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Bridging nestedness and economic complexity in
multilayer world trade networks
Zhuo-Ming Ren1,4✉, An Zeng2,3,4 & Yi-Cheng Zhang1,3

Understanding the complexity of international trading is critical for a variety of issues ranging

from quantifying the competitiveness of individual nations to forecasting the collective

evolution of the world economy. Despite the significant progress made in this direction, the

international trading system is mainly modeled with a single network in the previous works

such as the monopartite product space network and the bipartite country-product network to

capture economic complexity. In order to better capture the more detailed dynamics, we

characterize the international trading system with a multilayer network with each layer

representing the transnational trading relations of a product. This framework immediately

reveals the nested structure in each layer and accordingly allows us to develop an alternative

measure of the complexity of products. The metric provides a ranking of products’ complexity

more consistent with common understanding. The nested structure of a network layer seems

to correlate with the asymmetric export relations resulted from the technology barriers, and

the evolution of product complexity indicates that the growth of product nestedness is faster

than the relevance decay. Finally, we remark a comparison of trade competitive by nested-

ness between China and the United States to explore the evolution of the economy indus-

tries, and the aggregated nestedness index can predict a nation’s future economic growth.
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Introduction

A natural way of representing international trade flows is
through complex networks (De Benedictis and Tajoli,
2011; Fronczak and Fronczak, 2012; Nemeth and Smith,

1985; Smith and White, 1992). The key advantage of this
approach is that it captures the complex structure of the inter-
actions between a large number of economic agents, which brings
solutions to a variety of issues in observation, modeling, and
prediction (Fagiolo et al., 2013; Medo et al., 2018; Saracco et al.,
2015, 2016; Schweitzer et al., 2009; Squartini et al., 2018, 2015). In
recent works, substantial effort has been devoted to analyzing the
structural characteristics of the world trade data as it is closely
connected to the economic development of countries (Cristelli
et al., 2015; Hartmann et al., 2017; Hausmann et al., 2014;
Hidalgo and Hausmann, 2009; Hidalgo et al., 2007; Tacchella
et al., 2012). The related works form a new research field called
economic complexity, which aims to understand the emergent
complex behaviors in economic systems via the tools developed in
complexity science (Hidalgo, 2018; Mealy et al., 2019; Tacchella
et al., 2018). The data was modeled with a country-product
bipartite network with links representing export relations. A
remarkable finding is that the network exhibits a hierarchically
nested structure, which is already widely observed economic
systems originated form ecological systems (Bastolla et al., 2009;
König et al., 2014; Rohr et al., 2014), and how nestedness emerges
and what is its determinants raises a lot of concentration (James
et al., 2012; Jonhson et al., 2013; Payrato-Borras et al., 2019).
Recently, the review (Mariani et al., 2019) surveys nestedness
from variegated disciplines, including statistical physics, graph
theory, ecology, and theoretical economics.

Given an adjacent matrix by a network of interacting nodes, a
perfectly nested matrix can be described as the entries in each
successive row and column are, respectively, a strict subset of
those in the previous row and column (Almeida-Neto et al., 2008)
as seen in Fig. 1a. In ecological systems, a nested pattern in
mutualistic networks promotes biodiversity and preserves struc-
tural stability (Bastolla et al., 2009; Rohr et al., 2014). In economic
systems, the function of the nested structure is not yet clear, but
this feature has already inspired many methods quantifying dif-
ferent aspects of these systems. Issues include exploring the
nested nature of the observed networks (de Jeude et al., 2019;
König et al., 2014; Lee, 2016; Solé-Ribalta et al., 2018), as well as
predicting the evolution of industrial ecosystems (Brintrup et al.,
2015; Bustos et al., 2012; Saavedra et al., 2014). The representa-
tion of the international trading data with country-product
bipartite networks overly simplifies the system. The country-
product bipartite network only consists of the products that each
country exports, but neglects the information of which countries
these products are shipped to. Attempts have also been made to
construct a multilayer network in which the nodes are the
countries, the layers are the industries, and links can be estab-
lished from sellers to buyers within and across industries (Alves
et al., 2019; Barigozzi et al., 2010; Mastrandrea et al., 2014). The
advantage of modeling a complex system as a multilayer network
is to gain information that cannot be captured if individual layers
are taken in isolation. The methods for analyzing multilayer
networks such as community detection, cascading failure, node
centrality, and network reducibility have developed rapidly in
recent years (Boccaletti et al., 2014). In this work, we focus on the

