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Raiders of the lost HARK: a reproducible inference
framework for big data science
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ABSTRACT Hypothesizing after the results are known (HARK) has been disparaged as

data dredging, and safeguards including hypothesis preregistration and statistically rigorous

oversight have been recommended. Despite potential drawbacks, HARK has deepened

thinking about complex causal processes. Some of the HARK precautions can conflict with

the modern reality of researchers’ obligations to use big, ‘organic’ data sources—from high-

throughput genomics to social media streams. We here propose a HARK-solid, reproducible

inference framework suitable for big data, based on models that represent formalization of

hypotheses. Reproducibility is attained by employing two levels of model validation: internal

(relative to data collated around hypotheses) and external (independent to the hypotheses

used to generate data or to the data used to generate hypotheses). With a model-centered

paradigm, the reproducibility focus changes from the ability of others to reproduce both data

and specific inferences from a study to the ability to evaluate models as representation of

reality. Validation underpins ‘natural selection’ in a knowledge base maintained by the sci-

entific community. The community itself is thereby supported to be more productive in

generating and critically evaluating theories that integrate wider, complex systems.
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Introduction

Hypothesizing after the results are known (HARK), a term
coined by Kerr (1998), defines the presentation of a post
hoc hypothesis as if it had been made a priori. HARK is

often viewed as inconsistent with the hypothetico-deductive
method, which articulates a hypothesis and an experiment to
falsify or corroborate that hypothesis.

HARK can lead to data dredging, data fishing, or p-hacking
that is unduly manipulating data collection or statistical analysis
in order to produce a statistically significant result. Data dredging
has been fervently debated over the past two decades (Browman
and Skiftesvik, 2011; Mazzola and Deuling, 2013; Head et al.,
2015; Lakens, 2015; Bin Abd Razak et al., 2016; Bosco et al., 2016;
Bruns and Ioannidis, 2016; Hartgerink et al., 2016; Nissen et al.,
2016; Amrhein et al., 2017; Hartgerink, 2017; Hollenbeck and
Wright, 2017; Prior et al., 2017; Raj et al., 2017; Rubin, 2017;
Wicherts, 2017; Hill et al., 2018; Turner, 2018; Wasserstein et al.,
2019)

While the term HARK arose from epistemological debate,
reflecting arguments from logical empiricism to falsification
(Kerr, 1998; Wagenmakers et al., 2012; Bosco et al., 2016; Rubin,
2017), the negative connotations of HARK in publication bias
and p-hacking has become its primary label (Simmons et al.,
2011).

HARK has not been yet set against the modern reality of a duty
to use big, ubiquitous, ‘organic’ data, integrated from multiple,
diverse sources, e.g., from high-throughput genomic sequencing
to social media streams. The organic nature of big data is cus-
tomarily defined in terms of big Vs –as in volume, variety, velo-
city, veracity (Chartier, 2016)– typifying high dimensionality
(enormous sample sizes and feature spaces), heterogeneity,
dynamicity, and uncertainty. Big data, coupled with unprece-
dented computational power, can potentially be used to generate
and test many hypotheses and models.

Big data expand and evolve. The organic property of big data
can make a study both prospective and retrospective, fusing
exploratory and hypothesis-focused research into a continuum
that challenges methodology. This makes a classical hypothetico-
deductive framework inadequate because deductions can lead to

abductions as data collection proceeds. HARK becomes inevi-
table, but it could be made legitimate and contribute to a more
complete interpretation of the big data’s (latent) signals. However,
robust methodological safeguards must be undertaken to avoid
data dredging and the threats to reproducibility from HARK.

The objective of the present work is to contextualize HARK in
big data research and propose an operational framework toward
reproducible inference and theories. The roadmap to this paper is
as follows. We first summarize a consensus on tackling HARK
and p-hacking within the hypothetico-deductive framework.
Second, we explore how recommended practices to avoid HARK,
e.g., preregistration, may not cope with big organic data. Third,
we contextualize big data studies within a hybrid hypothetico-
deductive and abductive theoretical paradigm, illustrating how
HARK is unavoidable. Fourth, we outline a HARK-solid, opera-
tional framework of reproducible inference on big data that
focuses on models (as formalization and empirical verification of
hypotheses) and emphasizes multifaceted study design, many
data realizations, and massive model testing, all underpinned with
statistical rigor in modeling and multi-level validation. The term
‘solid’ does not mean that HARK is prevented from happening,
but rather that its occurrence is transparent and part of the
inference process. Finally, we discuss how the outlined framework
can be implemented in practice and how it can aid the scientific
community to develop deeper theories for complex phenomena.

Overview on HARK
Figure 1 illustrates a typical HARK inference path: An initial
hypothesis (A) is formed from real-world evidence or a standing
mechanistic theory. A study to test the hypothesis is designed and
data collected, but, after analyses, the hypothesis is weakly sup-
ported. The report of this experiment is rejected by journals who
consider it unimportant. Through data dredging, e.g., addition of
more data or changes on the model/covariates of interest,
hypothesis (A) is confirmed, with potential p-hacking. Reflecting
on the results, another hypothesis (B) is formed and supported by
the first or second data sample, i.e., HARK happens. The full
HARK process is rarely reported—just those activities directly
related to the results in a given paper. The authors of the report
have several options: (1) use original data, suppress hypothesis
(A), substituting it with (B), and report results on (B); (2) report
results on both (A) and (B) regardless, using the original data or
the augmented data; (3) suppress results on (B) and report data
dredged results on (A); (4) suppress everything, i.e., do not
publish. All of the above options deviate from the hypothetico-
deductive method and generate a number of potential threats to
research validity, including publication bias.

