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Tonality is one of the most central theoretical concepts for the analysis of Western classical
music. This study presents a novel approach for the study of its historical development,
exploring in particular the concept of mode. Based on a large dataset of approximately 13,000
musical pieces in MIDI format, we present two models to infer both the number and char-
acteristics of modes of different historical periods from first principles: a geometric model of
modes as clusters of musical pieces in a non-Euclidean space, and a cognitively plausible
Bayesian model of modes as Dirichlet distributions. We use the geometric model to deter-
mine the optimal number of modes for five historical epochs via unsupervised learning and
apply the probabilistic model to infer the characteristics of the modes. Our results show that
the inference of four modes is most plausible in the Renaissance, that two
modes-corresponding to major and minor-are most appropriate in the Baroque and Classical
eras, whereas no clear separation into distinct modes is found for the 19th century.
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Introduction
s a cultural, historical, cognitive, and formal system, music
is subject to a number of forces that have shaped its
evolution over time. In the Western tradition, music from
the 17th, 18th, and 19th centuries sounds characteristically dif-
ferent. One main aspect of that difference, apart from the
development of performance and instrumentation, is character-
ized by the music-theoretical system of tonality. Based on his-
torical reasoning, music theorists have proposed accounts of the
process by which Western tonality emerged, stabilized, extended,
and eventually destabilized over the course of its history (Aldwell
and Schachter, 2003; Dahlhaus, 1968; Fetis, 1844; Kostka and
Payne, 2013; Rameau, 1722; Riemann, 1893; Schoenberg, 1969).
For instance, Fetis (1844) describes the history of tonality as a
succession of stages that are determined by significant changes in
the relation of notes to each other. For example, he locates the
transition from the tonalité ancienne to the tonalité
moderne-roughly the transition from the Renaissance to the
Baroque-in a specific bar in Claudio Monteverdi’s motet Cruda
amarilli. There, Monteverdi writes an unprepared dominant
seventh chord, which would have been regarded as false by
Renaissance composers. Since then, Fétis’s claim and the parti-
cular musical example have been the subject of musicological
debate (Chafe, 1992; Dahlhaus, 1968; Long, 2020; McClary, 1976).
In recent years, the emerging field of musical corpus studies
has turned to these questions from a new angle. By analyzing
large datasets of digital encodings of musical pieces with com-
putational and statistical methods, researchers aim at bridging the
gap between qualitative-historical and quantitative-empirical
paradigms (Neuwirth and Rohrmeier, 2016) and develop novel
ways to study the old questions mentioned above (see Section
“Related empirical research”). This paper participates in this
endeavor by using computational modeling for a data-driven
analysis of historical changes in tonality and focuses on a parti-
cular aspect: the historical development of modes in Western
classical music.

Related empirical research. Although definitions and models
vary (Dahlhaus et al., 2001; Hyer, 2001; Lerdahl, 2001; Moss et al.,
2019; Tymoczko, 2006), characterizations of tonality share (at
least) some reference to the pitch level. For instance, a large
number of previous empirical studies is based on a pitch-
distribution model of tonality (e.g., Huron, 2006; Knopoff and
Hutchinson, 1983; Krumhansl, 1990; Meyer, 1957; Snyder, 1990;
Youngblood, 1958). Psychological and neuroscientific research
often concentrates on the acquisition and mental representation
of musical knowledge of pitch-class distributions (Bharucha and
Krumbhansl, 1983; Butler and Brown, 1994; Huron and Parncutt,
1993; Janata et al., 2002; Koelsch et al., 2013; Krumhansl, 1990;
Krumhansl and Kessler, 1982; Large et al., 2016; Pearce and
Rohrmeier, 2012; Tillmann et al., 2000, 2008; Zatorre and Sal-
impoor, 2013). Computational music-theoretical approaches aim
at uncovering structures in the music itself by employing statis-
tical methods to study distributions of pitch classes in musical
corpora (Lieck et al., 2020; Moss, 2019; Parncutt, 2015; Savage
et al., 2015; Temperley, 2009; White, 2013). The results of corpus-
based research on tonality exhibit high similarities to the psy-
chological findings (Huron, 2006; Krumhansl, 1990; Krumhansl
and Cuddy, 2010): distributions of notes in musical corpora
strongly resemble the patterns of mental representations and
expectancy in behavioral experiments such as probe-tone studies
(Krumhansl, 2004; Krumhansl and Kessler, 1982; Temperley and
Marvin, 2008). Accordingly, it is assumed that implicit learning of
statistical regularities in pitch distributions is a central factor for
the cognition of tonality (Pearce, 2018; Rohrmeier and Cross,
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2009; Rohrmeier and Rebuschat, 2012; Tillmann, 2005; Tillmann
et al., 2000).