Fig. 1 Nestedness in multilayer networks. a, b Three representations of matrices, respectively, correspond to none, moderate, perfect nested network.
These three networks have the same number of nodes and links. In each matrix, the rows and columns have been ranked by the number of ones (i.e.,
degree). In a perfectly nested matrix, the upper-left triangle would be full of elements and the lower-right triangle would have no elements. c The matrices
are representations of the different layers of world trade networks which, respectively, correspond to the network of Bovine, Typewriters, and Medical
Instruments. The nestedness of matrices (NODF) is 0.12, 0.37, and 0.60, respectively. The curve is the distribution of nestedness calculated by 786
matrices of products.
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within-layer nestedness of the multilayer world trade network,
and find that the nestedness of a layer network is a proper
method to quantify the product’s complexity. For the highly
complex products, only the countries with advanced technologies
can produce them and export them to further countries, resulting
from a nested network structure. We then use the nestedness to
investigate the evolution of product complexity. Further, we
analyze that the competitiveness of a country with different
nested products and then take a comparison of trade competitive
of countries between China and United States. In addition, we
propose a aggregated nestedness index to predict a nation’s future
economic growth.

Methods
The world trade datasets of different products between countries
by years from publicly available databases (Data source is seen in
section Data Availability). The data comprises 261 countries and
786 products (categories) from 1976 to 2014. For a detailed
introduction to datasets, one can refer to Supplementary S1. The
trade flow is used to construct a multilayer network in which each
layer is a directed network representing the export and import
relations of a product. Each layer trading network can be char-
acterized by a matrix with each element asMp ¼ vpcc0

� �
, where vpcc0

is the dollar volume of a product p exported from the exporter c to
the importer c0. To define the presence and the absence of the
element in a matrix, we employ z-score to parameterize the volume
of the trade flow to determine whether a trade flow can be con-
sidered significant or not. Mathematically, z ¼ ðvpcc0 � <vp>Þ=σp,
where <vp> and σp are, respectively, the mean and standard
deviation of the dollar volume of a sample product p of the world
trade network. Thus, we can obtain a binary matrix by a threshold
of z. If z ≥ 0, vpcc0 ¼ 1, otherwise vpcc0 ¼ 0. Through these operations,
we can build the multilayer world trade network.

We mainly focus on the nested structure of the multilayer
world trade network. The nestedness of a network layer can be
detected from its adjacency matrix. In a perfectly nested matrix,
the elements in each sequential row are a strict subset of those in
the upper row, while the elements in each sequential column are a
strict subset of those in the upper column. A typical feature of a
nested network in visualization is that the adjacency matrix shows
a clear triangular pattern. There are also numerous metrics to
quantify the nestedness of a matrix (Almeida-Neto et al., 2008;
Bastolla et al., 2009; Beckett et al., 2014). Figure 1a illustrates the
adjacency matrices of three toy networks with the same number
of elements but the different level of nestedness. The rows and
columns of these matrices are both reordered by descending
degree (k). The matrix on the right is a fully nested matrix, while
the matrix on the left has no nested feature. The network
visualizations of these three matrices are given in Fig. 1b.
Although the number of nodes and links are the same in these
networks, the level of nestedness is totally different as the nest-
edness is determined by the particular directionality of links.

Here, we introduce a simple and widely used metric named
Nested Overlap and Decreasing Fill (NODF) η(Almeida-Neto
et al., 2008). η ranges from 0 to 1, with 1 indicating a perfectly
nested structure and 1 indicating a none nested. The NODF
calculation starts with a simple description: after sorting the
adjacent matrix by descending indegree and outdegree, respec-
tively, the nestedness of a pair of nodes is defined as ηij ¼
Nij=minðki; kjÞ if ki ≠ kj, otherwise ηij= 0. Here Nij is the number
of the commonly connected nodes shared by node i and node j.
Thus, the nestedness of the matrix is the average of total pairs of
nestedness. The step by step calculation is illustrated in Supple-
mentary S2. According to the NODF metric, the nestedness of
three toy networks, respectively, corresponds to 0, 0.5, 1 as shown

in Fig. 1a. Thereupon we further quantify the nestedness in each
layer of the multilayer world trade network with the NODF
metric and report the distribution of nestedness calculated by 786
matrices of products in Fig. 1c. One can see that the nestedness of
786 layers varies significantly. The nestedness is <0.2 or >0.6,
which account for <5%, but >10% in [0.3, 0.5]. For instance, the
matrices are representations of the different layer of world trade
networks which, respectively, corresponds to the network of
Bovine, Typewriters, and Medical Instruments. The visualization
of these three network is also shown in Supplementary Fig. S4.
The nestedness of Bovine, Motorcycles, and Medical Instruments
is 0.12, 0.35, and 0.60, respectively, which locates in the low,
medium, and high areas of nestedness distribution.