HARK has been deconstructed in various ways (Rubin, 2017),
including constructing, retrieving, and secretly suppressing
hypotheses after results are known (CHARK, RHARK, SHARK).
Not all types of HARK are considered detrimental: for instance,
transparent HARK (THARK), i.e., reporting and discussing post
hoc exploratory data analysis on empirical studies, has been
deemed “beneficial to scientific progress and, in many cases,
ethically required” (Hollenbeck and Wright, 2017). Nonetheless,
it is often not possible to distinguish what kind of HARK has
happened in a study.

HARK and data dredging can take place due to costs and
rewards: the costs being associated with collecting more data and
running more experiments to test multiple hypotheses or to
redesign and rerun studies; and the rewards for publishing
negative studies being relatively low. The recognition that a large
proportion of published research is likely to be false through
conscious or unconscious HARK and data dredging (Macleod

Fig. 1 Hypothesizing after results are known (HARK). A flowchart example
of HARK and data dredging upon a study
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et al., 2014; Begley and Ioannidis, 2015) has ignited a reprodu-
cibility crisis, especially in social, health, and biomedical sciences
(Baker, 2016).

The scientific community reacted: Munafo et al. (2017) pub-
lished “A manifesto for reproducible science”, to improve
research efficiency and robustness of findings. Regarding the
hypothetico-deductive framework, they noted a vicious circle of
threats to reproducible science: generation of specific hypothesis
(with failure to control for bias)→ study design (low statistical
power)→ data collection and study conduction (poor quality
control)→ data analysis (p-hacking)→ interpretation of results
(p-hacking)→ publication (selective bias). In this circle, HARK
links results interpretation and generation of hypotheses.

The manifesto’s many resolutions included: more rigor in
methodologies, defense from cognitive bias, promotion of study
preregistration, protection against conflict of interest, encour-
agement of transparency, diversified peer review, upholding of
standard research and reporting guidelines (Vandenbroucke,
2007; Little et al., 2009; Schulz et al., 2010; Nosek et al., 2015;
Korevaar et al., 2016), and providing rewards for open and
reproducible practices.

Among the manifesto’s calls, preregistration is central. Study
preregistration is the publication of a hypothesis, design choice,
and analytical approach before starting the data collection (Nosek
et al., 2018). Preregistration seeks to eliminate shifts in evaluation
of studies based on results and, therefore, it is intended to prevent
cognitive bias of the study promoters (i.e., self-deception), pub-
lication bias (i.e., suppression of negative results), a number of
HARK types (e.g., SHARK), and other data dredging. Registered
reports (Chambers, 2013) are a form of preregistration that
includes preliminary peer review. In brief, registered reports split
the peer review process into two stages, before and after the study
is carried out. A study design is thus evaluated before data are
collected and analyzed; in addition, any post hoc analyses are
easily recognizable as per the process, allowing flexibility in sec-
ondary analyses.

Despite the general consensus, there has been skepticism about
both the theoretical validity and practical feasibility of pre-
registration (Lash and Vandenbroucke, 2012; Ioannidis, 2015;
Vandenbroucke, 2015; Vancouver, 2018). Gelman and Loken
(2013) epitomized the “garden of forking paths”: when there are
always many choices for analyzing the data, the choice being
more or less influenced by the modeler’s look at the data. They
recommended that “the best strategy is to move toward an ana-
lysis of all the data rather than a focus on a single comparison or
small set of comparisons” when preregistration is not an available
option. In relation to registered reports, their implementation
relies on the approval of an external review board, which is
usually under a journal’s or the funder’s aegis; therefore, regis-
tered reports are prone to confirmation bias, and not free from
potential conflict of interest.

The hypothetico-deductive framework works well with ran-
domized controlled experiments, such as clinical trials, where
confounding is controlled and other external conditions are
made constant. The experiment is conceived to test just one or
few, very specific hypotheses. In the narrow set of conditions
where simple theory is appropriate, and the questions addres-
sed are not highly enmeshed in complex systems, preregistra-
tion is advisable and should be included in research guidelines.
However, when there is valuable data that could inform various
inferences, such data should not be seen as inappropriate for
scientific inferences just because it cannot be fit into an infer-
ence flow that is compatible with preregistration and registered
reports. Notably, Munafo et al. (2017) and Nosek et al. (2018)
specified that preregistration and registered reports do not
apply to exploratory analyses.

We argue that the countermeasures proposed by Munafo et al.
(2017) are not appropriate for a set of new situations that are
becoming typical of big data science. These conditions imply not
only big complex data, but big, complex, highly evolved, natural
systems. In complex systems settings, exploratory analyses and
hypothesis testing can work together, and therefore a new cove-
nant on HARK is needed. The motivation behind our work ori-
ginates from the recognition of the potential utility of HARK, as
epitomized by Vancouver (2018). However, we are agnostic to
assigning positive or negative connotations to HARK (or to
CHARK, SHARK, THARK, etc.) and we stand by the neutral
formalization provided by Gelman and Loken (2013). Gelman
and Loken (2013), Munafo et al. (2017), Nosek et al. (2018), and
others have previously discussed cases where preregistration may
not be an option: we address in depth these scenarios. Lash and
Vandenbroucke (2012) already argued that preregistration is
unlikely to improve inference, affirming a flawed analogy of
preregistering epidemiology and psychology studies to rando-
mized controlled trials, and questioning definition consistency
and practical feasibility of preregistration. They proposed instead
to share openly data with important metadata information, such
as the description of data generation and the prior uses. While
open data and metadata are desirable and are becoming the de
facto practice standard in research, they might not provide a
sufficient condition to curb data dredging. In fact, preliminary
evidence of issues with preregistration has been brought up by an
empirical study (Claesen et al., 2019), which urges reflections and
awareness on a stubbornly open problem.

