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On the evolution of social ties as an instrumental
tool for resource competition in resource patch
networks
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Human is a highly cultural species with diversified skills and knowledge. In this paper, we

examine whether the diversification of skills and knowledge can promote the emergence of

social ties between individuals as means for acquiring resources. Specifically, we construct a

simulation model consisting of two types of actors—one who uses social ties to search for

resources and one who does not—and allow them to compete for resources that are dis-

tributed in resource patch networks of varying structures. In a densely connected resource

patch network, implying a setting with less diversified sets of skills and knowledge, model

result demonstrates that social ties can be detrimental to those adopting it. In a sparsely

connected network, implying a setting with more diversified sets of skills and knowledge,

social-type strategy can outcompete solitary-type strategy. Furthermore, actors with a pure

social-type strategy are always inferior to their solitary competitors, regardless the structure

of the resource patch network. Our modeling framework is of a very fundamental nature, and

its relevance to existing theories and the sociological implication of its results are discussed.
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The emergence of social ties between individuals is funda-
mental for understanding the evolution of sociality in
human and other animals. As pointed out in the classic

work by Alexander (1974), social animals are relatively rare in
nature because there are no automatic and universal benefits of
group living, and the opposite effects such as social conflict and
disease transmission seem to be common. Consequently, sociality
must evolve under ecological conditions that can generate sig-
nificant fitness and benefits for individuals such that the detri-
mental effects of sociality can be overcome; and gaining access to
and defending critical resource is one of the fundamental reasons
that animal form social groups (Shen et al., 2017).

As for humans, it has been suggested that the early stage of
human history is characterized by the expansion of humans
across the globe (Boyd et al., 2011). During the process humans
constantly encountered new and changing environments, and
new skills were often required for humans to learn in order to
survive (Boyd et al., 2011). Mastering all skills or knowledge by
one individual is a very time consuming process, and the energy
required might be of high cost that lowers this individual’s fitness
(Kaplan et al., 2009; Dyble et al., 2016). A more plausible way in
which one might survive under these circumstances is to develop
some sorts of dependency on others who have already mastered
skills that this individual is not familiar with (Kaplan et al., 2009;
Dyble et al., 2016). Thus, it has been suggested that humans is a
highly cultural species where the diversification of skills or
knowledge drive the social dependence between individuals (Boyd
et al., 2011; Hill et al., 2011).

Intuition suggests that some skills can be associated with the
sense that if one excels in one and he might also excel in another.
For example, “fishing” and “sailing” are two skills to be mastered
if one wishes to catch fish in the ocean. Another example is that
an individual who excels in “mathematics” might also excel in
“computer programming” as he might need to write computer
programs to solve mathematical problems. Thus, it is not far-
fetched to envisage various skills or knowledge being connected
in a network manner where one skill or a piece of knowledge is
more closely linked to some but less so with others (Arthur, 2009;
Yeh et al., 2019; Phoa et al., 2020). The diversification of skills or
knowledge can be regarded as changes in their network structure;
and how those changes might serve as ecological conditions that
favor social dependency on other individuals remains elusive, and
this serves as the motivation behind our study here.

In this paper, we ask whether the diversification of skills or
knowledge can favor some sorts of sociality among individuals.
Specifically, we model a network of resource-containing patches
where each patch represents a skill or a particular piece of
knowledge. Similar skills or knowledge are connected by links;
thus, a densely connected patch network implies little difference
between skills or knowledge, whereas a sparsely connected net-
work implies diversification. We then construct an agent-based
model to simulate resource competition between individuals of
two different behavior types on a given resource-containing patch
network, and see which behavior type becomes the dominant one
after several generations. The first behavior type consists of
solitary individuals who move between patches and acquire
resources; and the second is the social type where individuals
behave like the solitary type, but with some probability, they can
also use their social ties (hence social networks) to acquire
resources. To be more specific, a social-type individual uses his
social ties to ask his friends or acquaintances to explore their
neighboring patches for resources. In other words, a friend or
acquaintance with a particular skill or knowledge can easily adopt
or learn related skills or knowledge in order to help the social-
type actor acquiring resources. Owing to one’s capacity for

learning might be limited, we have to emphasize that we do not
intend to model the use of social ties for learning; instead, social
ties develop such that one can ask for help from his friend and
acquaintances to acquire resources. We assume in our model that
resources are commodities that can increases one’s prestige, and
the amount accumulated throughout one’s life time can be a
proxy to how successful he is. In the end of one generation, the
level of “success” associated with one particular behavior type can
be totaled from individuals bearing such a behavior; and this then
dictates the proportion of individuals adopting such a behavior
type in the next generation (i.e., following the intuition that
successful behaviors tend to be adopted more frequently than less
successful ones (Kendal et al., 2015)). In a nutshell, with our
simulation model, we ask how the extent of diversification of
skills and knowledge, as modeled by patch networks of various
structures, can favor the emergence of the social-type behavior.
Note that we model skills or knowledge in the form of a resource-
containing patch network where resources are being depleted by
individuals. Resources within a patch can also be regarded as
credits given to those pioneering individuals who were the first to
exploit the patch (either directly occupying the patch or exploit
the resource via social ties). The depletion of resources here
resembles the loss of novelty if late comers visit patches already
being exploited by pioneers.