Results
Nestedness characterizes product complexity. A number of
metrics have been developed to quantify the competitiveness of
countries and the complexity of products, with the iterative
processes on the country-product bipartite networks. Examples
include the measurements of ubiquity and diversity (Hidalgo and
Hausmann, 2009; Hidalgo et al., 2007), eigenvector-based com-
plexity index (ECI) (Hartmann et al., 2017; Hausmann et al.,
2014; Hidalgo and Hausmann, 2009), and fitness and complexity
index (FCI) (Cristelli et al., 2015; Tacchella et al., 2012), which
are, respectively, introduced in Supplementary S4. As an alter-
native metric, we aim to employ the nestedness of a network layer
to quantify the complexity of the corresponding product. This is
motivated by the previous examples of Bovine, Typewriters, and
Medical Instruments in Fig. 1c. In agreement with the recent
advance in the economic complexity (Hidalgo, 2018; Tacchella
et al., 2018), the low complexity products do not have a strong
technology barrier, so almost all country could produce and
export them. In this case, the structure of the trading network is
mainly determined by the geographic location (Fujita et al., 1999)
and a nested structure is not expected. However, for the high-
complexity products, only the countries with advanced technol-
ogies can produce them and export them to further countries.

It is well known that the technology barrier extensively exists in
world trade due to the sophisticated technologies hold by some
countries (Hausmann et al., 2014). The complex products are
produced by a small number of countries and exported to other
countries that do not hold the technology. This implies that the
large out-degree countries in the layers with high nestedness are
the countries possessing advanced technologies. To confirm this
point, we consider the technology achievement index (TAI),
which is widely used to measure the capacity of a country in
technological innovations by the United Nations Development
Program (Desai et al., 2002; Nasir et al., 2011). We compute the
mean TAI of countries with top 10 out-degree in each layer, with
the results presented in Fig. 2a and Supplementary S5.1. It is clear
that 〈TAI〉 increases with η, which indicates that the products in
the trading network with high nestedness indeed export from the
high-technology countries to other countries. Moreover, the high-
technology barrier in international trade will result in the
emergence of high asymmetry in the network of high-
complexity products. As shown in Fig. 2(b), the asymmetry of a
network is captured by the dispersion of in-out degree as

Asy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iðkini � kouti Þ2=N
q

, where kini and kouti represent
indegree and outdegree, and N is the number of nodes. Asy ≥ 0.
If Asy= 0, the indegree of each node equals the outdegree. An
undirected network is perfectly symmetry (Asy= 0) as seen in
Fig. 2(b). In an asymmetric network, the indegree of nodes is not
consistent with outdegree and Asy > 0. We calculate the
asymmetry of the network layer corresponding to each product.
In Fig. 2(c), one can see that the asymmetry of products is
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positively correlated with the nestedness η of their trading
networks, indicating that higher nestedness reflects the stronger
asymmetric property of the complex products. In addition, bright
points in Fig. 2(c) are the mean asymmetry of the 786 products
belonging to different sectors whose name is seen in subfigure (d).
The sectors (8, 7, 5, 6) of the machinery and chemicals with high
nestedness are more asymmetric than the sectors (3, 4, 2, 0, 1) of
raw materials (such as beverages and tobacco, food, crude
inedible materials, mineral fuels, lubricants, animal and vegetable
oils, fats and waxes) with low nestedness. The above analysis
indicates that the nestedness of the trading network is strongly
connected with the complexity of the traded product.

To validate the nestedness as a measure of product complexity,
we compare the mean nestedness value of different types of
products. The 786 products are classified into 10 sectors by
Standard International Trade Classification (SITC) (classification
of the product as seen in Supplementary Table S3). For each
sector we compute ηðsÞh i ¼ P

i2sηðiÞ=Nði 2 sÞ, where i is a
product of sector s, η(i) is nestedness value of product i, N(i ∈ s)
is the number of products belonging to the sector s. In Figure 2d,
one can see that nestedness gives a reasonable ranking of these
product sectors. Specifically, the sectors (8, 7, 5, 6) include
machinery and chemicals are large nestedness, while the
nestedness of the sectors (3, 4, 2, 0, 1) of raw materials (such as
beverages and tobacco, food, crude inedible materials, mineral

fuels, lubricants, animal and vegetable oils, fats and waxes) are
lower. It is interesting that sector 9 (Commodities and
transactions not classified elsewhere in the SITC) ranks in the
middle position. In addition, we give the distribution of products
in each sector in Supplementary Fig. S9.