Prediction and postdiction with big data
Technological progress has reduced the cost of generating or
collecting data in many research fields. Big data raise research
ambitions but come at the price of poorly harnessed hetero-
geneity, uncertainty, obsolescence, and many other hurdles that
affect the process of study design and hypothesis testing or
generation.

In the “Preregistration revolution”, Nosek et al. (2018) point
out the utmost importance of distinguishing between prediction
(testing hypotheses) and postdiction (generating hypotheses)
because presenting postdiction as prediction is essentially HARK,
and it threatens reproducibility. They advocate preregistration as
the best mean to distinguish prediction from postdiction, assuring
that “the problem of forking paths is avoided because the analytic
pipeline is specified before observing the data”. Nonetheless, they
acknowledge that challenging situations—gray areas—can occur;
for instance, data collection procedures can change or be violated
over the course of experiments, part of the data may be pre-
existing, data can be dynamical, data can be multivariate, a glut of
hypotheses could be preregistered, or hypotheses could be weak.
In such cases, they claim that still preregistration ameliorates the
likelihood of reporting false results; hence THARK is indulged
and given clearance.

With big organic data, the aforementioned challenges abound.
The boundaries between prediction and postdiction are blurred,
as not all big data studies are exploratory, and HARK can be
inevitable.

Therefore, for situations where the hypothesis space is large, or
where there are many ways to generate data, the best practice
guidance for hypothetico-deductive research needs to be relaxed
or revisited in relation to other paradigms, such as abductive
reasoning (Douven, 2013; Douven and Schupbach, 2015).
Abductive reasoning, in the sense of inference to the best expla-
nation, starts from the data and seeks to find the most likely
hypothesis. A cyclic hypothetico-deductive and abductive epis-
temological framework was proposed by Ramoni et al. (1992)
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over 25 years ago—before the popularization of big data and data
science—for knowledge based systems and, in particular, for
medical knowledge. In their framework, prediction and postdic-
tion cycle continuously: prediction follows the hypothetico-
deductive process, and postdiction is abductive. All exploratory
analyses are abductive in nature, and all hypothetico-deductive
experiments start from postdiction, i.e., preliminary evidence
suggesting one plausible hypothesis to be tested. By deduction,
hypotheses generate new data and findings that, by abduction,
refine the hypothesis space for deduction.

With big organic data, abduction and deduction are hybridized
rather than being cyclic. The hybridization occurs because the
generation of data from hypotheses and the generation of
hypotheses from data are entangled, can happen at the same time,
and be indistinguishable, as shown in Fig. 2. For instance, two
datasets generated on the same population to test two distinct
hypotheses (e.g., physical activity lowers blood pressure and
physical activity increases testosterone) could be integrated at
some point with another newly generated dataset to test a third
hypothesis (physical activity and genetics determine depression).

To better illustrate the blurred boundaries of prediction and
postdiction, we further give three examples of research involving
large data spaces, with both strong and weak hypotheses, and
many options for analysis. All examples contain inevitable (and
sometimes undisclosed) HARK, infeasible preregistration, and
need for further safeguards against p-hacking and biased
reporting.

Example 1: family genealogies. The evolutionary relationships
and migration histories of organisms can be studied after genetic
sequencing of species’ samples through molecular methods such
as phylogenetics. A phylogenetic tree, similar to a family gen-
ealogy, is a binary tree whose leaves represent the sampled spe-
cies, and the inner nodes represent ancestors from which the
observed samples originated (Penny, 2004; Salemi et al., 2009).
The leaves can also be annotated with dates, geographic locations,
or other traits and estimate values for their ancestral states. A
phylogenetic tree can, therefore, be used to test hypotheses of
migrations like “The Cuban crocodile and other American cro-
codiles evolved from the Nile crocodile, which crossed the
Atlantic, rather than from the Asian or Australian species”
(Meredith et al., 2011) or “the Zika viruses found in the mosquito
population in Florida originated from the Caribbean islands”
(Grubaugh et al., 2017). In order to test the first hypothesis,

evolutionary zoologists could collect samples from modern-day
crocodiles or fossil samples, sequence their DNA, and verify.
Similarly, for the second, epidemiologists would collect mosqui-
toes or human blood samples from different regions in Florida
and other countries where Zika outbreaks have been reported.
Nonetheless, even if a specific relationship or evolution hypoth-
esis blooms in relation to preliminary evidence for solving a
problem, phylogenetics is exploratory, post hoc in nature. This is
because, given N genetic sequences from sampled species that
have been aligned—this is already a process that involves high
parameterization and uncertainty—there are (2N− 3)!! possible
phylogenetic trees, i.e., evolutionary histories. The garden of
forking paths is unmanageable already with 50 sequences (to say
nothing of the evolutionary parameters in addition to the
topology). Thirty years ago, only a few sequences could be
obtained; nowadays, with advent of gene banks and high-
throughput genetic sequencing, it is possible to collate different
datasets with large sample size and longitudinal sampling,
yielding hundreds, if not thousands, of isolates. The goodness of
fit of a phylogenetic tree or of a tree branching pattern can be
tested through different methods, and there are efficient heuristics
that search for the best trees—in terms of likelihood or other
optimality criterion—over such an enormous tree space. So,
methods that can define the reduced tree space must be flexible
and interpretable. Evaluating model robustness is essential, and
methods such as likelihood ratio tests or bootstrapping are
standard with many software applications. A predominantly
Bayesian approach has emerged to handle the model complexity.
Bayesian modeling helps dealing with the data uncertainty and
the assumptions on the evolutionary models that are competing
hypotheses themselves. Because the set of possible tree shapes is
so huge, parameters constraining tree space are essential. Under a
Bayesian framework the phylogenetic trees to be tested are
assigned a prior probability based on evolutionary parameters.
For instance, the rate at which genetic mutations appear in spe-
cies can be modeled as a ‘molecular clock’, and different clock
models, e.g., constant or exponential rates, can be tested. By
numerically integrating over all possible trees, one can obtain
marginal probabilities for hypotheses of interest. Extant evidence
can be used as prior information for a new taxonomy search, and
published evolutionary rates from other studies are often used to
shape parameter sampling distributions.