A real-life example that is of relevance to the context of our
model is from academic research. Here, a subject or research field
is a patch, and resources within a patch are credits given to those
pioneering individuals who publish papers on the corresponding
subject. We assume credits are given to those pioneering indivi-
duals such that their prestige increases and their work get fre-
quently cited by others. When a subject or research field is being
explored by many individuals, many problems get solved; there-
fore the novelty or interest in this particular research field starts
to wear out, and this is portrayed by the depletion of resources
within a patch in our model. Subjects or research fields form a
network where similar ones are being linked together. The
solitary-type actors are those individuals who navigate on their
own and write papers on similar subjects. In contrast, modern
academic research has emphasized the importance of inter-
disciplinary collaboration in advancing science where people
from different disciplines are brought together to work on new
research topics other than their original fields of interests (Katz
and Martin, 1997); and this is similar to social-type actors using
their social ties to acquire resources. For instance, a field ecologist
is well trained in conducting surveying experiments to quantify
the observed species richness in the wild. However, with little
knowledge on statistics, he is unlikely to take one step further in
predicting or inferring the real number of species. If the knowl-
edge required to solve the ecologist’s problem is closely related to
his current knowledge, then he can easily learn it by himself (i.e.,
by exploiting patches neighboring his current patch). However, if
the knowledge required is beyond the ecologist’s reach, then he
might spend more effort to learn it (i.e., by navigating through the
patch network to exploit distant patches). The field ecologist can
certainly devote time to learn statistics, but due to reasons such as
shortage of time or limits in his learning capacity, he might be
better off to seek helps from elsewhere. If he has a friend who is a
statistician, then he can ask for help from such a friend. This
statistician friend may apply his current knowledge to help the
ecologist (i.e., exploiting the statistician’s current patch), or uses
his current knowledge to develop new methodology to solve the
ecologist’s research problem (i.e., exploring the patches neigh-
boring the statistician’s current patch).

We note that there exist a huge amount of theoretical works on
how sociality might arise and the majority of this can be found in
behavior ecology under the broad framework of social foraging
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theory (Giraldeau and Caraco, 2000). Generally, evolutionary
game theory approach is employed to investigate how sociality
emerges while individuals of different strategies compete for
resources in order to sustain their physiological need for survival.
The theory covers topics such as the condition favoring group
foraging (Clark and Mangel, 1986), the outcome of producer-
scrounger game (Vickery et al., 1991; Ohtsuka and Toquenaga,
2009; Afshar and Giraldeau, 2014), behavior in resource-patch
exploitation (Pyke, 1984), and social learning (Rendell et al., 2011;
Nakahashi et al., 2012; Hoppitt and Laland, 2013). Many of those
theoretical works investigate how different strategies can be
beneficial under different assumptions about the underlying
ecological processes; these include how resources are shared or
partitioned between individuals, how resources are distributed
among patches, accessibility to resource patches, different ways of
patch exploitation for resource and environmental hetero-
geneities. Our model here conceptually is similar to models of
produce-scrounger games and social learning as we assume
social-type individuals use information from some others to
acquire resources; but it differs from them in that such infor-
mation is limited by the range of one’s social network. Further-
more, existing works rarely consider the relationship between
resource patches; and here we model resource patches as a net-
work explicitly and investigate how different network structure
can affect the outcome of two competing strategies. In other
words, our modeling framework simulates two learning processes,
one solitary and one social, on a network of skills or knowledge;
and investigate which one is favored under different level of skill
or knowledge diversification. We next present our simple
simulation model.

Methods
Simulation model. Our simulation model assumes that there are
M patches that each contains Q resources and that there are N
actors. X is a square matrix of dimension M by M, which
represents the network of patches in the model. In this matrix,

elements xij and xji equal one if patches i and j are connected. Y is
a square matrix of dimension N by N, and it represents the social
network of actors in the model. Elements yij and yji equal one if
actors i and j are connected. Here, we assume there are two types
of actors. First is the solitary type (Fig. 1); an actor of this type
looks for resources by moving from his current patch to one of
the neighboring patches chosen at random. The second is the
social type (Fig. 2), and an actor of this type normally behaves like
the solitary type, but there is a probability p that this actor will
seek new resources by making and utilizing social ties.

A single simulation experiment of the model consists of several
consecutive generations, each of which has a generation time of T
time steps; and a simulation experiment is then terminated if the
entire population consists of actors of the same behavior type (i.e.,
either solitary type or social type). At the start of each simulation
experiment—more precisely, at the beginning of first generation
—we assume that the probability of an actor belonging to the
social type is qinitial= 0.1. Specifically, for each of the N actors, we
draw a random number between 0 and 1; if it is smaller than
qinitial, then this actor is of the social type, otherwise he belongs to
the solitary type. Thus on average, 90% of the actors are of the
solitary type and 10% are of the social type. For each generation,
the model specifies the following procedures.

