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Time-dependent taphonomic site loss leads to
spatial averaging: implications for archaeological
cultures

Emily Coco® '3 & Radu lovita® 23>

Archaeologists typically define cultural areas on the basis of similarities between the types of
material culture present in sites. The similarity is assessed in order of discovery, with newer
sites being evaluated against older ones. Despite evidence for time-dependent site loss due to
taphonomy, little attention has been paid to how this impacts archaeological interpretations
about the spatial extents of material culture similarity. This paper tests the hypothesis that
spatially incomplete data sets result in detection of larger regions of similarity. To avoid
assumptions of cultural processes, we apply subsampling algorithms to a naturally occurring,
spatially distributed dataset of soil types. We show that there is a negative relationship
between the percentage of points used to evaluate similarity across space and the absolute
distances to the first minimum in similarity for soil classifications at multiple spatial scales.
This negative relationship indicates that incomplete spatial data sets lead to an over-
estimation of the area over which things are similar. Moreover, the location of the point from
which the calculation begins can determine the size of the region of similarity. This has
important implications for how we interpret the spatial extent of similarity in material culture
over large distances in prehistory.
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Introduction

rchaeologists have a unique interest among historical

scientists to understand the spatial structure of past

material culture. This often manifests itself in the defini-
tion of large regional cultural-technological areas on the basis of
similarity in material culture between sites. However, the inherent
incompleteness of the archaeological record due to taphonomic
and discovery biases can inhibit the search for cultural areas. In
recent years, the effects of this incompleteness have been studied
in relation to temporal trends (e.g., Surovell and Brantingham,
2007; Surovell et al., 2009; Contreras and Meadows, 2014; Miller-
Atkins and Premo, 2018; Perreault, 2018, 2019). Yet, compara-
tively little research has been done to understand how the
decreased spatial resolution of the archaeological record due to
time-dependent site loss (Surovell and Brantingham, 2007; Sur-
ovell et al., 2009) impacts the spatial patterns we are attempting
to find.

Cultural classification or the definition of cultural taxonomies
is fundamental to anthropological and archaeological research
(Barth, 1981; Reynolds and Riede, 2019). This is because the past
is often seen as made up of bounded, homogeneous groupings
with different ways of life and therefore different material cultures
(Shennan, 1994; Lucy, 2005). These cultural units are used to
structure research, organise the archaeological record, analyse
past cultural dynamics, and communicate results (Reynolds and
Riede, 2019; Riede et al., 2019). Cultural classification based on
material remains in archaeology has been critiqued from a
number of directions. Chief among those is the issue with
attempting to draw discrete boundaries in material culture var-
iation as a reference for discrete boundaries among cultural or
ethnic groups (Barth, 1981; Shennan, 1994; Furholt, 2008; Riede
et al., 2019) or, indeed, subspecies (Villa and Roebroeks, 2014).
What has become clear to archaeologists is that variations in
material culture cannot be directly mapped onto certain groups
and that considering different subsets of the archaeological record
can reveal different patterns (Barth, 1981; Shennan, 1994; Furholt,
2008; Hodder, 2012). For this reason, many researchers have been
advocating for reformulation of named cultural units either
through using attributes that track shared transmission histories
of cultural traits (Riede et al., 2019), or by considering a more
polythetic version of culture to account for cross-cutting patterns
of different aspects of material culture (Lucy, 2005; Furholt,
2008).

Despite these critiques, cultural classification remains a main-
stay of archaeological practice. Archaeologists routinely compare
their excavated materials with those they know from nearby areas
and either accept or reject a degree of similarity. These com-
parisons are sometimes done formally, based on attribute analysis
(sometimes supported by multivariate statistics), or, quite often,
based on the inspection of published drawings or photographs.
Although some contemporary archaeologists use sophisticated
mathematical methods to compare artefact shapes (e.g., Eerkens
et al, 2006; Lycett, 2016), or indeed, entire assemblages (e.g.,
Grove and Blinkhorn, 2020), the general classificatory framework
is often based on categories that were established earlier using the
informal method described above. In addition to the everyday
practice of informal assessments of similarity, some studies have
turned to quantitative methods to explore the relationship
between geographic distance and similarity (i.e., density of par-
ticular artefact types, presence/absence of particular traits, etc.)
for detecting structure of archaeological cultures (Renfrew, 1977;
Kimes et al., 1982; Shennan et al.,, 2015; Lycett, 2019). Here, the
premise is that groups in closer proximity to each other tend to
interact and share knowledge more frequently than those farther
apart (Johnson et al., 2006; Ross and Atkinson, 2016; Derungs
et al, 2018). Similarity based on proximity is also known as
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Tobler’s First Law of Geography, which states that everything is
related to everything else, but near things are more related than
distant things (Tobler, 1970, 2004; Sui, 2004). Incidentally,
Tobler’s First Law does not only apply to cultural entities, but to
all geographic patterns. Examples of this in non-human geo-
graphy literature most frequently look at the distance decay of
similarity in species composition of ecological communities
(Nekola and White, 1999; Bjorholm et al., 2008; e.g., Astorga
et al.,, 2012; Wetzel et al., 2012).