There are a number of previous empirical studies that
investigate diachronic developments of tonality in Western
classical music based on the statistics of pitch-class distributions.
Rodrigues Zivic et al. (2013) study distributions of note bigrams
(melodic intervals) in a large corpus of short melodies (Viro,
2011) and are able to distinguish four periods of music history
based on the usage of these intervals in musical pieces. Several
recent studies, as well as the present article use the music
collection from the ClassicalArchives internet database (see
Section “Data”). White and Quinn (2016) extracted a dataset of
time slices of simultaneously sounding notes of approximately
13,800 pieces and report a diachronically increasing ratio of
dominant-seventh chords to dominant triads. This finding is
related to Dahlhaus’s (1968) assessment of the importance of
dominant-seventh chords for the beginning of harmonic tonality,
although the precise nature of this relation requires further
investigation. A sub-sample of 33 composers from the time-slice
dataset is used by Yust (2019) to study historical changes in pitch-
class distributions using the discrete Fourier transform. His
findings indicate that during the 18th and 19th centuries
composers begin to explore modulations to more distantly-
related keys, leading to a decrease in what he calls “diatonicity”. A
similar finding is reported by Moss (2019) who shows that the
tonal material used by Western classical composers expands
historically, enabling them to write more chromatic and
enharmonic compositions in the 18th and 19th centuries. Using
approximately 24,000 pieces from ClassicalArchives, Huang et al.
(2017) predict the composer of a musical piece based on the
interval statistics of the pieces. Moreover, their clustering analysis
shows that three groups of composers emerge which roughly
correspond to three historical musical epochs. Weifd et al. (2019)
use a dataset of 2000 audio recordings from which they
computationally extract several features related to musical pitch
in order to study a range of music historical questions. Their
findings indicate a historical shift in the directionality of chord
transitions (see also Moss et al., 2019; Rohrmeier and Cross,
2008), an increase in dissonant intervals, as well as an overall
increase in tonal complexity.

Few studies focus exclusively on modes in Western classical
music. A characterization of eight modes in medieval music is
given by Huron and Veltman (2006), albeit only on the basis of a
relatively small sample of 98 Gregorian chants. This work was
recently enlarged by Cornelissen et al. (2020) who introduce and
compare several mode classification methods, and apply them to
this repertoire on the basis of more than 20,000 chants. The
questions addressed by Albrecht et al. (2014) are particularly
similar to the ones studied in this paper. Based on a dataset of 455
pieces sampled from various sources, they study the historical
development of modes in Western classical music between 1400
and 1750, that is, in the transition between the Renaissance and
Baroque periods. They acknowledge a particular difficulty: in
order to classify musical pieces into different modes by
calculating the similarity of their pitch-class distributions to
pre-defined mode templates, one needs to know how many
templates there are and what they look like. They propose to solve
this problem by taking for granted that the major and minor
modes were well-established in the Common-Practice period, and
that they can be represented by the pitch-class distributions
reported by Albrecht and Shanahan (2013). Their methodology
can be summarized as follows: For the latest time period
1700-1750 they calculate the Euclidean distance of the given
major and minor templates to all twelve transpositions of a piece
and keep that transposed piece with minimal distance to either
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mode. These transposed pieces are then clustered together via a
hierarchical clustering algorithm to determine the optimal
number of modes for this time period. Subsequently, for each
found cluster, the average pitch-class distribution is calculated
and taken as new mode template for the earlier 50-year bin. By
progressively moving backwards in time they find that the time
period 1600-1650 suggest three rather than two modes. In the
earliest period in their sample from 1400-1450 four modes
emerge from this procedure. While their overall methodology
bears resemblance to our proposed geometrical model (see
Section “Geometric Model”), there is a crucial difference: our
approach does not assume the existence and particular shapes of
the major and minor modes a priori (see Section “Assumptions
and contributions”) but demonstrates that both aspects can be
inferred from data.

Assumptions and contributions. The aforementioned approa-
ches rely on several specific music-theoretical assumptions, in
particular that Western classical music is governed by exactly two
modes, the major mode and the minor mode. With the notable
exception of Albrecht et al. (2014), this underlying assumption is
rarely discussed. The present approach explicitly and system-
atically addresses this fundamental assumption with data-driven
methods. We do neither assume a fixed number of modes nor
specific characteristics of these modes, but rather infer them in an
unsupervised manner for different time periods.

Empirical music research commonly presupposes three further
assumptions that are adopted in this study. The first assumption
is octave equivalence, according to which notes group into pitch
classes. For example, all Cs (e.g., C;, C,, C;, ...) are grouped into
the pitch class C. Second, musical keys are commonly assumed to
be invariant under transposition. This means that the relative
importances of a key’s scale degrees are independent of the root.
The third assumption is that there are only twelve distinct pitch-
classes that are commonly represented as integers {0, ..., 11}.
This, together with the assumption of two modes, implies that
there are exactly 2 x 12 = 24 musical keys. While the assumption
of octave equivalence is supported by empirical evidence (Wright
et al., 2000), transpositional invariance is debatable, in particular
with respect to the historical appropriateness of this concept
(Gérdonyi and Nordhoff, 2002; Lieck et al., 2020; Moss, 2019).
For instance, the findings of Quinn and White (2017) indicate
that the pitch-class distributions of different keys might not
generally be related by mere transposition. For a detailed account
of the music theoretical concepts see the Appendix.

The contributions of this paper are summarized as follows: (1)
We propose two novel models: a geometric model of modes as
clusters of musical pieces in a non-Euclidean space, and a
probabilistic Bayesian model of modes as Dirichlet distributions;
(2) using the geometric model, we determine the relation between
modes for five historical epochs and infer their cardinality via
unsupervised learning, and (3) we apply the probabilistic model
to infer the characteristics of major and minor from data and
compare them to previous findings. Using recent computational
methods, our approach provides a data-driven analysis of the
historical changes of tonality.