1. Construct the patch network with link density D (see Patch
network section for more detail), and place Q resources in
each patch.

2. Construct the actors’ social network without any social ties
(i.e., an empty graph).

3. Set time t= 0.
4. For each time step t, select an actor uniformly at random. If

the selected actor is of the solitary type, then carry out
procedure 4.1; otherwise, carry out procedure 4.2 (meaning
this actor is of the social type).

4.1 If the selected actor is not assigned to any patch, then
one patch is chosen uniformly at random; let this be his

Fig. 1 A schematic diagram showing the behavior of a solitary-type actor in the resource patch network. The nodes and links represent the resource
patch network. Filled circles are patches with resources whereas open circles are patches with no resources. Here the actor (shown as red) travels freely in
the resource patch network and takes resources when he encounters them.
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starting patch. If the selected actor is already at one
patch, then he chooses uniformly at random one of
patches from his neighborhood and moves to there. In
our model, an actor’s neighborhood consists of his
current patch and those patches connected to it. After
the actor has moved to the chosen patch, he takes away
one resource from this patch if there are still resources
available; if so, then the number of resources in this
patch is decreased by one. Next, go to procedure 5.

4.2 Draw a random number between 0 and 1. If it is smaller
than p, then carry out the procedure outlined in this sub-
section (i.e., acting like a social actor); otherwise, go to
sub-section 4.1 (i.e., acting like a solitary actor). Here,
the actor i chooses another actor j randomly with a
weight inversely proportional to their distance in the
social network:

Pr jð Þ ¼ 1=d i; jð Þ
∑N

k¼1;i<>k 1=d i; kð Þ ð1Þ

where d is the length of the shortest path between two actors in
social network Y. If no such shortest path exists (i.e., i and j are not
reachable from one another), then we assume that they are separated
by the theoretical maximum path length of a network with N nodes
and then add one to this length (i.e., N− 1+ 1=N). Once a target
actor j is chosen by actor i, a link is added between actors i and j if
no such link existed before (i.e., setting yij= yji= 1). Next, actor j
then picks randomly one patch from his neighborhood and peeks
into it. If there are resources available in the chosen patch, then actor
i is allowed to take one resource and share it with actor j; and the
number of resources in the chosen patch is decreased by one. This is
akin to actor j learning a new skill or knowledge similar to his
current one in order to help actor i to acquire a resource.
Furthermore, we assume actor i shares the acquired resource with
actor j as follows: a proportion S of the acquired resource goes to

actor i, and the remaining proportion 1− S goes to actor j. Next, go
to procedure 5.
5. Set time t= t+ 1 (i.e., next time step) and repeat

procedures 4 and 5 until t= generation time T.
6. At the end of each generation, we count how many

resources each actor has accumulated. We then sum up the
number of resources from actors of the solitary type
and let it be rsolitary, and do the same for actors of the
social type and let this number be rsocial. The proportion
q= rsocial /(rsolitary+ rsocial) is then calculated and it is
the probability of one actor belonging to the social type in
the next generation. All actors are then removed from the
system, and a new set of N actors enters the system as actors

Fig. 3 The effect of changing parameter D on the resource patch network.
The simplest resource patch network assumed in the mode is a ring. As D
increases, a patch is then connected to the next closest neighboring
patches that were not connected before. With D= 1, the resource patch
network is a complete graph where all patches are connected with
each other.

Fig. 2 A schematic diagram showing the behavior of a social-type actor.
The resource patch network is represented by the black nodes and solid black
lines. Filled black circles are patches with resources and open circles are empty
patches. Red, yellow, blue and green nodes are individual actors and the
dashed lines represent their social ties. Here, the red actor is allowed to use his
social ties for collecting resources, and by chance he uses the tie connected to
the green actor. The red actor then randomly picks a patch near the green
actor (one of the nodes circled in red) and takes away a resource if it exists.
Note that an actor immediately takes away a resource once he occupies a
patch; therefore in the figure, the patches occupied by red, yellow, blue, and
green actors have no resources left.
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for the next generation. For each of these new actors, a
random number between 0 and 1 is drawn. If it is lower
than q, then he is of the social type; otherwise, he is of the
solitary type. If the number of resources associated with a
particular behavior type is regarded as a measure of its
success, then this is equivalent to the notion that an actor is
more likely to adopt the more successful behavior.