Phylogenetics is not purely explorative; it makes assumptions
about the effects of evolution and provides a framework for

Fig. 2 Hybridized hypothetico-deductive and abductive inference. In the hypothetico-deductive framework (blue), a hypothesis guides the setup of an
experiment and the generation of data through which the hypothesis is confirmed or falsified, generating knowledge; in the abductive framework (red), pre-
existing data—could have been generated by a deduction process too—are used to test many hypotheses, the most plausible of which is verified through
deduction or retained into knowledge; with big organic data (green), distinction between hypothesis-generated data and data-generated hypotheses is
more difficult, as data can be pre-existing, contemporary, or prospective in relation to many concurrent hypotheses. Thus, data can lead to hypotheses and
hypotheses can lead to data, with new data and new hypotheses adding both in dependence and independently from the inference processes

ARTICLE PALGRAVE COMMUNICATIONS | https://doi.org/10.1057/s41599-019-0340-8

4 PALGRAVE COMMUNICATIONS |           (2019) 5:125 | https://doi.org/10.1057/s41599-019-0340-8 | www.nature.com/palcomms

www.nature.com/palcomms


testing hypotheses. HARK occurs routinely, because it is intrinsic
to the multi-hypothesis (tree topology) and multi-level (choice of
models of evolution, model priors) nature of phylogenetic
analyses. Sometimes such HARK is not completely transparent.
HARK may be hidden by the choice of many alternative analysis
pipelines that could be taken (e.g., maximum likelihood vs.
minimum evolution tree search). Usually, data dredging is
handled by robustness analysis, but it may still creep in when
(1) the data collection is flawed, e.g., convenience sampling, or (2)
when the wrong model set-up is employed. Rigor in methodology
tackles (2), whilst (1) must be approached with proper study
design and still relies on the initial hypothesis. Dataset collation in
a phylogenetic study can lead to SHARK, as including or
excluding a number of genome sequences can change the results
in a more or less desired way, and therefore the published
findings. Preregistration, however, is likely to be of little help here.
One approach could be to declare which genome sequences are
going to be used for analysis, given a strict rationale for excluding
sequences, e.g., if they cannot be aligned or if they are too distant
from the target species. In practice, these criteria may need to be
very loose, since often decisions need to be made after analyzing
data, making vain the purpose of preregistration itself. Better than
preregistration, a consideration of existing scientific knowledge
from literature could be embedded in the study design (merge
existing and new data) or in the analysis as prior probability
(narrowing the search space of evolutionary parameters already
known). Moreover, as evolutionary theory becomes solidified by
other studies, the entire phylogenetic analysis might deserve to be
done completely from the start again under assumptions relevant
to that new knowledge of evolutionary theory. The validity of a
phylogenetic analysis is better assured by multiple investigators
redoing an analysis given their understanding of the existing
theoretical foundations for an analysis than it is by following
some set of rules established in advance of an analysis.

Example 2: genomics and beyond. The human genome can be
thought of as a string of a couple of billion letters (A, C, G, and T)
representing nucleotides that hold the code for building and
operating cells. On average, a person has about ten million var-
iations, or single nucleotide polymorphism (SNPs), in their
genome. Genome-wide association studies (GWAS) relate SNPs
to (more or less) heritable health conditions and disorders
(Manolio, 2010). A GWAS is usually considered as purely
exploratory analysis. In fact, hypothesis generation in GWAS
rarely focuses on the SNP. Rather, the focus is on gene function
pathways or on macro evidence, such as a disease being observed
at a high frequency in a particular subgroup (race, ethnicity,
gender, socioeconomic status, etc.), e.g., “what are the genetic
determinants of rheumatoid arthritis in Native American Pima,
and how does their higher disease incidence compare to other
ethnic/racial groups in North America?” (Williams et al., 1995).
Classical GWAS typically involve a single dependent variable, a
few million independent SNP variables, an ancestry genetic
component, and other covariates. These million hypotheses are
usually tested one-by-one using an allelic model with strict cor-
rection for multiple comparisons, meaning that the p-value shall
be 5 × 10−8 or smaller. GWAS have been plagued with low sta-
tistical power since their inception, because the number of gen-
otypes obtainable in a single study is constrained by technological
limitations and costs. However, the landscape has changed
rapidly with an explosion of GWAS in the past 20 years,
including larger sample size, concurrent studies, standardized
analytic pipelines, and meta-analyses. With costs of sequencing
going down (in 2019, a mail order kit for SNP sequencing in the

United States costs $99), it may be possible to sequence most
people in high- and medium-income countries in the next few
years, making the genotype a ubiquitous attribute.