We also illustrate the detailed top-10 most and last-10 worst
complex products in Table 1. In top 10 nestedness ranking list, we
find that these 10 products are sophisticated machinery, but last-
10 products are those raw materials, but corresponding to the
measurements of ubiquity, ECI, and FCI, their top 10 lists appear
a few primary products like Castor Oil, Raw Cork, Miscellaneous
printed matter as shown in Supplementary Table S4 and S5. In
addition, we also find the low correlation between nestedness and
the measurements of ubiquity, ECI, and FCI as seen in
Supplementary Fig. S10, which we think the principle of nested
structure could be independent from the other measurements.
These results could provide clear evidence that nestedness can
give an alternative quantification of products’ complexity.

We use the nestedness to investigate the evolution of product
complexity, and take the highest nested product types at different
levels and observe the evolution of their average nestedness from
1986 to 2014 as shown in Fig. 3a. The four subplots, respectively,
reveal the nestedness of the four levels, 8 Miscellaneous
manufactured articles, 87 Professional, scientific, controlling
instruments, apparatus, nes, 874 Measuring, checking, analysis,

Fig. 2 Detection of product complexity. a The countries with advanced technologies in a nested matrix. We use the TAI index to measuring the technology
achievement of nations (Desai et al., 2002; Nasir et al., 2011). The higher TAI indicates the higher national technological capability of a country. <TAI> top10

is the mean TAI of the countries with the top 10 out-degree in each layer. b The asymmetry of a network that characterizes the dispersion between the
node’s indegree and outdegree. The asymmetry of a directed network is 2, but the asymmetry of an indirected network is 0. c The asymmetry of nested
networks. Gray points correspond to 786 products. Bright points are the mean asymmetry of the products belonging to different sectors. Red numbers
correspond to sector numbers in subfigure (d). d Red points are the mean nestedness value of products from ten sectors classified according to the SITC
code (detailed introduction seen in Supplementary Table S3). Black points are nestedness value of 786 products.
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controlling instruments, nes, parts and the detailed 7 products
contained by 874. We can observe that the nested structure of
commodities at different levels is changing over time. On the
whole, the nested structure is weakening. However, for products
with the most nested structure, their changes are small. To

quantify the nestedness evolution of the products, we consider
top-20 products Ω at time t,

v ¼
P

i2Ωrankði; t þ ΔtÞ
P

i2Ωrankði; tÞ
; ð1Þ

Fig. 3 Nestedness evolution in four levels from 1986 to 2014. a The highest nested products in different levels. (i) 1-digit. The first level products that can
be regarded as ten sectors. (ii) 2-digit. We select the highest nested sector in the first level, i.e., nine miscellaneous manufactured articles. The ninth sector
is subdivided into eight divisions. (iii) 3-digit. We also select the highest nested division in the second level that is 87 Professional, scientific, controlling
instruments, apparatus, nes. The group can be subdivided into four groups. (iv) 4-digit. At last, we again select the highest nested group, which is 874
Measuring, checking, analysis, controlling instruments, nes, parts. This subgroup consists of seven products. b We investigate that how the ranking
positions of the set of 20 top nested products change in 20 years. We choose the top 20 nested products from 1986 to 2005. The current seems as t and
the time period Δt ∈ [−10, 10]. c Averaging the change rate of the top 20 nested products from 1986 to 2005. The gray area represents the error bar.

Table 1 The Top 10 and bottom 10 products are ranked by the nestedness.