Materials and models

Data. This study uses a dataset of files in Musical Instrument
Digital Interface (MIDI) format from the internet platform
ClassicalArchives, consisting of approximately 21,000 pieces of
Western classical music." The files were generated by users either
transcribing musical scores or recording themselves playing the
pieces. We use this dataset because it contains entire musical
works as opposed to only segments or short melodic fragments.

Moreover, it covers a broad historical range and links this study
to previous research mentioned above. While the data does not
conform to the high standards of scholarly editions, its quantity
statistically outweighs potential errors caused by encoding, tran-
scribing, or recording the pieces. In particular, minor errors in the
encodings of musical pieces only marginally affect their pitch-
class distributions and associated statistics that are the basis for
this study. We inspected the dataset at random and did not find
major errors such as incomplete or mislabeled pieces. In order to
show chronological changes in tonality, we use the subset of
12,625 pieces (over 55 million notes) for which the year of
composition is given.

Since the ClassicalArchives dataset is crowd-sourced, it is
prone to certain biases. For instance, the prevalence of composers
and pieces is likely to reflect contemporary rather than historical
popularity. Moreover, piano compositions might be over-
represented because many files have been entered by users via a
MIDI keyboard. This also affects the historical balance of the
data. In particular, we observe a lack of data from pre-Baroque
periods in which music was predominantly vocal. Therefore, we
additionally included 777 Renaissance pieces from several
scholarly resources, namely from the Lost Voices project (Freed-
man, 2014),> the Citations: The Renaissance Imitation Mass
project (CRIM; Freedman et al, 2017),> and the Electronic
Locator of Vertical Interval Successions project (ELVIS; McKay
and Fujinaga, 2015)," resulting in 12,625 + 777 = 13,402 pieces
in total.

The data was subsequently converted into lists of notes from
which pitch-class counts (e.g., Youngblood, 1958) were calculated
for each piece, weighted by the total duration of each pitch-class.
For example, if a piece contains 200 times the note F with a
duration of 1/8 each, and 50 times the note C with a duration of
1/2, both would have a total duration of 25 in this weighted
representation. Figure 1 shows the distribution of the pieces over
time. Based on the minima of a Gaussian kernel density estimate
(Bishop, 2006), shown as a smooth curve, boundaries between
five time periods are determined, resulting in splits at the years
1649, 1758, 1817, and 1856. The earliest pieces have been grouped
together into a single period before 1649 to reduce data sparsity.
This division approximately reflects the succession of the
Renaissance, Baroque, Classical, early Romantic, and late
Romantic musical periods (Burkholder et al., 2014).

A subset of 6655 pieces (49.7%) is annotated with a key label
(e.g., C major or D minor) by the ClassicalArchive users. Albrecht
and Shanahan (2013) estimate the accuracy of the labels to be
87.5%. We use these labels only for evaluating our model (see

1400 1500 1600 1700

year

1800 1900 2000

Fig. 1 Histogram of composition dates of 13,402 musical pieces in the
dataset. The data is split into periods according to the minima of a
Gaussian kernel density estimate (Bishop, 2006). The boundaries are the
years 1649, 1758, 1817, and 1856 (pieces prior to 1649 have been grouped
into one epoch). The periods in between the boundaries correspond to the
historical periods of Renaissance, Baroque, Classical, early Romantic, and
late Romantic music.
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Fig. 2 Schematic diagram of the pitch-class counts of an example musical
piece in C major. A pitch class is a set of notes which are related by
multiplicities of octaves (O represents C, 5 represents F, etc.). The diagram
shows for each pitch class the sum of how often the pitches of this class
appear in the piece. In this paper, musical pieces are represented by the
vectors of their pitch-class counts weighted by duration. This abstraction
from the order in which the notes appear in the piece is similar to the bag-
of-words model used in Natural Language Processing.

Section “Results and Discussion”) which operates on all 13,402
pieces (with or without key labels). In the following, we refer to
key labels and years of composition as “metadata”, and to the
musical pieces as “data”.

Geometric model. Similar to the bag-of-words model used in
Natural Language Processing (Manning and Schiitze, 2003), we
model a musical piece as the vector of its pitch-class counts
weighted by duration. Figure 2 shows the weighted pitch-class
counts for an example piece in C major.

This vector model is the basis of mathematical spaces in which
pieces that have similar pitch-class counts are close to one
another; different notions of similarity define different spaces.
Mathematically, this representation allows for the application of
geometrical approaches in R'? and its quotient spaces. The
proposed geometric model formalizes tonality in two stages using
the concepts key and mode. First, we define the key space in
which pieces are close if they have similar keys and denote it by
K. Second, we define the mode space in which pieces are close if
they have similar modes and denote it by M. This approach
enables a conceptualization of key and mode as related but
distinct relations between pieces without assuming a specific
number of keys or modes and their respective characteristics.