Whereas it is straightforward to control the false discovery rate
in GWAS, there may be other hurdles to replicability and
reproducibility in hypothesis testing rather than in hypothesis
generation. For instance, the definition of the disease phenotype
can be arbitrary (say, a behavioral disorder), as well as the choice
of a population structure model, or adjustment variables when
testing associations with the phenotype. GWAS studies are
generally regarded as replicable (Kraft et al., 2009; Heller et al.,
2014; Rietveld et al., 2014), although there is variance among
study phenotypes (Dumas-Mallet et al., 2016; Arango, 2017). The
current “big short” with GWAS is in the missing heritability—i.e.,
why single genetic variations cannot account for much of the
heritability of diseases—and the poor predictive performance of
SNP-based risk scores, also due to non-hereditary factors
(Marigorta et al., 2018). In other words, we know the genes that
are associated to a disease phenotype, but we cannot predict
accurately if a person is going to develop the disease based on
their genes. Genomics can now be coupled with other omics
domains, e.g., the transcriptome, the microbiome, the proteome.
Each omics domain can add millions of additional variables.
Consequently, a GWAS-like approach to find associations with
phenotypes is very limiting. The purpose of multi-omics studies,
after all, involve looking at cross-domain mechanisms. Incor-
poration of cross-domain mechanistic theory can improve
prediction accuracy of phenotypes. Such a mechanistic theory
might relate to which SNPs act in concert with different types of
joint effects, such as simple independent action or multiplicative
effects. Failure to formulate joint effects correctly might be one
reason for the low predictive power of GWAS studies. The
principles of formulating joint effect models described by
epigenesis theory might help overcome this deficiency (Koopman
and Weed, 1990). As biological theory advances, the theoretical
basis of defining joint effects is becoming increasingly established.
Without such theory, the severe computational burden associated
to fitting joint probability parameters for large numbers of SNPs
limits the number and the complexity of hypotheses that could be
tested. Finally, with both GWAS and multi-omics studies, the
cumbersomeness in data generation and collation makes it
difficult to clearly distinguish prospective and observational
designs. For instance, genomic sequencing of a population
obtained for testing SNP associations with diabetes could also
be used to test retinopathy. Genomic sequencing could also be
obtained as routine screening of public health utility indepen-
dently from an outcome of interest.

Riva et al. (2010) presented an operational framework for
GWAS, based on the cyclic deductive-abductive model of Ramoni
et al. (1992) which included refinement of phenotypes and
integration with other knowledge base, implementing practically
a full-fledged THARK. However, Riva’s framework is only in part
exempt from threats to reproducibility; as it covers hypothesis
multiplicity for phenotypes and basic validation, but not other
forking paths such as model choice and reporting bias. For multi-
omics studies, integrative approaches for study design have been
proposed to recognize the “enduring availability [of large—omics
data sets that] can be reanalyzed with multiple approaches over
and over again” (Hasin et al., 2017). The analytical challenges of
integrating omics data into GWAS analyses are considerable.
Many approaches to generating hypotheses and theories arise.
These might focus on the genome, the phenotype, or the
environment. The rewards could be considerable, but such
integration will use HARK to build the needed complex
theoretical base.
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Example 3: social media. Social media create streams of
unstructured textual, image, audio and video data as well as
structured (meta)data such as location. Some of the data are
available at the level of individual users or populations (com-
munities of interest, regions, organizations, etc.). The resolution
of the data in time, place and person is high, uncovering new
insights into human behavior. Through methods of social media
data mining (e.g., natural language processing, network analysis,
machine learning models for text/image categorization), the
information can be progressively structured and used to answer
research questions (Zafarani et al., 2014; Bian et al., 2019). A well-
formed, preregistered hypothesis can be tested; an algorithm for
data sampling can be shared, along with computer code to allow
others to repeat the analyses on old or new data. Nonetheless,
many forking paths in the data processing can threaten repro-
ducibility. For example, consider a Twitter study that tests the
hypothesis that “short-term and long-term non-contact martial
arts training boosts work performance of middle-class employees
in the United States”. The study design may include selection of
tweets based on geolocation, citizenship, removal of spammers/
bots, classification of job satisfaction (e.g., positive, negative,
neutral), etc. The number of parameters involved in natural
language processing or deep learning analysis is usually very high.
The uncertainty of machine learners to categorize tweets can be
also high. Even if the hypothesis and its testing procedure have
been specified properly, the experimental data generation and
encoding can be highly variable. In addition, large imbalance
between cases and controls creates situations in which a relatively
small-sample case set can be compared to at-a-will number of
control groups. A few changes in the data collation and feature
extraction/categorization pipeline could produce largely different
datasets with the same study design. The massive variability in
procedures and volatility of data can lead to uncontrollable
HARK and all kinds of data dredging, severely affecting repro-
ducibility. In a critical literature review of Twitter-based research
on political crowd behavior, Cihon and Yasseri (2016) highlighted
lack of standardized methods that permit interpretation beyond
individual studies, remarking that “the literature fails to ground
methodologies and results in social or political theory, divorcing
empirical research from the theory needed to interpret it.” In
another study, Pfeffer et al. (2018) illustrated artifacts in Twitter’s
application programming interface, for which sampling should
not regarded as random. They showed how it is possible to
deliberately influence data collection and contents, consequently
manipulating analyses and findings. Developing theory that
handles such extreme variability is required, making HARK
contribute to solidifying inferences rather than threatening their
validity.