Procedures 1 to 6 are repeated until all actors belong to the
same behavior type (i.e., either solitary type or social type).
Furthermore, if q= 1 at the end of one simulation experiment,
then all actors in the system are of the social type; we define this
as the “fixation of the social-type strategy”. In other words, the
social-type strategy outcompetes the solitary-type strategy.
However, if q= 0 at the end of one simulation experiment, then

all actors in the system are of the solitary type; thus, the solitary-
type strategy outcompetes the social-type strategy. Note that
throughout one simulation experiment, the structure of the patch
network does not change, whereas the structure of the actors’
social network can change from time to time (i.e., in fact it is a
random network). The patch network and the actors’ social
network are only related in the sense that the former servers as a
road map for actors to navigate, otherwise those two networks are
formed independent of each other. Program codes written in
Delphi (or Pascal) for simulating the model are provided as
supplementary information, in a file named CodesForModelSi-
mulation.txt.

In this study, we are interested in how parameters p, T, and D
can affect the outcome of the simulation model. Thus, for each

Fig. 4 The outcome of competition between the solitary-type strategy and the social-type strategy in the T-p parameter space for various values of D.
The non-black squares indicate that social-type strategy outcompetes the solitary-type strategy more frequently than what is expected by random chance
(i.e., when the simulation model is compared with the null model), with the brightness indicating the statistical significance of the result. A black square
indicates that the frequency of the social-type strategy outcompeting the solitary-type strategy is not significantly different from what is expected by
random chance at the 5% significance level. Values for other parameters are: M= 1000, N= 20, Q= 1, S= 1, E= 5000.
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combination of parameter values of p, T, and D, we perform the
simulation experiment E times. From those simulation experi-
ments, we then count how many of those resulting in the “fixation
of the social-type strategy” and let this number be s.

Patch network. One important aspect of this study is to inves-
tigate how the relationship between various resources (via the
patch network) can affect the emergence of social ties. If a patch
network has a ring structure, then it implies that a resource in a
particular patch is more closely related to those in nearby patches
but less so to those in more distant patches. A real-life analogy of
this is again from academic research, where a patch can represent
a specific subject, such as “linear algebra” or “social capital”, and a
resource within a patch can represent a “credit” given to an

individual who publishes a paper on that corresponding academic
subject. The deleting naturel of resources resembles the loss of
novelty when many papers have being published on the same
subject. Our intuition suggests that scientific subjects should more
or less have a local network structure; for instance, the subject
“gene expression” should relate more to the subject “DNA
sequencing” than to subjects such as “social economics”. There-
fore, an actor, or an academic researcher in this case, tends to
know more about closely related subjects than unrelated subjects
due to the local structure of the knowledge domain network. On
the contrary, if a patch network is highly connected, as in a
complete graph, then it will result in each resource being related
to many other resources. Returning to the real-life analogy of
academic research, the knowledge network for one specific dis-
cipline such as “ecology” might be highly connected. For instance,

Fig. 5 The outcome of competition between the solitary-type strategy and the social-type strategy in the T-p parameter space for various values of D.
The non-black squares indicate that solitary-type strategy outcompetes the social-type strategy more frequently than what is expected by random chance
(i.e., when the simulation model is compared with the null model), with the brightness indicating the statistical significance of the result. A black square
indicates that the frequency of the solitary-type strategy outcompeting the social-type strategy is not significantly different from what is expected by
random chance at the 5% significance level. Values for other parameters are: M= 1000, N= 20, Q= 1, S= 1, E= 5000.

ARTICLE HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-021-00753-6

6 HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |            (2021) 8:78 | https://doi.org/10.1057/s41599-021-00753-6



topics such as “food webs” tend to be studied in conjunction with
topics such as “predator–prey interaction” and “exploitive com-
petition”. Thus, an ecologist who works on “predator–prey
interaction” should share some interest in “food webs” with
another ecologist who works on “exploitive competition”; this will
potentially spark some sort of competition between those ecolo-
gists if they are to be the first to write a novel paper on “food
webs”. In a nutshell, a ring has a localized network structure and
resources embedded in such a network structure are in general
dissimilar from each other, whereas a complete graph would
imply all resources are similar with each other. In other words, a

ring-like network structure implies high diversification among the
resource patches, and a complete graph implies low diversifica-
tion. Furthermore, our model allows for the random movement
of actors within the patch network. Therefore, a ring structure
implies a less competitive setting where actors are unlikely to
encounter each other, whereas a complete graph implies a more
competitive setting where actors are more likely to visit patches
that others have visited before.

Here, we describe in detail how a patch network with a link
density D is constructed. D is the value obtained when one divides
the observed number of links by the maximum number of links in

Fig. 6 The effect of the number of patches M on model behavior. Explanation of the figure is exactly the same as in Fig. 4. In general, more non-black
squares appear as M increases, implying social behavior is favored. Values for other parameters are: D= 0.002, N= 20, Q= 1, S= 1, E= 5000.
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the network, (LM/2)/((M2−M)/2), where L is the number of
links each patch has. We should start by using a patch network
with a ring structure, where each patch has exactly two links, each
of which connects to one of its closest neighbors. We then
progressively increase D such that each patch now gets exactly the
same number of extra links. To keep a ring-like network structure
while progressively diminishing the structure at the local level, for
each patch we then connect each of its extra links to one of its
closest unconnected neighbors. The maximum value D can take is
1, implying that the patch network is now a complete graph and
that all resources are now connected with each other. Figure 3
summarizes the effect of changing D on the structure of the patch
network. Note that we use the terms “resource network” and
“patch network” interchangeably. Also note that for each
simulation experiment, the structure of the underling patch
network remains the same for all generations (i.e., the same value
of D for all generations).