Since the key of a piece does not depend on the absolute
frequencies of pitch classes (the length and the key of a piece are
independent), the pitch-class vectors of all pieces are normalized
such that each vector sums to one. This is expressed mathematically
by dividing each pitch-class vector p by its sum Yp; (ie. the L!
norm). We define the key-space distance of two pieces p and g as

p

q
Yb 2

where || - ||, de notes the Euclidean norm, ||p||, = v/D_,p?. Using
this notion of distance, different keys emerge as clusters of pieces.
Moreover, it is to be expected that keys which are close on the circle
of fifths are also close in the key space because they share similar
pitch-class statistics.

Under the assumption that the internal structure of a key is
invariant under transposition (see Section “Assumptions and
contributions”), modes correspond to invariance classes of keys.
In the mode space M, the distance of two pieces p and ¢ is
computed by choosing the minimum of the key distances from p
to each of the twelve transpositions of q. If two pieces p and g are
in the same mode, they are close with respect to the metric

4 (p.9) 1)

)
2

(P, ) = min dx(0(p),q) = min di(p,0i(q)),  (2)

where o(p) denotes the transposition (circular shift) of p by i
semitones, (0;(P))x = Px—imod12) for k € Z,. Note that the
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Fig. 3 Bayesian network depicting the generative process of a musical
piece. Nodes and edges represent random variables and dependencies
between them, respectively (Bishop, 2006, 2013; MacKay, 2003). For each
time period, a piece is modeled as a pitch-class count vector P in R,
depending on the piece’s root R and mode M.

mode-space distance dy; is symmetric. Analogously to the key
space KK, modes emerge as clusters in the mode space M. Note
that two pieces that are far apart in the key space, such as pieces
in C and F# major, are close in the mode space. A mathematical
proof that M is a pseudometric space can be found in the
Appendix.

Bayesian model. Since the size and structure of the clusters in M
characterize the particular modes, we propose a generative
Bayesian model for unsupervised mode learning and classifica-
tion. Generally, Bayesian models are used in computational
cognitive science to describe how the human mind acquires
abstract symbolic knowledge inductively from the observation of
examples (Chater et al., 2006; Griffiths et al., 2008; Tenenbaum
et al, 2011). Bayesian statistics is expressive and powerful,
because it provides a generic framework for the specification of
scientific models and uses formalized plausible reasoning to
implement them (Jaynes, 2003). In particular, this separation of
modeling and inference facilitates the development of models
tailored to the task at hand, instead of limiting scientific models to
specific pre-existing algorithms (Bishop, 2013).

We propose and implement a Bayesian model that learns an
abstract representation of modes from the observation of concrete
musical pieces. Figure 3 shows the Bayesian network of the model
that is briefly introduced in the following paragraphs; more
detailed explanations can be found in the Appendix.

The Bayesian model analyzes the weighted pitch-class
distributions of single pieces by re-generating them together
with their roots and modes as latent variables. An inference
algorithm (Gibbs sampling; described in the Appendix) is then
used to infer the roots and modes of the pieces in the present
dataset. In correspondence to the proposed geometric model
(Section “Geometric Model”), all pieces are normalized to a
common number of notes a priori. In contrast to the geometric
model that represents key and mode as clusters of pieces, the
Bayesian model operationalizes modes as probability distributions
over pitch-class vectors. Keys are represented as pairs of a mode
together with a root note, as it is also standard terminology in
music theory, e.g., “Ab major”, “B minor”. The number of
different modes m, however, is not fixed but a parameter of the
Bayesian model that is to be inferred.

For each time period T, the proportions of how often modes
and roots are used in this period are generated first; they are
denoted by 8M) and (R), respectively. These proportions are later
used to randomly generate modes and roots of pieces. For each

mode M, a pitch-class distribution 95\1;) is generated. This
distribution characterizes the internal structure of the mode
(e.g., how much more or less likely a major third is than a minor
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third). For each piece P in the period, its mode M is sampled from
6M) and its root R is sampled from OR), The pitch classes of the

piece are generated by first drawing a pitch-class vector from 9](\?
and then transposing it according to the piece’s root R.

Given the present dataset D and a time period T, the posterior
distribution p(R, M|P, T, D) describes how plausible it is that a
piece P has root R and mode M.’ Since the Bayesian model
represents keys as pairs of roots and modes, this distribution is
called the posterior of the piece’s key. It is obtained using a Gibbs
sampling method adopted from Johnson et al. (2007) and Sato
(2011); see the Appendix for further explanation. The key (R,
M") that maximizes the piece’s posterior is given by

(R, M*) = argmax  p(R,M|T,P,D). (3)
(RM)EZy,x{1,... ,m}

It is called the maximum-a-posteriori estimate in the
terminology of Bayesian statistics. A piece P from a time period
T is then classified into the mode M" of this key.