Given that archaeologists are still generally interested in find-
ing meaningful spatial structure of material culture despite the
low spatial resolution of the archaeological record, we must ask:
to what extent are our perceived spatial entities influenced by the
incompleteness of the archaeological record? Cultural entities are
often defined over vast distances. Although human interaction
surely plays a role in the creation of spatially detectable similarity
in material culture, the appearance of similar assemblages in
distant areas of the world might require a different explanation.
Typically, long-distance similarity in material culture is explained
by the migration of groups, the vertical transmission of cultural-
technological traditions through interaction, or convergent evo-
lution through independent innovation (Crema et al., 2014; Ross
and Atkinson, 2016; O’Brien et al., 2018). However, even if these
explanations have validity on certain scales, cultural regions
defined especially in the earlier periods of prehistory, such as the
Palaeolithic, are massive. Some, such as the Aurignacian or the
Gravettian, extend across the European continent and beyond
(Reynolds and Riede, 2019). The Acheulian stretches over three
continents and lasts over a million years. The ubiquity of such
continental-sized cultural regions prompts us to doubt that
material culture similarities on such scales were in fact the result
of sociocultural processes.

Recent studies have shown that time- and taphonomy-
dependent factors can distort the spatial component of beha-
vioural signals. For example, Miller-Atkins and Premo (2018)
demonstrate that time averaging of assemblages can increase the
apparent spatial spread of a cultural signature beyond the area
actually occupied by that population at any given moment in
time. We hypothesise that a similar problem exists for spatial
averaging, such that as fewer and fewer points are used to
examine similarity across space, the area included in a region of
similarity increases. This would mean that cultural regions are
systematically overestimated, given the inherent incomplete nat-
ure of the archaeological record. To test this hypothesis, we chose
to measure the effects of spatial averaging on spatially auto-
correlated point data. As any archaeological data set is already
incomplete in an uncontrollable way, we chose a contemporary
data source that is both spatially autocorrelated and culturally
independent: soil classifications. Soil types represent a spatially
complete data set with a certain amount of temporal stability that
demonstrates spatial autocorrelation but is not the result of cul-
tural processes. For these reasons, it is possible to spatially sub-
sample this data to determine how that affects analysis of
similarity without invoking cultural explanations. This allows us
to test the effects of spatial averaging without arguing for a
similarity between the initial distribution of traits in our toy data
set and that of any particular archaeological case.

Methods

Data. The European Soil Database v2.0 (European Soil Data
Centre, 2004) is a soil database for all of Europe and Russia,
which contains a geographical database of soil polygons with
classifications attributes of different soil properties. For our
analysis, we converted the polygons to point data using the

| (2020)7:136 | https://doi.org/10.1057/541599-020-00635-3



ARTICLE

centroid of the polygons for point placement in ArcGIS 10.4.1
(ESRI, 2016). The analysis was run using two subsets of the data, one
which included all of Europe (~25,000 points) and another which
contained only the points for a single country (Germany, with ~2500
points) given there are often inconsistencies in large-scale maps due
to different national mapping systems (Sprafke, 2016).

The categorical attributes used for analysis were classifications
of the topsoil and subsoil, slope, accumulate temperature, and
depth to rock, as well as the full soil code from the World
Reference Base for Soil Resources (see Table 1). These were
selected from over 70 total soil attributes for the raw data set to
give a wide range of comparisons for calculating the similarity
between soil points. Additionally, this range of variables was used
to best approximate how informal archaeological comparisons are
made: through comparison of absence/presence of particular
trait-based variables and/or proportions of different categories of
artefacts between sites.

