment’s first task.

Fig. 3 The algorithmic workflow of our data analysis. The main algorithms used in each step are in blue.

ARTICLE HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-021-00838-2

6 HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |           (2021) 8:160 | https://doi.org/10.1057/s41599-021-00838-2



Fig. 6 The second experiment. The experiment’s sculptural tasks (above) and final reliefs (below).

Fig. 7 2D embedding of all experiments. Embedding of all (A) novice and (B) expert sessions, distance based on the distributions of both states and
transitions, and the Voronoi diagram of the embedding based on both GMM and k-Means analysis.
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When the sessions are embedded in 2D, there is a clear separation
between the two groups (flowers vs. patterns). This suggests that the
features collected from the work, and the corresponding computa-
tional analysis give sufficient indications for differentiation in
dynamic style. Such various sections of dynamic style are correlated
with the categories of the work (flowers vs. patterns).

Nevertheless, the two groups do not form two separate clusters
inside each group. The distinctions in the flowers’ images with
respect to the patterns (Fig. 6) contributes to a less consistent
dynamic style in the flower, as demonstrated in Fig. 7B, as the last
presents a mapping of relative distances between the set of
techniques used in each task—the closer the tasks in the figure,
the more they represent a similar dynamic style.

It is important to state the autonomous, unbiased means of such
detection; thus, correlations are found solely based on the set of a
participant’s motoric actions and the way these actions correspond
to each other. A direct deduction of this finding is that a group of
motor actions (techniques) as represented by a set of technical
features can be directly linked to higher-level representation and
classification the artist applies on the models of her work. In other
words, the tracking and analyzing of one’s motoric actions using
high temporal resolution hold cognitive information about higher-
level interactions between the artist and the model.

Discussion
With respect to our earlier definition of dynamic style, we selected
a finite set of observable and measurable features derived from the
motoric actions of each participant, such as a tool’s temporal
angle and its position frequency. The analysis of the time-variant
behaviors of these features results in a state of classifications or
working techniques. From our first experiment, we see that
automatic, untagged analysis of the techniques and the temporal
interplay between techniques shows that a typical, personal
dynamic style can be recognized. Hence, such temporal features
can be studied as basic qualities for the classification of one’s
dynamic style, and thus can inform one’s work dynamics using
correlations between various working sessions, between sessions
from the same work, or between different artists.

In addition, our second experiment shows that a similar ana-
lysis of a long-term process of a skilled sculptor reveals correla-
tions between the sculptor model of the work and her (unaware)
preference for a set of motoric actions used for the task. From a
theoretical perspective, the techniques embedded in the features
space, and the temporal interplay between techniques, reveal
information about the artist’s subjective correspondence to and
association with the model of the work.

Conclusions
The two experiments reinforce our approach of observing style as
a transition between working states, provide a summary of the
making process, and open the door to computational frameworks
in style research. We perceived different aspects of making: the
consistency and individuality of makers, and how different
models and sub-techniques affect the making process. While
additional work is required to generalize conclusions regarding
the nature of the personal style, our computational framework
has been shown to be rigorous and robust, proving the concept of
our computational approach.

The main contribution of this work is the analysis and defi-
nition of dynamic style as the time-dependent motoric functions
that ultimately, upon completion of the artist’s making process,
produce the static style in a finished work. This allows for the
making process as a whole to be quantitatively observed as an
interplay between various actions regardless of the esthetic qua-
lities of the artifact.

Such an approach to dynamic style raises themes for investigation:

● The connection between time and style. Different aspects of
makers’ styles arise over different timescales. Different
elements from different timescales are connected, and a future
model of dynamic style should allow for the analysis of the
characteristics of the progression of style as a function of time.

● The connection between style, technique, and skill. Our
work suggests that the correlation between technique and
motor skills is not given but dynamic; it evolves over time
and probably reflects a complex dependency in both the
mental and motor state of the maker.

● The maker’s perception, image, and esthetics. As the
maker’s mind and set of mental images evolve over time, it
is worth exploring the connections between the maker’s
mental states and the sets of images and esthetics used in
their work.

● Relationship between cultural and personal esthetics.
Cultural style may restrain and bias the esthetics of the
individual, whose personal style, in turn, enriches their
cultural style. Yet the relationship between the two is
complex and should be explored further.

As the topics above are open theoretical questions not easy to
study quantitatively, we suggest focusing on the following issues,
which are well suited for computational analysis:

i. How does one’s technique and skill change over short-term
and long-term artistic processes? In what ways are makers
(not) consistent between different artistic techniques?

ii. What technical features are essential when exploring the
maker’s personal style, and to what extent are motor actions
essential for characterizing the maker’s esthetics?

iii. Does iconography affect a maker’s motor actions or
technique during the making process?

In addition to these investigations, there are broader theoretical
and ethical concerns regarding modeling and (computationally)
imitating one’s style. As mentioned briefly earlier, in the age of
ML and deep learning, it is reasonable to assume that capturing a
novice’s style will allow a prediction of their artistic skills,
assuming (hypothetically) that they will continue to practice.
Having such a capability may raise a new discourse regarding an
entirely new form of HRI: interacting with a skillful version of
yourself. Can a user guide a robotic agent working like she or he
may work in the future, without having acquired the technical
skill yet? Does human agency and ownership of creative practice
depend on the process of acquiring these creative skills? While
such questions may never be answered, they can shape the way
we envision a future HRI for creative tasks, hybrid applications,
and human-machine co-creation.
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