A HARK-solid inference framework for big data
In the context of big organic data, studies can clearly be affected
by many types of HARK, and, as discussed, preregistration is not
an efficient safeguard.

We, therefore, foresee a core theory based on the hybrid
hypothetico-deductive and abductive paradigm—blending
hypothesis testing and generation—that does not curb HARK but
exploits its utility by decoupling it from data dredging, i.e., it
makes it ‘solid.’ Such theory organizes a hypothesis’ space in
relation to a data space and introduces multiple levels of
hypothesis verification that form a model space.

We propose to shift the research focus from hypotheses to
models. The difference is important. Hypotheses are so-called
when they are yet to be formalized and tested—so to speak, they
reside in Plato’s Hyperuranion. A model is a formalization of a
hypothesis in the form of computable (over a defined input)

function, multivariate joint probability distributions, or logical
assert that can undergo empirical verification, i.e., Popperian
falsification. Models are systematic, compressed representation of
reality, and the model space is the gold standard to which one
refers in both hypothesis generation and testing. Models therefore
are the integration of hypotheses into an action-based structure.
Models can capture the mechanistic aspects of processes that
hypotheses may not. For instance, there are statistical models that
focus on describing variation in relationships, machine learning
methods for prediction or forecasting, and there are causal system
models that focus on how different types of situations and events
relate to each other in terms of causes and effects. Of note, models
do not necessarily coincide with theory (or body of knowledge)
because they are not always explicit or explanatory; for instance, a
neural network model could provide a reliable representation of a
complex physical phenomenon without being interpreted.

We recognize that the analytic workflow that leads to a model
is tight to the model instantiation, and definitely aids with
reproducibility. For this reason we are in favor of registration of
research protocols or reporting guidelines rather than pre-
registration of hypotheses. However, we are more cautious in
including the workflow component in the model definition
because a model could be found though an irreproducible pro-
cess, e.g., by intuition of a single scientist, and then survive fal-
sification through multiple validations. Another term distinction
we make here (not generally conventional) is between the terms
method and model. Logistic regression or Bayesian phylodynamic
tree estimation are methods. They become models when inde-
pendent/dependent variables are defined, when coefficients/
parameters are set or estimated, etc. In phylodynamics, a model is
a finished tree (ensemble) with specified topology, branch lengths,
node dates, locations, and species’ annotation.

Being model-centric is different from data-centric because the
data become a mere falsification instrument and the knowledge
(i.e., model) gains the prime role. To better illustrate how models
are detached from hypotheses, and how models represent reality,
in Fig. 3 we show a flowchart for knowledge discovery with big
data, and a ‘natural selection’ framework based on internal and
external validation that updates the set of existing models, i.e., the
knowledge base of reality. The black links in the figure can be
interpreted as conditional dependencies, like in a directed Baye-
sian network, while the blue links represent HARK and HARK-
related phenomena. Note that here we are illustrating HARK that
could be in service of legitimate new knowledge generation. In
our scheme, all of the HARK-like links originate from models.
They set off processes that can change conceptualizations of what
is important in real-world evidence, how we should think about
the problem we are addressing, what hypotheses are most
important to explore, what our research objectives are, or how we
need to design a study to advance knowledge. Without these
HARK-like links, one vastly restricts the potential to generate new
knowledge, as in the three case-study examples we have pre-
sented. Thus excessive rigidity in controlling HARK could restrict
scientific advancement rather than eliminate non-reproducible
research results.

We now explain Fig. 3 starting from the top node and fol-
lowing the direction of black arrows.

i. Based on some real-world evidence or prior theoretical
scrutiny, a problem or a research objective can be posed: for
instance, in the 1950s, lung cancer became a top cause of
death worldwide and scientists needed to find the cause
and, possibly, a solution. A number of hypotheses to explain
the problem springs from the evidence and from existing
knowledge and theory; the latter can be prejudiced by a
form of cognitive bias (e.g., confirmation bias).
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ii. A study design is generated around the hypotheses, which
can be many in case of explorative analysis, where a general
overarching hypothesis can basically contain many, such as
in GWAS. Study design is necessarily influenced by extant
hypotheses and theory manifest in existing models but also
indirectly by available data/experiment sources. A rando-
mized controlled trial is designed to minimize selection bias
when testing the effect of a new treatment (the hypothesis).
However, a randomized trial is not always feasible: for
instance, it would not be ethical to design a trial to address
whether smoking causes lung cancer by assigning subjects
randomly to smoking. Thus, an observational study would
be the ethical alternative, but observational studies are more
prone to confounding and bias. Further, as discussed, both
prospective and observational studies designed to test one
hypothesis could be used to test many others. An
implementation of a study design, e.g., a standard operating
procedure for data extraction, can also generate additional
variability due to the choice of sampling parameters (as we
showed in the social media example).

iii. Data samples are generated from available data/experiment
sources and study design. A study design might draw from
multiple data bases. For instance, a retrospective study to
test the association between smoking and lung cancer,
adjusted by genetic background, is designed. The study is
implemented by querying medical records that document
both smoking habits and genetic testing. The researchers
identify two sites: one healthcare provider serves a large
population, but its clinical information system allows
queries only on past/current smoking and a certain number
of genes; the other provider has more detailed behavioral
data (including number of cigarettes per week) and higher-
resolution genetics but serves fewer people and provides

less data. Notably, the conditional dependency of hypoth-
eses, study design and data samples is not necessarily
conform to the hypothetico deductive paradigm, but can be
abductive or hybrid—as many cases are with big data—
because of the other conditional link coming from available
data/experiment sources and of the multiple hypothesis
context.