Results and discussion

Classification results. A dimensionality reduction of the mode
space M to the two-dimensional plane using ¢-distributed sto-
chastic neighbor embedding (t-SNE, Van Der Maaten and Hin-
ton, 2008) reveals a clear clustering of the pieces into several
groups in the first three periods, namely four clusters in the
Renaissance, two clusters in the Baroque and Classical periods,
and a single large cluster in the later two periods (early and late
Romantic). The columns of Fig. 4 show the different time periods,

and the rows show different colorings that correspond to the
classification into the modes according to different mode classi-
fication methods (metadata, Gaussian mixture model, Bayesian
model) applied to the data. Each point corresponds to one piece
in the dataset.®

Clustering according to metadata labels. The first row displays the
key labels from the metadata for the five periods. Note that the
earliest epoch, the Renaissance, contains almost no pieces with
key labels in the metadata; most pieces are colored in gray. For
the following two periods, Baroque and Classical, the coloring by
the labels in the metadata and the clustering obtained by ¢-SNE
are aligned: one cluster is largely orange and the other one is
largely blue. This correspondence induced by the metadata
indicates that the clusters in the Baroque and the Classical period
represent the major and the minor mode (shown in orange and
blue, respectively). This bipartition into two modes reflects a
pillar of Common-Practice tonality. In contrast, no clear dis-
tinction into different modes exist in the Romantic periods; pieces
with major and minor metadata labels are mixed together, along
with a relatively large number of unlabeled pieces. Hence, the
metadata labels suggest that the binary classification of pieces into
“major” and “minor” is less adequate for the 19th century.

Gaussian mixture model. The second row of Fig. 4 displays
clusterings by mixtures of two-dimensional Gaussian distribu-
tions, a so-called Gaussian Mixture Model (GMM, see e.g.,
MacKay, 2003), for each period. Such models explain data by
optimally covering the data points using multidimensional bell

<1649 1649-1758 1758-1817 1817-1856 >1856
8 ,x';_:". Ve
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Fig. 4 Dimensionality reduction of the mode space M using t-distributed stochastic neighbor embedding (t-SNE; Van Der Maaten and Hinton, 2008).
Each data point corresponds to a piece in the dataset. The columns represent the different time periods. The colors orange and blue correspond to major
and minor, respectively. Gray corresponds to missing mode labels in the metadata. The coloring in the top row shows the key labels from the metadata. It
approximately corresponds to the clusters in the reduced space. The middle row is colored according to the classification of a Gaussian mixture model
(GMM) in the reduced space. The bottom row is colored according to the unsupervised Bayesian mode classifier which successfully learns the concepts of
major and minor purely data-driven from the pitch-class counts of the pieces. In particular, the labeling of the Bayesian model corresponds to the
geometrical positions of the pieces without using these distances for classification. This indicates that transpositional invariance is a characterizing

property of the concept of mode.
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Table 1 Silhouette scores for each time period and different numbers of modes.
Period Renaiss. Baroque Classical Early Rom. Late Rom.
<1649 1650-1758 1759-1817 1818-1856 >1857

#clusters

2 0.421 0.541 0.460 0.419 0.382

3 0.487 0.514 0.402 0.409 0.417

4 0.494 0.440 0.392 0.383 0.406

5 0.431 0.378 0.387 0.387 0.359

6 0.427 0.365 0.388 0.390 0.368

High silhouette scores indicate plausible numbers of modes. The most plausible number of modes is indicated by bold font for each period.

curves. In our application, each mode corresponds to one bell 10

curve, and a piece is classified into the mode whose bell curve it is

covered with.” In order to obtain the optimal number of bell =

curves and thus the optimal number of modes for a given his- 08 — -

torical period, silhouette scores (Rousseeuw, 1987) were calcu-
lated for all possible numbers of modes between 2 and 6. 206 I I
Silhouette scores are a standard measure to quantify the visual 5

impression of the appropriateness of different numbers of clusters 3

mode generally.® Table 1 lists the silhouette scores for all five g04
periods. These numbers largely confirm the visual impression of

Fig. 4. For the Renaissance, a clustering of the data into four 0.2

modes is most appropriate. The division into two clusters -

achieves the highest silhouette scores in the Baroque, Classical 0.0

and early Romantic periods, while the optimal number of clusters <1649 1650-1758 1759-1817 1818-1856  >1857

Renaissance Baroque Classical Early Rom. Late Rom.

is three in the last period. Furthermore, the separation between
clusters is clearest in the Classical era, as expressed by the largest
difference between the highest two silhouette scores for this time
period (0.460 — 0.402 = 0.058), in which the corresponding sil-
houette score reaches the maximum over all periods and number
of modes. The indication for two modes is thus strongest in the
Classical and the Baroque periods, again confirming that the
Common-Practice period is largely determined by the usage of
the major and the minor modes. Three modes achieve the highest
silhouette score in the late Romantic period, questioning this clear
separation. These results suggest that the two modes shape the
tonal structure of pieces only for the Baroque and Classical eras,
at least from the global perspective of pitch-class distributions
that abstracts from local keys and modulations.

The results of the geometric model exhibit a strong similarity
to the classification based on the metadata in the first row
which suggests the same interpretation: in the Baroque and
Classical periods, the space is well separable into two modes
which does not hold for the Renaissance and the Romantic
periods. The mixture of Gaussian distributions moreover
classifies one of the larger clusters in the Renaissance as minor
(blue) and the second large, as well as the two smaller clusters
as major (orange). Since there is no corresponding metadata for
this period, we can not evaluate the mode classification on that
basis but will inspect the modes in this period in more detail
below (Section “Characteristics of modes”). While music-
theoretical conceptions of Common-Practice tonality are
largely corroborated by these mode classifications according
to the metadata and the GMM, it is important to recall that the
former is highly uncertain because the labeling in the metadata
might be erratic. The latter classification by the GMM is
uncertain because it has been performed in a dimensionality-
reduced space, and this transformation might have affected the
underlying similarities between the pitch-class distributions of
musical pieces. In order to overcome this limitation and to
derive a more appropriate mode classification for all periods, we
introduce a Bayesian classifier that operates in the original,
unreduced mode space M.