Calculating geographic distance to minimum of similarity. Our
spatial averaging methodology consists of repeatedly constructing
decay curves for similarity from one random point to a set of other
points and then comparing the absolute geographic distances to
the first minimum in similarity. All analyses were carried out in R
3.6.1 (R Core Team, 2019) and all scripts can be found on GitHub
(https://github.com/cocoemily/spatial-averaging). Geographic dis-
tances between the points are calculated in kilometres. Similarity
between points is calculated through simple matching of catego-
rical attributes as a percentage of all categories. This means that
points that share all of the same values for each of the 13 attributes
would have a similarity score of 1, whereas points that share the
same values for 12 of the 13 attributes would have a similarity
score of 0.92. We modelled similarity in this way because some of
the attributes have similar values (as seen in Table 1), and
therefore needed to be treated as an ordered set, which standard
similarity indices do not account for. Geographic distance is then
used as a predictor variable for similarity in fitting a smoothed
function to the data using a generalised additive model. The
function of this model is then analysed to find the first local
minimum (see Fig. 1 for example curves). We chose to analyse the
first local minimum of the similarity curve (hereafter, first mini-
mum of similarity) because it best approximates how archae-
ologists construct cultural zones in practice.

This process is repeated for progressively smaller proportions
of the total points. Specifically, we used randomly sampled points
at 10% proportion intervals from 90 and 10%, and at 1% intervals
from 10 to 1%. These intervals were chosen because the total
number of soil data points is ~25,000, so therefore these small
percentages better approximate the number of sites we might
expect in any given archaeological time period.

Additionally, we calculated what proportion of points could
theoretically remain at three time intervals, 10 ka BP, 50 ka BP,
and 100 ka BP, by fitting an exponential function to radiometric
dates for European Palaeolithic sites dating from 7000 to 900,000
BP (Vermeersch, 2019). The database contains radiocarbon, TL,
OSL, ESR, Th/U, and AAR dates from the European Lower,
Middle, and Upper Palaeolithic from >10,000 sites (Vermeersch,
2019). For this study, we used over 14,000 radiometric dates of
the nearly 18,000 dates in the total data set; we did not include
dates coded as “unreliable.” The best fit function (1) below
explains ~72% of the variance in date frequency, where n;, is the
number of radiocarbon dates surviving at time ¢.

n, = 412.5¢4073x 1075t (1)

Using the above equation, the number of sites at the three
aforementioned times is calculated and divided by the total

number of radiometric dates. These proportions were then used
as sampling proportions for the methodology described above.
This analysis allowed us to model how much data could
potentially be lost due to taphonomy using a curve based on
empirical archaeological data.

As the points are randomly sampled, we repeated the
methodology 100 times for all proportions to capture variation.
For each subset of the total points, the distance corresponding
with the first minimum in similarity for the fitted function was
recorded.

Results

Absolute distance to first minimum for similarity. A negative
power function of the form: d = aPP, where d is the distance (in
kilometres) to the first similarity minimum, P is the percentage of
total points, and « and f§ are estimated parameters, was fit to the
values of absolute distance to the first minimum in similarity by
percentage of total points via nonlinear least squares regression
(Fig. 2a). This function was determined to be a better fit than a
linear regression model and an exponential function using the
AIC. The estimates of both « and f8 were significant to p < 0.001; «
was estimated to be 1322 with a 95% confidence interval of [81.34,
183.06], meanwhile § was estimated to be —0.04148 with a 95%
confidence interval of [—0.052, —0.031]. The residual standard
error of the model is relatively high at 513.1, which makes sense
considering the wide range of variation in the distance to the first
minimum at each percentage that results from each sample having
a different starting point for comparison. That being said, the
negative power relationship is still significant, meaning that as
fewer points are considered, the distance over which things are
similar increases for this particular dataset. This negative power
relationship between distance to first minimum of similarity and
percentage of points is confirmed by linear regressions on the
logged distances at percentages from 100 to 10% and 10 to 1%
separately (Fig. 2b, red line and blue line respectively). The
negative slope for lower percentages is nearly twice as great as that
of the higher percentages (see Table 2), further demonstrating how
the effects of spatial averaging are amplified at the smallest
amounts of total points on a continental scale.

Results within national boundaries for soil similarity. Because
of inconsistencies at the international level among soil classifi-
cation systems, we applied our model to a data set at the national
level as well, in this case Germany. This allows for examination of
how spatial averaging affects analysis of similarity at a smaller
scale. The results for soil points within Germany demonstrate
similar negative relationships between the percentage of total
points and the absolute distances to the first minimums of
similarities. However, for this smaller data set, a log-linear model
better fits the data then the negative power model that was fit to
the distance decay results from the total data set (see Fig. 3). The
regression results are presented below in Table 3.