Testing the statistical significance of the model results. To
ascertain that the result of the simulation model is truly due to
what is assumed in the model, not just by random chance, we also
need to construct a null model for comparison purposes (i.e., like
hypothesis testing in statistics). A null model here is exactly the
same as the simulation model, except the actors of the social type
now adopt the same behavior as their solitary counterparts (or
simply set p= 0). For simplicity and convenience, we add a
superscript “Null” to each of the abovementioned statistics to
distinguish the null model from our simulation model. As with
the simulation model, we can also perform the simulation
experiment with the null model E times, count how many of them
end up with the “fixation of the social-type strategy”, and
determine sNull accordingly. If we repeat the entire process F
times, then there will be F-values of sNull forming a null dis-
tribution. In fact, sNull follows a binomial distribution, with the
number of trials and the probability of a successful trial equal to E

Fig. 7 The effect of the number of patches M on model behavior. Explanation of the figure is exactly the same as in Fig. 5. In general, more non-black
squares appear as M decreases, implying solitary behavior is favored. Values for other parameters are: D= 0.002, N= 20, Q= 1, S= 1, E= 5000.
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and qinitial, respectively (i.e., the fixation of the social-type strategy
is the outcome of a successful trial). From this null distribution,
we can then calculate α, the probability of observing an sNull that
is greater than s under the null model, and define this as the p-
value to test whether the social-type strategy does indeed out-
perform its solitary counterpart with any statistical significance.
Here, a cutoff value of 0.05 is chosen, just as one would do in
hypothesis testing. Furthermore, in the cases where the social-
type strategy does not outperform the solitary-type strategy, it is
of interest to know whether the former is being significantly
outperformed by the latter. To this end, we also need to test, for
the same model parameter combination, whether the solitary-
type strategy outperforms the social-type strategy with any sta-
tistical significance or not. Similarly, we can calculate the quantity
β, the probability of observing an sNull that is smaller than s under
the null model; this probability can then be considered the p-
value for testing whether the solitary-type strategy significantly

outperforms the social-type strategy. Again, a cutoff value of 0.05
is used here.

Results
We explore the behavior of the simulation model in the T-p
parameter space for various values of D in two ways. First, for one
particular parameter combination, we test whether the social-type
strategy can outcompete the solitary-type strategy with any sta-
tistical significance. Second, with the same parameter combina-
tion, we also test whether the solitary-type strategy can
outperform the social-type strategy with any statistical sig-
nificance. These two pieces of information are complementary to
each other, as this allows us to see if one strategy does not out-
perform the other, whether this is because the latter outperforms
the former or not. We summarize these results in Figs. 4 and 5.
Each sub-figure in Fig. 4 is an array of squares, with each square

Fig. 8 The effect of the number of actor N on model behavior. Explanation of the figure is exactly the same as in Fig. 4. In general, more non-black squares
appear as N decreases, implying social behavior is favored. Values for other parameters are: D= 0.002, M= 1000, Q= 1, S= 1, E= 5000.
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representing a specific combination of parameter values. A square
with a brighter color scheme indicates the social-type strategy is
more likely to outcompete the solitary-type strategy under this
parameter combination; a black square implies that the social-
type strategy does not outcompete the solitary-type strategy with
any statistical significance. As D increases, or when the patch
network (or resource network) shifts from a more localized
structure to a complete graph, the social-type strategy becomes
less likely to outcompete its solitary counterpart. Intuitively, we
would expect actors who acquire resources using their social ties
tend to have a greater advantage in all circumstances because they
can access resources located in different parts of the patch net-
work. However, our results do not verify this expectation when
the patch network is densely connected. This is because in a
densely connected patch network actors with a solitary-type
strategy can move to patches that they have not visited before
relatively quicker than they would in a more localized patch
network. Consequently, such actors will also accumulate

resources relatively quickly. In contrast, actors with a social-type
strategy waste time making social contacts while resources are
quickly taken up by their solitary counterparts.

What is even worse is that the social-type strategy seems to be
detrimental to its bearers when the patch network is densely
connected. We can observe this effect in Fig. 5, where each
brightly colored square now indicates the solitary-type strategy is
more likely to outcompete the social-type strategy. As the density
of patch network increases, the number of brightly colored
squares also increases in the T-p parameter space. Even with a
highly localized patch network, the social-type strategy is not
always the winning strategy. In fact, social-type strategies with
large values of p (ranging from 1 to 0.7) are detrimental to their
bearers; this can be observed by the lack of bright squares in the
bottom part of each sub-figure in Fig. 4 and the presence of bright
squares in the bottom part of the sub-figures in Fig. 5. This
finding suggests that actors who rely solely on social ties to
acquire resources are competitively inferior to solitary actors.