No. ηtop10 Name ηbottom10 Name

1 0.6640 Analog instruments for physical analysis 0.0515 Electric current
2 0.6333 Miscellaneous electrical instruments 0.0798 Sheep and goat
3 0.6069 X-Ray equipment 0.0808 Crude natural potassium salts
4 0.5970 Parts of metalworking machine tools 0.0819 Palm nuts and kernels
5 0.5966 Medical instruments 0.0876 Uranium and thorium
6 0.5962 Electrical medical equipment 0.0881 Roasted iron pyrites
7 0.5906 Miscellaneous centrifuge and filtering machinery 0.1015 Castor oil seeds
8 0.5903 Mathematical calculation instruments 0.1035 Tin
9 0.5903 Telecom parts and accessories 0.1111 Cotton seed oil
10 0.5875 Factory trucks 0.1115 Natural calcium phosphates
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where rank(i, t) and rank(i, t+ Δt) are, respectively, the ranking
position of the product i at time t and t+ Δt. Figure 3b shows the
value of the top-20 products v under different Δt with the data
from 1986 to 2005. We find that v rises fast but decay slowly. The
trend is more pronounced when Δt is larger. At the same time, we
compute the mean value of v by averaging two decades data. As
shown in Fig. 3c, we can see a clearer trend that 〈v〉 is asymmetric
between Δt < 0 and Δt > 0, indicating that the growth of product
nestedness is faster than the relevance decay. We could suggest
the trend that the product complexity would decline over time
that depends on an advance of science and technology.

Quantifying economic competitiveness between China and the
United States. We remark that the competitiveness of a country
can also be measured based on the nestedness of the products
exported. For a given product, if a country can export the
product to more countries, this country occupies more market
share. Thus, we can directly compute the number of countries
that a country exports to in a given product’s network layer as
its trade competitiveness with respect to this product
(κðc; pÞ ¼ P

c0Mcc0 ðpÞ). Following the train of thought, we
compare the trade competitiveness of the United States and
China limited to a year 2010 as shown in Fig. 4a. We could find
that China has the trade competitiveness of the products whose
nestedness ranges from 0.35 to 0.5, corresponding to the pro-
ducts such as footwear, motorcycles, and electronics. While, the
United States takes a distinct advantage of raw materials with
η < 0.35 and sophisticated products with η > 0.5. In general, the

competitiveness of these two countries is increasing with the
complexity of products.

In addition, we analyze the evolution of trade competitive with
the nested products for the United States and China. We first
normalized the nestedness values in a given year according
~ηði; tÞ ¼ ηði; tÞ=maxðfηði; tÞgÞ. We also compare a given trade
competitive to the country with highest trade advantage
according to ~κðc; tÞ ¼ κðc; tÞ=maxðfκðc; tÞgÞ. Thus, if the nor-
malized trade competitive is closer to 1, the country has stronger
trade competitive. In Fig. 4b, c, the heatmap depicts the evolution
of trade competitive with different nested products between
China and the United States. One can find that these two
countries have different trends in evolution. From 1976 to 2014,
the United States always keeps great trade competitiveness,
especially keeps greater trade competitiveness in raw materials
with low nestedness and sophisticated products with high
nestedness. While China’s trade competitiveness gradually
become great after 1990, especially after 2005, The high-nested
product of trade competitiveness become stronger. These may be
found that the trade advantage of China boosts to the top level in
recent two decades could due to the economic take-off.

Predicting some representative economic indexes. Finally, we
can extend the trade competitiveness κ(c, p) in single-network
layer to the whole multilayer network, and define the global trade
competitiveness as GTC(c)= ∑pκ(c, p)η(p), where η(p) is the
nestedness of the product p. Therefore, GTC(c) is the weighted
sum of κ(c, p) by η(p) of all the product p that c exports. We first

Fig. 4 Quantifying trade competitive of countries. a Quantifying trade competitive of three countries with different nested product networks. The curves
stand for the United States (USA), China (CHN). b, c The evolution of trade competitive with the nested products for China (b) and the United States (c). If
the normalized trade competitive is closer to 1, the country has stronger trade competitive. The heatmap depicts the evolution of trade competitiveness
with high-nested products corresponding to normalized nestedness.
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examine the prediction power of GTC by analyzing the correla-
tion between GTC and some representative economic indexes
(GDP, GDPpc, GDP(PPP), GDP(PPP)pc)1. Figure 5a displays the
correlation ρ between countries’ GTC in a certain year and their
economic indexes after Δt years. One can see that ρ with GDP
and GDP(PPP) is generally higher compared to that with GDPpc
and GDP(PPP)pc. It also shows that ρ, in general, has a max-
imum value roughly 10 years later (Δt= 10) except the correla-
tion to GDP(PPP). The high correlation between the economic
indexes and GTC indicates that the prediction of economic
growth can be applied to a simple linear regression model
(Hidalgo and Hausmann, 2009). We give the range prediction
under each bin of real growth as shown in Fig. 5b. The red labels
are the prediction of G20 (except EU). The scatter plot of the
predicted GDPpc growth and the real GDPpc growth exhibits a
strong correlation. In fast-developing countries such as China and
India, the actual growth rate is higher than predicted. In devel-
oped countries with slow growth such as the United States, Japan,
and the United Kingdom, the predicted value is higher than the
actual growth rate. Except these countries, We can still make
good predictions for the countries like Russia, Canada, Australia,
Turkey and others. More detailed discussion of the prediction
power of GTC is given in SI7, Figs. S12 and S13. With regard to
strengthening prediction power, this may require considering
more factors or distinguishing different development models to
predict economic growth.