6

Fig. 5 Mode clarity values for each time period (proportion of correctly
predicted modes according to the key labels in the metadata). The error
bars show 95% bootstrap confidence intervals. The values confirm the
clear distinction between major and minor in the Baroque and the Classical
period. In the Romantic periods, this separation is still existent, but not as
clear as before. The mode clarity of the Renaissance period is not
quantifiable due to the small amount of pieces in this period.

Bayesian model. Based on the overall best silhouette scores for
two modes (see Table 1), the mode predictions of the Bayesian
model are shown by the coloring in the third row of Fig. 4; the
appropriateness of major-minor classifications in the Renaissance
will be considered below (Section “Characteristics of modes”).
This classification into two modes closely resembles the partition
by the GMM in all periods except in the Classical, where the
Bayesian model is more exact. In other words, both the two-
dimensional reduction via -SNE (cluster shapes) and the unsu-
pervised Bayesian mode classifier (coloring in the third row of
Fig. 4) independently assign the musical pieces to one of the two
modes in a similar manner. It is important to note that this
agreement between the GMM and the Bayesian model is not
trivial but a result of the close correspondence between the notion
of distance in the mode space and the interaction of the Bayesian
model’s distributions. The binary separation into major and
minor is particularly strong in the Baroque and Classical periods
for both methods, whereas the Renaissance and Romantic periods
are somewhat more mixed for the Bayesian classifier.

Mode clarity. To quantify the visual impression that the binary
separation into major and minor is particularly strong in the
Baroque and Classical periods, we define the mode clarity of a
time period as the proportion of correctly predicted modes
according to the metadata. Figure 5 visualizes the estimated mode
clarity for each period. The mode clarity of the Renaissance
period is not well quantifiable due to the small amount of key
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Fig. 6 Mode classification for four modes in the Renaissance epoch
according to the Bayesian model. The clustering reveals one distinct mode
(red), two very similar modes (blue, green), and another mode distinct
from the others (violet). Note that the latter is separated into two
subclusters after dimensionality reduction. In the original mode space, the
pieces in the two violet clusters are all close to each other.

labels in the metadata. Nonetheless, it is lowest among all periods.
The mode clarity is highest in the Classical period and sig-
nificantly higher for the Baroque and the Classical period than for
the Romantic periods. This finding underpins again the evidence
for two clusters of major and minor pieces in the Baroque and the
Classical period. Furthermore, it validates that the binary dis-
tinction between major and minor pitch distributions are less
adequate to characterize the tonality of Romantic music. In other
words, the concepts “major” and “minor” as distinct global modes
of musical pieces is much less appropriate in the Romantic eras.

Characteristics of modes

The Renaissance. As stated above, the mode clarity for the
Renaissance is difficult to interpret because of lacking metadata.
Moreover, the silhouette scores (see Table 1) clearly show that the
pieces in this period group together in four and not only two
clusters. We thus applied the Bayesian model to the pieces in this
period separately, assuming the existence of four clusters. The
result is shown in the coloring of Fig. 6, showing a large coherent
cluster (red), a large mixed cluster (green and blue), as well as two
small clusters (both violet). Recall that the clustering is a result of
the dimensionality reduction and that the coloring expresses the
similarity of pieces in the original mode space, in which the pieces
of the two violet clusters are actually close to each other and the
pieces in the green-blue cluster are actually separated. This pro-
vides further evidence that clustering the pieces in the reduced
space with a GMM 1is not sufficient and again justifies the
application of the Bayesian model for mode classification.

Since we cannot compare this clustering to the labels in the
metadata, we inspect the pitch-class distributions of these four
clusters separately and display them in so-called violin plots (see
Fig. 7). Each of the violins depicts a kernel density estimation for
the relative frequencies of the respective pitch classes in one of the
four clusters. We manually added a threshold of 5% (dashed
horizontal line) to distinguish between pitch classes belonging to
our mode interpretations of the clusters and out-of-scale tones.
The distributions of pitch classes within the respective clusters
resemble music-theoretical descriptions of Renaissance modes
(see Glareanus, 1547; Huron and Veltman, 2006; Judd, 2002). The
first cluster (top row, violet) resembles the Mixolydian mode, the
second cluster (second row, red) resembles the Ionian mode,
the third cluster (third row, blue) resembles the Dorian mode,

5 6 7 8 9 10 11

pitch class

Fig. 7 Violin plot of pitch-class distributions of Renaissance modes. The
distribution of the first cluster (violet) resembles the Mixolydian mode, the
second cluster (red) resembles the lonian mode. The two remaining
clusters (blue and green) exhibit relatively similar pitch-class distributions
that resemble the Dorian mode. The fourth cluster (green) could also be
interpreted as Aeolian.

and the fourth cluster (bottom row, green) could be interpreted as
a mode between the Aeolian and Dorian modes, lacking a clear
expression of either pitch class 8 or 9 to distinguish them. Note,
however, that our Bayesian classifier transposes all pieces to a
common root, based on the assumption of transpositional
invariance (see Section “Assumptions and contributions”). The
results should therefore be interpreted with care since Renais-
sance composers did not transpose modes to arbitrary roots;
rather the different modes were associated with specific absolute
pitches as roots (Judd, 2002; Wiering, 2001).