Fig. 9 The effect of the number of actors N on model behavior. Explanation of the figure is exactly the same as in Fig. 5. In general, more non-black
squares appear as N increases, implying solitary behavior is favored. Values for other parameters are: D= 0.002, M= 1000, Q= 1, S= 1, E= 5000.
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One last notable result from the simulation model is that the
social-type strategy seems to be more successful than the solitary
ones only when the generation time T is long. This can be
observed by noting the presence of bright squares on the right
portion of top sub-figures in Fig. 4. Furthermore, when genera-
tion time T is short, the social-type strategy even becomes more
detrimental to its bearers; this can be observed in all sub-figures
of Fig. 5, where bright squares occupy the bottom-left part of each
sub-figure. Thus, the solitary-type strategy tends to be more
advantageous and, therefore, prevalent strategy for actors in
future generations when competition for limiting resources
occurs in a very short timeframe.

We also investigated the effect of system size, namely the
number of patches and the number of actors, on the behavior of
our simulation model. Social behavior is favored in the expanse of
solitary behavior when the number of patches increases from as
few as 100 to a larger number of 1000 (Figs. 6 and 7). In a large

resource patch network, an actor is not likely to visit places that
have being visited before by others, but he still can visit patches
exploited by him previously. An actor of the social type not only
can acquire resources from places he has visited just like all others
have done, but he also gains resources from other actors by uti-
lizing his social ties. Therefore, a social type actor can acquire
resources via his social ties before exhausting resources from
near-by patches. This in effect renders an actor of the social type
an advantage over an actor of the solitary type. In contrast,
increasing the number of actors in the system has the opposite
effect as solitary behavior is now more advantageous than social
behavior (Figs. 8 and 9). This is because increasing the number of
actors results in a more crowded system where competition for
resources is severe, and many patches being exploited for
resources. An actor of the social type not only has difficulties in
acquiring resources via his social tie, he also risks his near-by
patches being exhausted of resource by other actors. Therefore,

Fig. 10 The effect of the number of resources Q within a patch on model behavior. Explanation of the figure is exactly the same as in Fig. 4. In general,
more non-black squares appear as Q decreases, implying social behavior is favored. Values for other parameters are: D= 0.002, M= 1000, Q= 1, S= 1,
E= 5000.
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social-type strategy might not be as effective as its solitary
counterpart in terms of acquiring resources in those
circumstances.

Furthermore, we investigated the effect of Q, the number of
resources within a patch, on the behavior of our model (Figs. 10
and 11). Solitary behavior is favored in the expanse of social
behavior when Q increases. In other words, social behavior is only
advantageous when resources are not abundant. This is because
when resources are scarce, one might exhaust his neighborhood
of resources; and using social ties to acquire resources can be
advantageous here as such individual can have access to resources
in other parts of the patch network. We also investigated
the effect of S, the proportion of a shared resource that goes to the
actor who utilizes his social tie for resource acquisition, on the
behavior of our model. Our result shows that as S decreases from
one, social behavior becomes more disadvantageous (Figs. 12 and
13). This suggests that social behavior is only viable if the actor

who utilizes social ties has a majority share of the acquired
resource. Moreover, we also investigated the effect of initial
condition, namely qinitial, on the outcome of our simulation
model; and it appears that our model result is robust against
different values of qinitial used (Figs. 14 and 15).

Finally, we also investigated how the social network changes
when we vary the structure of the patch network. For various
values of D, we simulated the models to determine the best value
of p such that the social-type strategy can outperform the solitary-
type strategy; we then simulated the model with this particular
value of p several times, and determined the average number of
social ties an actor has, the number of social groups, and the size
of the largest social group in the end of each simulation. Note that
a social group here refers to a group of actors where group
members can reach each other via direct or indirect social ties.
Figure 16 shows that as the structure of the patch network
becomes more localized (i.e., D decreases), the average number of

Fig. 11 The effect of the number of resources Q within a patch on model behavior. Explanation of the figure is exactly the same as in Fig. 5. In general,
more non-black squares appear as Q increases, implying solitary behavior is favored. Values for other parameters are: D= 0.002, M= 1000, Q= 1, S= 1,
E= 5000.
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social ties an actor has also increases, but this reaches a stable
limit. When the patch network is a complete graph or has a non-
localized structure (i.e., a large D), the number of social groups
equals to the number of actors in the simulation (i.e., all actors are
isolated individuals). As the structure of the patch network
becomes more localized, the number of social groups also
decreases; and it doesn’t take long until a single large social
network emerges connecting all actors. As for the size of the
largest social group, we can see form Fig. 16 that its transition is
the same as that for the number of social groups: at first, for large
values of D, the social network consists of isolate actors, thus the
size of the largest social group is one; but as D decreases, it then
starts to increases and very quickly attains the maximum possible
value (i.e., the number of actors in the simulation). To sum-
marize, the transition of average number of social ties an actor
has occurs in a wider range of D; whereas the transition for the
number of social groups and the size of the largest social group
occurs for a narrower range of D.