Conclusions and discussions
The economic networks from massive data analysis, theory
encompassing the appropriate description of economic agents
and their interactions give a systemic understanding of global
effects as a view of a single network like the monopartite product
space network (Hidalgo et al., 2007; König et al., 2014) and the
country-product bipartite network (Cristelli et al., 2015; Hart-
mann et al., 2017; Hausmann et al., 2014; Hidalgo and Haus-
mann, 2009; Tacchella et al., 2012). Although these works provide
metrics that can quantify the economic complexity with the
information of network structure, the networks they used overly
simplify the international trading systems. As a remedy, we
constructed a multilayer network in which the trading relations of
each product are represented in the corresponding layer. We used
the international trade datasets, which consist of both imports
and exports relations to build multilayer world trade networks.
We observed that each layer of the multilayer world trade network
immediately revealed the nested structure in each layer and
accordingly, which allowed us to develop a measure of the com-
plexity of products. To validate the nestedness as a measure of
product complexity, we compared the mean nestedness value of
different types of products. The metric provided a ranking of pro-
ducts’ complexity more consistent with common understanding.

The nested structure of a network layer seemed to correlate with the
asymmetric export relations resulted from the technology barriers.
We also used the nestedness to investigate the evolution of product
complexity, and took the highest nested product types at different
levels and observe the evolution of their average nestedness from
1986 to 2014. The evolution of product complexity indicated that
the growth of product nestedness was faster than the relevance
decay. Further, we remarked that the competitiveness of a country
can also be measured based on the nestedness of the products
exported and gave a comparison of trade competitive of countries
between China and United States. Lastly, we extended nestedness
index to predict a nation’s future economic growth.

Our work could bridge nestedness and economic complexity in
multilayer world trade networks and enriches numerous extensions.
As we have shown with our illustration of nested structure, which
can characterize product complexity, we could bring solutions to
other economic systems in observation and modeling. Especially, as
we known, a lot of emerging trade barriers resulting from political
conflict or a pandemic like the COVID-19, the nestedness could
provide a way of thinking about the structural characteristics of the
world trade data. Although, the aggregated nestedness index is trying
to quantify the competitiveness of individual nations and forecast
the collective evolution of the world economy, it is well worth
mining. There also are other open questions to ask for future study.
For instance, we mainly focus on the utilization of nestedness, but
what are the mechanisms that lead to the substantially triangular
structure of the matrix remains unclear. In addition, we just used a
commonly adopted metric to measure the nestedness of a network.
How to design a better metric to capture nestedness more accurately
that is still worth studying. These similar issues have received sub-
stantial attention in socioeconomic systems, because it would be a
solution for disentangling the conditions of global stability in
socioeconomic systems when bursting perturbations and instability
like financial crises, national bailouts and social events (Gao et al.,
2016; Helbing, 2013; Saavedra et al., 2014; Schweitzer et al., 2009).

Data availability
The datasets used to support the findings of this study are
available from the website (https://comtrade.un.org/) or an
alternative data source (http://atlas.media.mit.edu/en/resources/
data/).

Received: 16 May 2020; Accepted: 29 October 2020;

Note
1 Gross domestic product (GDP) is a monetary measure of the market value of all final
goods and services produced in a period (quarterly or yearly) or income. GDP per
capita(GDPpc) is a measure of country’s GDP by a person. GDP at Purchasing Power

Fig. 5 Predicting some representative economic indexes. a The correlation ρ between future economic index and the current global trade competitiveness
(GTC). b Growth in GDP per capita(GDPpc) is predicted between 2000 and 2010. We give the range prediction under each bin of real growth. The red
labels are the prediction of G20 (except EU).
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Parity (GDP(PPP)) states that exchange rates between currencies are in equilibrium
when their purchasing power is the same in each of the two countries. GDP(PPP) per
capita (GDP(PPP)pc) is GDP converted to international dollars using purchasing
power parity rates and divided by total population
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