Comparison of “aged” samples. We wanted to examine how the
areas of similarity compared when the soil types were sampled at
rates corresponding to specific ages of deposits. Surovell and
colleagues have demonstrated that the expected number of sites
surviving in the archaeological record depends on the time since
their deposition (Surovell and Brantingham, 2007; Surovell et al.,
2009). Using Surovell and colleagues (2007, 2009) methodology,
we fit an exponential function to radiometric dates for European
Palaeolithic sites dating from 7000 to 900,000 BP, in order to
determine how many points to use for looking at similarity decay
corresponding to modelled ages of deposition. We then compared
the difference in distance to the first minimum of similarity for
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Table 1 Soil attributes used for analysis.
Attribute code Attribute Name Values
WRBFU Full soil code Four-letter soil code from the World Reference Base for Soil Resources
SLOPEDO Dominant slope class 0 = No information
1= Level (dominant slope ranging from O to 8 %)
2 = Sloping (dominant slope ranging from 8 to 15 %)
3 = Moderately steep (dominant slope ranging from 15 to 25 %)
4 = Steep (dominant slope over 25 %)
DR Depth to rock S = Shallow (<40 cm)
M = Moderate (40-80 cm)
D = Deep (80-120 cm)
V = Very deep (>120 cm)
ATC Accumulated mean annual temperature class H = High (>3000 deg C)
M = Medium (1800-3000 deg C)
L =Low (<1800 deg C)
TXSUBDO Dominant sub-sufrace textural calss 0 = No information
9 = No mineral texture (Peat soils)
1= Coarse (18% < clay and > 65% sand)
2 = Medium (18% <clay < 35% and > =15% sand, or 18% < clay and 15% < sand <
65%)
3 = Medium fine (<35% clay and <15% sand)
4 = Fine (35% < clay < 60%)
5= Very fine (clay > 60%)
PD_SUB Subsoil packing density L=Low
M = Medium
H = High
STR_SUB Subsoil structure G = Good
N = Normal
P = Poor
O = Peaty subsoil
MIN_SUB Subsoil mineralogy KQ =1/1 Minerals + Quartz
KX =1/1min + Oxy. & Hydroxy.
MK = 2/1 & 1/1 Minerals
M =2/1& 2/1/1 non swel. Min.
MS = Swel. & non swel. 2/1min
S = Swelling 2/1 Minerals
TV = Vitric Minerals
TO = Andic Minerals
NA = Not applicable
TXSRFDO Dominant surface textural class 0 = No information
9 = No mineral texture (Peat soils)
1= Coarse (18% < clay and > 65% sand)
2 = Medium (18% < clay < 35% and > =15% sand, or 18% < clay and 15% < sand <
65%)
3 = Medium fine (<35% clay and <15% sand)
4 = Fine (35% < clay < 60%)
PD_TOP Topsoil packing density L=Low
M = Medium
H = High
STR_TOP Topsoil structure G = Good
N = Normal
P = Poor
H = Humic or Peaty topsoil
MIN_TOP Topsoil mineralogy KQ =1/1 Minerals + Quartz
KX =1/1min + Oxy. & Hydroxy.
MK = 2/1 & 1/1 Minerals
M=2/1& 2/1/1 non swel. Min.
MS = Swel. & non swel. 2/1min
S = Swelling 2/1 Minerals
TV = Vitric Minerals
TO = Andic Minerals
NA = Not applicable
PMH Parent material hydrogeological type R = Porous - Stor. ~ Perm. +
C =Porous 2 Stor. ~ Perm. +
S = Porous 1 Stor. + Perm. +
L = Stor. - Perm. -
H = Hard. Stor. - Perm. -
M = Soft. Stor. - Perm. -
# = No information
4 | (2020)7:136 | https://doi.org/10.1057/s41599-020-00635-3
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Example of distance decay in soil similarity
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Fig. 1 Example of distance decay curves at five different proportion percentages with first minimum of similarity indicated on each curve by a boxed X.
Absolute distance to first minimum on the curve constructed with 100% of points and that with 1% of points indicated by the red arrows.
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Fig. 2 Regressions fitted to values of absolute distance to first minimum
of similarity by the percentage of total points sampled for the total
dataset. In a, negative power function (green line) fitted to all data for the
absolute distance to first minimum. In b, linear regressions fitted to subsets
of the data; the red line is fitted to samplings up to 10%, whereas the blue
line is fitted to samplings from 10 to 1%.