iv. The study design and the data sample entail the inference of
new models. Each model represents one of the many ways
to test how hypotheses are supported by a data sample. For
instance, following the lung cancer study design example,
the model could be a logistic regression on the lung cancer
outcome with smoking and SNPs as covariates. None-
theless, various alternative models on the same data could
be set up, and existing models can be tested too. The notion
of model in this scheme is generic and spans from simple
relationships between measured variables to more complex
representations, static or dynamic; the new/existing models
can be purposed/repurposed to discover association, per-
form predictions or explain causality. Note that a number
of HARK links generate from here to hypotheses and study
design (discussed below).

v. Internal validation (e.g., cross-validation) is used to ensure
parameter robustness and generalizability among the
various model choices on the specific data sample; the
goodness-of-fit is dependent on the research objective and
the model purpose, e.g., an effect size, a prediction error or
the strength of conditional independence.

vi. The inferred new models then undergo a second level of
verification by being compared with existing models (and/
or model forms that differ from those in the original study
design) through external validation, using datasets that
have been generated independently from the starting

Fig. 3 A scheme for HARK-solid knowledge inference and model ensemble update. The orange compartments (real-world evidence and problem/research
objective) represent the motivating forces for organizing a research endeavor. The gray compartments (hypotheses and study design) represent the
intellectual effort to organize that research. The green compartments (available data/experiment sources, data sample and other data/experiments)
represent the data one can use in pursuit of the inferences one seeks in regard to hypotheses or the construction of new models relevant to the real world.
The purple components represent inference (new models) and knowledge bases (existing models). The magenta compartments (internal and external
validation) authenticate inferences made by analyzing data with new or existing models: internal validation of inferences comes from study-generated
models and data, while external validation comes from other data and models. The azure lines represent model generated actions that could lead to HARK.
For the examples we have presented, this HARK is helpful for advancing science rather than generating non-reproducible results
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hypotheses and from the study design that led to the data
sample. To some extent, the external validation can be
considered abductive as the models being tested represent
hypotheses. For instance, the logistic regression model
derived using smoking habits and SNPs could be compared
with an existing genetic risk score on a new dataset collated
from multiple sources of healthcare records. As another
example, the relationships of interest could be analyzed
using existing models that have different joint effects
implications. Ultimately, new models update the existing
models set, by joining the model space, rewiring the
knowledge base and theory.

In our conceptual framework there are two main HARK-like
paths. The first set of paths that arise from the new models node
and lead to changes in the hypotheses or study design, which may
subsequently change the data sample. If we assume that appro-
priate statistical procedures are used, internal validation can
handle post hoc changes in hypotheses, using multiple model
comparison, especially if existing models are factored in. How-
ever, if the changes in hypotheses and study design affect the data
sample—generation of data biased by postdiction—then internal
validation is not effective because it relies on the data sample
itself. For instance, in a GWAS study on depression, the pheno-
type could be changed by using a different symptom scoring
method, then used to identify more associated SNPs. External
validation is necessary because other, independent data samples
are not affected by changes in hypotheses or study design—the
phenotype definition in the GWAS example. One could argue
that the collation of other data is dependent on the study design
because of sampling parameters, but the external validation does
not need to be carried out within the same study and can be
operated by independent researchers who decide to use a different
design. In the end, validation of many models over many datasets
results in ‘survival of the fittest’ model(s).

The other HARK-like paths arising from the existing models
node represent both the cognitive bias and the effect that the
models have in shaping our perception of the real world. For
example, in the phylogenetic analysis cases outlined above, it
could be difficult to accept alternative evolutionary histories that
contradict longstanding evidence (even if derived from old, biased
data and obsolete methods).

In summary, reproducibility is attained by maximizing the
generalizability of models and minimizing the bias in model space
(i.e., the bias as to what we perceive to be a valid model space).
The latter is more problematic because it biases the data gen-
eration and therefore external validation.

The manifesto for reproducible big data science
We recommend the following actions to progress beyond pre-
registration toward HARK-solid approaches that can better
handle reproducibility in big data inference. Our recommenda-
tions apply mostly to descriptive/prediction models, but they
could be extended to interventional, causal models that rely on
stronger assumptions, domain knowledge, and prospective
design.

● Exploit hypothesis multiplicity. While pure hypothetico-
deductive studies, like clinical trials, are defined with specific
hypotheses a priori and well handled by preregistration, with
big data studies –as described– prediction and postdiction
have blurred boundaries. Big dataset collation must therefore
be transparent, i.e., agnostic, to the hypotheses of choice,
because new hypotheses can emerge because of the con-
tinually growing, organic nature of big data. In these cases,
enumeration of testable hypotheses as in “strong inference”

may be pursued (Platt, 1964), together with data re-analyses
when new variables or increased sample sizes are available,
toward full-fledged abduction by explorative analysis.
Hypothesis multiplicity may also help to reduce
confirmation bias.

● Focus on models, effect sizes and goodness of fit. A model can
be as simple as the empirical confirmation of a single
hypothesis in a controlled environment through a univariate
test, a multivariate function, or a dynamic system represent-
ing a complex piece of reality (with or without causal
meaning). Often, the effect sizes and the goodness of fit of a
model (which can include functions usually used for assessing
prediction performance, as well as methods for assessing
causal plausibility) are neglected over the pursuit of statistical
significance. With big data, where likely everything can be
significant, we have a chance to revise the historical obsession
on p-values, which leads to misconceptions and delusions
about reproducibility (Gigerenzer, 1998; Wasserstein et al.,
2019).