The common-practice period. Both the silhouette scores (Table 1)
and the mode clarities (Fig. 5) are clearest for the Common-
Practice period, covering the Baroque and Classical periods.
Figure 8 shows the distributions of each of the twelve pitch classes
inferred via the Bayesian model for both modes (major and
minor). The fact that the maxima of the distributions fall either
above or below a threshold around five percent reflects the music-
theoretical distinction between in-scale and out-of-scale notes
(Lerdahl, 2001). The value of this threshold might be specific to
the dataset we used. It is, however, interesting that there is a
threshold separating in-scale from out-of-scale pitch classes so
clearly. The variance of the distributions moreover differs across
pitch classes and modes. Generally, it is smaller for of out-of-scale
notes than for in-scale notes, expressing that out-of-scale notes
are typically rarely used, while in-scale notes have a greater degree
of freedom in their use in musical pieces.

The characteristics of a mode can be summarized in its average
pitch-class distribution (henceforth mode template). For example,
drawing on traditional definitions of major and minor (e.g,
Aldwell and Schachter, 2003) one would expect that both the
major and the minor mode have similar characteristics for their
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roots and fifths (pitch classes 0 and 7), but contrasting
characteristics for their thirds (pitch classes 3 and 4) and sixths
(pitch classes 8 and 9). Commonly, such mode templates are
reported as line or bar plots and show absolute or relative
estimated or counted frequencies. Unfortunately, they rarely
show an appropriate measure of the underlying variance of the
distributions as in Fig. 8. In order to directly compare our results
with previously published mode templates, we reduce the
representation of the characteristics of the major and minor
mode from the full distributions to only their maxima. Figure 9
compares the mode templates of the unsupervised Bayesian
classification (Bayesian Model) to templates presented in previous
research, in particular to templates based on data from
psychological experiments (Krumhansl and Kessler, 1982 and
Temperley, 2001), as well as to templates derived from corpus
statistics (Metadata and Albrecht and Shanahan, 2013). In
contrast to the earlier studies, we propose to use so-called radar
plots that capture the circular structure of the pitch space
(Harasim et al., 2016; Lerdahl, 2001) as opposed to the more
common linear arrangement of mode templates. Moreover, pitch
classes are not ordered chromatically ascending (see Fig. 8) but
along the circle of fifths. This makes it possible to better reflect
that in-scale and out-of-scale pitch classes form consecutive parts
of the circular space, respectively (Carey and Clampitt, 1989).

o
o

relative frequency
o
5

pitch class

Fig. 8 Violin plot of pitch-class distributions of major and minor, summed
over the Baroque and the Classical period. The classification was
performed by the Bayesian mode classifier. Each half violin shows a
Gaussian kernel density estimate of the distribution over the respective
pitch-class probabilities. For each pitch class, the areas of the two
respective violin halves are equal. The maxima of all violins are scaled to a
common size. The dotted line at the relative frequency of 5% was added
post hoc to separate in-scale tones (density maximum above the line) from
out-of-scale tones (density maximum below the line).

The corpus-driven templates assign less probability mass to
out-of-scale notes than the experimental templates, supporting
the music-theoretical concept of mode. Moreover, all corpus-
driven templates further clearly exhibit the symmetry between
major and minor mode. In all templates, the most distinctive
pitch classes for the two modes are 3 and 4, the minor and major
thirds, underpinning the music-theoretical definition of the
two modes.

The close resemblance of the mode templates inferred by our
Bayesian model to the other corpus-derived templates confirms
that the two modes indeed correspond to the major and minor
modes but establishes that neither their existence nor their
particular shapes need to be assumed a priori; it is possible to
infer them from a corpus of musical pieces in a data-driven,
unsupervised fashion.

Conclusion

We investigated the evolution of tonality over time by inspecting
a large dataset of MIDI-encoded pieces, covering a historical
range of approximately 500 years. Unlike previous music-
theoretical studies, which draw on complex analytical methods
and a host of prior assumptions, we adopt simple statistical
models of pitch-class distributions and propose a novel Bayesian
generative model that only takes into account a “bag-of-notes”
representation of the pitch classes in the pieces. We find that basic
pitch statistics suffice to reveal, in an unsupervised way, the
number of modes and their characteristic shapes for a given
period of time. We did not assume the number and shape of the
modes in advance in order to remove potential biases towards the
major-minor tonality as described by music theory (Aldwell and
Schachter, 2003; Kostka and Payne, 2013). The results therefore
provide strong support for cognitive theories on mode inference
via statistical learning (Huron, 2006; Rohrmeier and Rebuschat,
2012; Saffran, 2003; Tillmann, 2012), based on pitch-class fre-
quencies in musical pieces.