Table 2 Linear regression results for percentage subsets
(soil data).

Dependent variable:

Log (absolute distance)

100-10% 10-1%
Percentage of points ~ —0.0005" —0.001"
0.0002 0.0005
Constant 6.950"" 7.063""
0.014 0.016
Observations 4,939 843
R2 0.001 0.006
Adjusted R2 0.001 0.004
Residual std. error 0.465 (df =4937) 0.419 (df =841
F-Statistic 5109 (df =1; 4937)  4.764" (df =1; 841)

“p<0.; **p<0.05; ***p<0.01.

deposits aged at 10,000, 50,000, and 100,000 years ago based on
491, 96, and 12 points, respectively.

We found again that there were fairly wide ranges of variation
for the relative differences in distance to the first minimum at
each of the three modelled ages of deposition. However, when
comparing these groups using a Mann-Whitney U-test there
were significant (p <0.01) differences between the 10 and 100 ka
and between the 10 and 50ka distance to first similarity
minimum. Additionally, as can be seen in Fig. 4, there is an
increase in the absolute distances to the first minimum as the age
of deposits increases, meaning that as the modelled age of our
deposits increases, so does the distance to the first minimum in
similarity. That being said, there appears to be a certain
proportion of the total data set at which the relationship between
the increase in distance to the first minimum of similarity and
number of points becomes negligible, as demonstrated by the lack
of significant difference between the 50ka sampling and the
100 ka sampling, which represent ~0.004% and ~0.0005% of the
total soil points, respectively.
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Fig. 3 Linear regression for soil types within Germany. Linear regression
models fitted to data for the absolute distances to first minimum in
similarity using soil points from within Germany.

Table 3 Linear regression results for points within a national
boundary (Germany).

Dependent variable:
Log (absolute distance)

hk

Percentage of points —0.003
0.0004
Constant 5684
0.021
Observations 1354
R2 0.036
Adjusted R2 0.036
Residual std. error 0.481 (df =1352)
F-Statistic 50.825™" (df =1; 1352)

*p<0.1; **p<0.05; ***p<0.01.

Location of reference point. Our results showed that the location
of the starting point does not affect the overall trend of increasing
distance to similarity with more site loss. However, the identified
region of similarity will have different sizes depending on where
the initial comparison point is located, as is evident in Fig. 5. The
area of similarity at the lowest proportion of points in Fig. 5b is
nearly twice times as large as in Fig. 5a, when the reference point
is in a different location. This finding is consistent with the large
ranges of variation in distance to first minimum of similarity
noted above. This finding is of particular importance to archae-
ological research because the definition of cultural areas is typi-
cally based on similarity to ‘type assemblages,” which are defined
by the order of discovery. Our analysis shows that attempting to
define regions of similarity based on comparison to a single
starting point not only makes those regions subject to the effects
of spatial averaging, but also this means the effects of spatial
averaging will differ depending on where that starting point is.
This quantitatively demonstrates the well-known limitations of
applying the definitions of cultural areas in one area of the world
to the archaeological record of another; depending on where the
initial definition occurs, the region of similarity will be of a dif-
ferent size, no matter how spatially incomplete the dataset is.

Discussion
The results presented above indicate that as we consider fewer
points for determining regions of similarity, the distance to the
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Fig. 4 Comparison of distance to first minimum of similarity between
“aged" deposits. Comparison via Mann-Whitney U-tests in absolute
difference in distance to first minimum in similarity for expected number of
surviving archaeological sites at 10,000, 50,000, and 100,000 years ago.
** = significant to p < 0.01.

first minimum in similarity increases. This conclusion should
apply to all spatially autocorrelated datasets, whether they are
anthropogenic or not, but it is particularly important for
anthropogenic ones, where the behavioural signal can be all but
erased by spatial averaging. All of the analyses showed that the
distance to first minimum in similarity increases by 0.5-3% with
each percentage point of reduction in the number of points
considered. When we consider that our analysis is on the scale of
thousands of kilometres, these small percentage increases in
distance to first minimum of similarity result in large over-
estimates of similarity areas. It should be noted that the R-
squared values on the regressions are small, explaining at most
4% of the variation. This is likely due to the large variation in how
similar points are to each other at a given distance (see the large
error bars in Figs. 1-3). As stated above, this variation results
from different reference points and different comparison points
used for each subsampling. Soil types do not exhibit perfect
gradients in terms of regions of similarity; instead they are dis-
tributed in a mosaic, with similarity decreasing at one distance
only to increase again at a farther distance. Despite this variation,
the negative relationships presented above are still statistically
significant, which means the proportion of points considered does
have a significant impact on the size of the region of similarity
identified, whether that is at the continental scale or a more
regional scale (i.e., within Germany). The goal of this study was to
identify if missing point data results in an extension of identified
areas of similarity, not to predict the magnitude of this effect.
Given that this magnitude is likely dependent on the original
signal strength, future studies should use archaeologically-
relevant data to assess it.