Discussion and conclusion
Human is a highly cultural species (Boyd et al., 2011; Hill et al.,
2011), and in this paper we ask whether the diversification of
human skills or knowledge can be a potential process that drives
the emergence of social relation between individuals. Social
relation is a very general term and here we focus on social ties as
channels through which an individual can acquire resources from
his acquaintances. One clear pattern has emerged from the ana-
lysis and simulation of our simple model. Social ties are only
feasible and viable when resources are distributed in a highly
localized patch network (i.e., a situation where human skills or
knowledge are highly diversified). When a resource patch net-
work becomes highly connected (i.e., a less diversified set of
human skills or knowledge), it then tends to favor solitary
behavior. Furthermore, once social behavior is selected for in the
expense of solitary behavior, social ties start to emerge and
connect actors forming a social network. Slightly unexpected,
although social behavior tend to be favored in highly localized

Fig. 12 The effect of the sharing parameter S on model behavior. Explanation of the figure is exactly the same as in Fig. 4. In general, more non-black
squares appear as S decreases, implying social behavior is favored. Values for other parameters are: D= 0.002, M= 1000, Q= 1, S= 1, E= 5000.
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patch network, our simulation model shows that actors who rely
solely on social ties to acquire resources are in fact competitively
inferior to those who adopt solitary behavior.

Our simple model conceptually shares some similarity with
producer-scrounger models. In those models, scroungers take
advantage of producers’ searching effort and acquire resources
found by producers. A social-type actor in our model in a sense
behaves like a scrounger as he uses social ties to acquire resources
from the vicinity of others. In general, producer-scrounger
models predict that large variation in resource quality among
patches (Afshar and Giraldeau, 2014) and aggregation of
resources (Vickery et al., 1991; Ohtsuka and Toquenaga, 2009)
should favor the frequency of scroungers. This implies that het-
erogeneities in resource distribution or resource accessibility
should favor scrounger behavior. As for our simple model, it
predicts that social-type actors are favored when the resource
patch network is sparsely connected. The consequence of a

sparsely connected network is that actors cannot move freely to
most patches in the network; and social-type actors have an
advantage over solitary ones in that the former can utilize social
ties (or social network to be more precise) to reach resources that
are unlikely to be encountered by random search. Thus, this also
translates to a setting of how changes in resource accessibility can
promotes social behavior.

Our simple model also has concepts similar to social learning
models. Past literature distinguishes two types of learning behavior
(Boyd and Richerson, 1985; Laland et al., 1993; Henrich, 2016).
One is individual learning where individuals spend time and effort
to learn or acquire resources in a trial-and-error manner. The
other is social learning where individuals benefit from information
gathered from others such that they learn more efficiently or
collect better resources. In general, social learning is likely to
evolve under non-fluctuating environment or low resource turn-
over rate (Feldman et al., 1996; Wakano and Aoki, 2006; Smolla

Fig. 13 The effect of the sharing parameter S on model behavior. Explanation of the figure is exactly the same as in Fig. 5. In general, more non-black
squares appear as S increases, implying solitary behavior is favored. Values for other parameters are: D= 0.002, M= 1000, Q= 1, S= 1, E= 5000.
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et al., 2015) and when competition for resources is weak (Smolla
et al., 2015; Lee et al., 2016). Our simple model also demonstrates
similar outcomes. First, our simulation model assumes that after
each generation the resource patch network is reset and all indi-
viduals are removed from the system before the addition of the
new generation. A long generation time T in a sense implies a low
turnover rate of the resource patch network and a more stable
environment, and our result shows this condition favors the
social-type actor. Second, our simulation model shows that social-
type actors are favored when the resource patch network is not
well connected. The consequence of a highly connected resource
patch network is that individuals are free to move within the
network and, therefore, they are more likely to visit patches that
have already been visited by others. In a sense, a highly connected
resource patch network implies a stronger competitive setting than
a localized network does. Thus, our simulation model shows that
social-type actors are favored when competition for resources
is weak.

Our work here also has some relevance to the social brain
hypothesis. One characteristic that makes humans and primates
so different from other species is their large brain size to body size
ratio (Jerison, 1973; Dunbar, 1998). Neuron materials required
for brain development are believed to be costly (Aiello and
Wheeler, 1995; Kaufman, 2003), and a variety of studies have
suggested reasons for why humans and primates evolve to have
such high costs (Clutton-Brock and Harvey, 1980; Gibson, 1986;
Brothers, 1990; Dunbar, 1998; Reader and Laland, 2002; Lefebvre
et al., 2004; Dunbar, 2011). One of those, the social brain
hypothesis, suggests that the large brains of primates and humans
enable them to become aware, track, or understand the complex
social relationships surrounding them (Brothers, 1990; Dunbar,
1998; Dunbar, 2011); and it argues that the emergence of complex
cognitive ability requires some processes or ecological conditions
that favor the emergence of complex social behaviors. Here, in
our work, we have shown that the emergence of social ties and
social groups is related to the diversification of skills or