Both the geometric and the probabilistic model reveal a similar
pattern: modes can be predicted best for the Classical period,
second best for the Baroque, and worst for the 19th century and
the Renaissance. The two modes that emerge and stabilize over
time in the Common-Practice period indeed correspond to the
well-known major and minor modes. Applying the same meth-
odology to the Renaissance separately shows that a larger number
of independent modes is more appropriate. However, this needs
to be studied in more detail in future research, since our funda-
mental assumption of transpositional invariance seems least
appropriate for this era. The poor prediction for the 19th century
can be interpreted to reflect the substantial changes in tonality
that took place over the course of the 19th century (Meyer, 1989),
such as the use of new types of scales, as well as of pitch and

Metadata Bayesian Krumhansl & Temperley Albrecht &
0 Moodel Kessle(r)(1 982) (20001) Shanah%n (2013)
5 7 5 7 5 7 5 7 5 7

10 2 10 2
3 9 3 & 9 3 5 9 3 A 9 3 - 9

0.1 0.1
8 0.15 4 8 0.15 4 8
0.2 0.2
1 02514 1 0.254 4 1
6 6

0.1 0 0.1

0.15 4 8 0.15 4 8 0.15 4
0.2 0.2 0.2

0.25 1 1 0.25 11 1 0.25 11

6 6 6

Fig. 9 Mode templates for major (orange) and minor (blue) obtained from different sources. The distance to the origin represents the probability of each
pitch class. For each source, the pitch classes are ordered in the circle of fifths so that in-scale tones and out-of-scale tones are adjacent. The corpus-
generated templates (Metadata, Byesian Model, and Albrecht and Shanahan, 2013) assign much less probability mass to out-of-scale notes than the
experiment-based templates (Krumhans| and Kessler, 1982 and Temperley, 2007).
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harmonic relations (Aldwell and Schachter, 2003; Cohn, 2012;
Haas, 2004). It moreover suggests that the concept of a single
global mode for 19th-century pieces is much less suitable for this
time period, likely due to more frequent local modulations to
more distantly-related keys.

Our approach provides an avenue for data-driven corpus
research to become a foundation for the empirical study of the
historical evolution of tonality. The outcomes of this study open
up several directions for future research. Especially the applica-
tion of hierarchical models and mixture models seems to be very
promising in order to draw more fine-grained conclusions about
the relative importance of modes and the development of tonality
not only on the global but also on more local and intermediate
levels of a composition (Lieck and Rohrmeier, 2020). While the
dataset used in this study only allows the distinction between
twelve pitch classes, Lieck et al. (2020) have recently shown that
the incorporation of algebraic models of tonal spaces can be used
for more structured representations of of pitch-class distributions
of musical pieces. They provide initial evidence that this is also
relevant for historical changes of tonality which suggests to fur-
ther explore the implications of this approach. The expansion of
the historical extent of the database used for this study—poten-
tially increasing the range from medieval to contemporary pop-
ular music—will broaden the horizon of the empirical
historiography of tonality. The models proposed in this article
can generally be applied to any musical style for which the
representation by pitch classes is adequate and are thus not
strictly limited to the study of Western classical music. They
might thus be adopted to compare pitch-class distributions not
only within but also between musical cultures. This might, in
turn, potentially contribute to ongoing debates between biological
(e.g., Honing et al., 2015; Merker et al., 2014; Wiggins et al., 2015)
and cultural (e.g., Mehr et al,, 2019; Nettl, 2001; Savage, 2019)
approaches to the evolution of music.

Data availability
The data for this article and the code to reproduce the results are
published at https://github.com/DCMLab/HistoryModes_DataCode).

Received: 17 April 2020; Accepted: 17 November 2020;
Published online: 04 January 2021

Notes

1 https://www.classicalarchives.com/

http://digitalduchemin.org/

http://crimproject.org/. From this collection, we excluded six pieces between the 11th
and 14th centuries because they had uncertain publication dates and were historically
too remote from the rest of the Renaissance pieces (16th century).
https://elvisproject.ca/

Since keys are defined as pairs (R, M), this is effectively a key-finding method. In this
study, however, we focus only on the modes.

Note that with this dimensionality reduction method the relative within-cluster and
between-cluster distances are more interpretable than the absolute positions of data
points in the plane.

Note a potential conflict of terminology: "mode” can be either understood as a system
governing the relations between notes in musical pieces, or as the locally or globally
most likely value of a probability distribution. Here, we only use mode in the
former sense.

The optimal number of clusters K was determined in the reduced space by clustering
the data with a Gaussian mixture model (GMM) for different values of K between 2
and 6 and calculating silhouette scores of these different clusterings, independently for
each period. Silhouette scores quantify the visual impression of the appropriateness of
different numbers of clusters. To explain their calculation, let x be a data point
classified into the cluster C and denote the average distance from x to all other points
in C of x by a(x). The value a(x) is minimal when x is in the center of C. The
dissimilarity of x to any other cluster C' is given by the average distance between x and

w N

=~

(5}

(=)}

~

o]

all points in C'. Denote the smallest of these similarities by b(x). The silhouette score of
the data point x is then given by

_ _bx)-al)
$(%) = Faxfat0007

The silhouette score of a cluster is defined as the average silhouette score of all its
points and the silhouette score of a clustering is defined as the average silhouette of all
its clusters. The silhouette score of a clustering is therefore an indicator of how well the
data points are assigned to the different clusters.
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