Conclusions

The effect of spatial averaging on our understanding of areas of
similarity has two important implications for archaeology. First,
the amount of spatial averaging is inversely proportional to the
amount of data remaining. This should affect both older periods
and geographic regions with histories of significant landscape
changes. We should expect to have fewer and fewer data points as
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we consider older and older periods of prehistory (Surovell et al.,
2009). This means that for older archaeological deposits, espe-
cially those from the Stone Age, we are likely vastly over-
estimating regions of similarity just by virtue of not having the
complete data set of points, particularly when comparing simi-
larity on an attribute basis. For large parts of the Stone Age, this
effect is compounded by the common use of lithics as the single
available type of material culture. Likewise, we can expect the
amount of erosion, sediment accumulation, and overprinting to
produce different amounts of spatial averaging in different
regions (e.g., Wilson, 1988; Fanning and Holdaway, 2004; van
Leusen et al., 2011; Lovis et al., 2012; Iovita et al., 2014).

Second, the geographic location of the first point of compar-
ison matters. This makes sense if similarity is not originally
uniformly distributed, and especially if the information loss will
affect the underlying distribution at different rates. As stated
above, this is likely to create undetectable biases in classifications,
as chance, research history, the availability of funding, and many
other factors unrelated to ancient behaviour will determine where
any particular type of material culture is first found.

Our report of spatial averaging adds an important dimension
to the recent focus on time averaging in archaeological deposits.
Several recent papers highlight its role in the formation and
interpretive potential of the archaeological record (Davies et al.,
2016, 2018; Dibble et al., 2017; Coco et al.,, 2020; Rezek et al,
2020). Furthermore, the effects of time averaging as a result of the
way archaeologists group data has become better established
(Miller-Atkins and Premo, 2018; Perreault, 2018). For example,
Miller-Atkins and Premo use agent-based simulations to show
that considering time-averaged assemblages can increase the
apparent spatial spread of a cultural signature beyond the actual
occupation region of a population with that particular cultural
variant (Miller-Atkins and Premo, 2018). The effects of spatial
averaging due to missing data points are similar to those
demonstrated for time-averaged assemblages. The results from
the study presented here demonstrates that spatial averaging
separately from time averaging can also increase the area within a

region of similarity. Further research should look into how the
combined effects of time and spatial averaging impact archae-
ological patterns.

Given that both temporal and spatial averaging are inherent
biases of the archaeological record, we need to consider more
carefully how we use similarity to demonstrate the cultural
relatedness of any two sites in archaeology. This is not to say that
archaeologists should not be organising the archaeological
records into units of analysis based on similarity. Such a goal is
probably unrealistic and impractical. Instead, the results pre-
sented here demonstrate that the similarity noted in the archae-
ological record does not necessarily map onto the original spatial
organisation of cultures at the time of interest due to time-
dependent taphonomic information loss. Thus, we as archae-
ologists need to rethink using the size of a defined material cul-
tural area to discuss population and cultural dynamics. The
inherent spatial and temporal incompleteness of the archae-
ological record and its demonstrated effects on interpretations of
cultural areas clearly shows that archaeological “cultural” areas
are not true representations of actual living cultures. As such, we
need to further examine what behavioural and cultural signals our
regions of similarity actually represent and better incorporate that
into our interpretations of the archaeological record.

Data availability

The raw soil classification spatial data used for this project is
available for download from the European Soil Data Centre at
https://esdac.jrc.ec.europa.eu/content/european-soil-database-
v20-vector-and-attribute-data. The point data created from the
European Soil Database specifically for this project is available via
the OSF registration at https://osf.io/vzpyt. Code and spatial data
used for spatial subsampling are available in a GitHub repository
at https://github.com/cocoemily/spatial-averaging.
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