Fig. 14 The effect of different initial conditions, qinitial, on model behavior. Explanation of the figure is exactly the same as in Fig. 4. Values for other
parameters are: D= 0.002, M= 1000, N= 20, Q= 1, S= 1, E= 5000.
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knowledge; and we speculate this could be a potential ecological
condition for the emergence of complex social behavior as
required in social brain hypothesis. One prediction from social
brain hypothesis is the positive relationship between brain size
and the size of the social circle of a species (Dunbar, 1992, 2014);
and extrapolating data from primates has shown that a person
should have around 150 acquaintances. Our model demonstrates
the number of one’s social ties (i.e., the size of his social circle)
and the emergence of large social groups also relate positively
with the diversification of skills and knowledge. Thus, one
potential direction of research using our simulation model is to
predict the size of social circle for various primate species as well
as human’s. However, parameterizing our model, especially how
to represent skills and knowledge in a network form for various
species, is not an easy issue and, therefore, warrants further
research.

Our work here is also relevant to theories from sociology. In a
broad sense, social exchange theory hypothesizes that relationship is

likely to form between two individuals if they each has goods
(tangible or intangible) that the other person values (Homans, 1958;
Emerson, 1976). This implies a case of dissimilarity in resources
possessed by two individuals, and social interaction in the form of
exchange between them is likely to occur. Our simulation model also
exhibits similar outcomes in that social ties, as instrumental tools for
acquiring resources, is more likely to emerge if resources are dis-
similar. Moreover, in a setting where a society is highly (or hier-
atically) structured, social resource theory (Lin, 2001) and weak tie
hypothesis (Granovetter, 1973) have emphasized the benefit of using
social ties when an individual attempts to reach out to acquire
valuable resources or information that are embedded in different
locations of a society. This echoes our finding that social behavior
tends to be more advantageous than solitary behavior in a more
localized resource patch network.

Although our model is formulated to investigate theoretically how
diversification of skills and knowledge can affect the emergence of
social ties, it may correspond loosely to other contexts. One real-life

Fig. 15 The effect of different initial conditions, qinitial, on model behavior. Explanation of the figure is exactly the same as in Fig. 5. Values for other
parameters are: D= 0.002, M= 1000, N= 20, Q= 1, S= 1, E= 5000.

ARTICLE HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-021-00753-6

16 HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |            (2021) 8:78 | https://doi.org/10.1057/s41599-021-00753-6



example is from industrial sector where a particular technology or
invention resembles a patch, and the associated patent is the
resource. Here, different technologies or inventions form a network,
and a link exists between two if one piece of technology or invention
build on from the other. A solitary-type actor is a company or
inventor who relies on his own ability to produce similar technol-
ogies or inventions; whereas a social-type actor seeks for colla-
boration from others such that he can produce products of various
types. Another example is from a setting where business companies
competing for customers. Here, companies and customers can
respectively be actors and patches in our model. In this setting,
customers form a network, and a link exists between two customers
if they are related in some way (i.e., as family members, friends, or
members of the same demographic group). A company with
solitary-type strategy tends to exploit and sell products to similar
customers; whereas a company with social-type strategy can form
alliance with other companies and reach out to customers in dif-
ferent parts of a society.

Finally, we would like to conclude with some remarks on the
limitation of our work and possible future directions in extending
our model. Firstly, our model assumes that when a social-type
actor utilizes his social ties to acquire resources, none of his
friends or acquaintances can acquire those resources. This
assumption might be appropriate in academic research as it is
often the one who initiates or conceives the research ideas (and
hence collaboration) get to be the first author, and therefore
taking the credit of publishing a paper. However, this is not
always the case. Thus, one possible extension of our model is to
allow more than one resources in each patch, and devise some
rule that partitions those resources between a social-type actor
and his friends. Secondly, the social networks constructed in our
model are in fact random networks. A fruitful research direction
is to include the features of real social networks such as closed
triads in the construction of social networks in our model. Third,
in our model, skills and knowledge are modeled as patch net-
works with very simple structure. One challenge here will be to

Fig. 16 Box plots showing changes in the actors’ social network for various values of D. Values for other parameters are: N= 50, M= 4000, G= 100,
E= 1000, T= 2000. For each combination of parameter values, the model was simulated 100 times.
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construct from real data the evolution of human skills and
knowledge, and incorporate those into our model. Lastly, our
model assumes that an actor is either of the solitary type or the
social-type, and remains the same throughout his life time. In
reality, people change behavior by gauging information from
others. Thus, one important direction in extending our model is
to allow mutation in actors’ behavior, and investigate how this
affects the evolution of social ties.

Data availability
All data generated or analyzed during this study are from
simulations of our model, and the programe codes for our model
is included in this published article.
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