● Exploit model multiplicity and perform internal validation.
Model multiplicity involves both the set of factors/variables
used and the statistical technique chosen. Nowadays, many
statistical and machine learning techniques are available with
methods for variable set selection. Statistical safeguards for
internal (or in-sample) validation include more stringent p-
value thresholds (Ioannidis, 2018) or type-2 error avoidance
(Verhulst, 2016). For parameter optimization and model
selection, robust techniques should be chosen, such as
bootstrapping or cross-validation (Nadeau and Bengio,
2003; Hastie et al., 2009). When the parameter/model space
is too large for grid searches or when cross-validation is
resource-consuming (even if run in parallel), asymptotic
selectors—quick to calculate—such as the Akaike, Bayesian,
or other information criteria (Stine, 2004) can be used,
accompanied by heuristic or random-like parameter/model
searches, like simulated annealing. Stricter Bayesian formula-
tions can be devised, assigning priors to models and selecting
them based on a Markov Chain Monte-Carlo search and
Bayes factors (Chipman et al., 2001; Faya et al., 2017). Also,
multilevel modeling can be factored in (Gelman, 2006;
Gelman et al., 2012). Internal validation and model multi-
plicity exploitation stand also in causal inference: for instance
there are established approaches for automated learning of
Bayesian networks and selection/evaluation of causal struc-
tures (Pearl, 2009). Still, there can be ill-posed scenarios
where even internal validation can fail. Simonsohn (2014)
showed through simulations (data peeking, convenient outlier
removal, choosing favorable dependent variable or one
variable combination out of many) how Bayes factors, not
only p-values, can be hacked through selective reporting,
where the only solution is “required disclosure.” Yet it could
be argued that a stricter statistical approach to false discovery
rate control or bootstrapping could ameliorate Simonsohn’s
cases. Other improved inference strategies may include
running variants of analytical pipelines in parallel, and
adjusting false discovery rates accordingly (Carp, 2012;
Heininga et al., 2015). There remain unanswered questions
about optimal strategies, particularly in relation to uses of
Bayes factors and common estimators of marginal likelihoods
(Wolpert and Schmidler, 2012; van der Linden and Chryst,
2017).

● Implement external validation. As we discussed, although
internal cross-validation is usually robust, it is not sufficient
for demonstrating generalizability of findings. External
validation on other datasets, collected in different contexts,
is required. There are well-established guidelines for external
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validation of association and prediction models, such as the
transparent reporting of a multivariable prediction model for
individual prognosis or diagnosis (TRIPOD) (Moons et al.,
2015; Colquhoun, 2017), as well as for causal inference, such
as model transportability (Pearl and Bareinboim, 2014).
Testing previously published findings and fitted models on
new data (as distinct from meta-analysis of existing studies) is
crucial to confirm and update the state-of-the art, i.e., the
existing models available in literature and endorsed by the
scientific community. Implementing proper external valida-
tion, however, may be not straightforward (Ulrich and Miller,
2015; Hartgerink et al., 2016; van Aert et al., 2016). Even
meta-analyses used in disciplined evidence synthesis can be
affected by publication bias (Sedgwick, 2015; Lin and Chu,
2018). Crowdsourcing analytics, which could be considered a
form of concurrent internal/external validation, has been
shown also to be highly unstable in cases of high peer rating
(Silberzahn et al., 2018).

● Ensure repeatability and replicability before reproducibility.
We deconstruct the general reproducibility term into three
aspects, according to Plesser et al. (2018). Study repeatability
—defined as the possibility to reproduce results presented in a
work with the same data—must be enforced in the peer
review phases by promoting data and procedural/code/
software sharing. Replicability and reproducibility are each
important as: (i) the study design and/or the data collation
procedure must generate similar datasets when applied in
different settings or carried out by different teams, and
consequently (ii) previous findings and/or inferences must be
reproduced, i.e., confirmed. When repeatability and replic-
ability are assured, e.g., code/software with possibility to
explore preprocessing parameters, then internal/external
validation assists toward reproducibility (or model
generalization).

Potential pitfalls of the proposed approach
We have mentioned that one threat to our operational framework
is the bias in model space, originating from multiple sources,
including cognitive preconception and bias in external data
generation. In particular, the requirement that models should be
tested with data samples generated independently from the
model/hypothesis generators may not be practical. In fact,
whenever a validation occurs, someone has to design a data
generation/collection and analysis workflow to test new and
existing models. Indeed, the enormous space of parameters or
design variations would apply to the buildup of this testing
process. For example, if the testing dataset comes from Twitter,
someone still has to decide how to remove spammers/bots, which
tweets to select/filter, etc. In defense of the external validation we
can note that it often comes from different research teams, and
variations in the testing workflows could be seen as useful ran-
domization to ameliorate unmeasured confounding bias. Yet,
even when the researchers performing the test are not the same as
those who built the model, we still cannot claim the design of the
test to be fully independent from the model, given that the
designers of the test must have known the model before figuring
out how to test it. At present, we do not know if the variability in
designs of external validation workflows is going to be enough to
overcome such bias. A step in this direction might be to test one
aspect of a model rather than the whole model, e.g., parameters,
refocusing validation on to inferences rather than models. To a
broader extent, one could validate the consistency of the data
collation workflows.

Model and parameter validation bring us to a second problem
of our framework, which is the definition of a validation

methodology and model goodness criteria. For instance, when
evaluating predictive models, a change in the performance
function—entropy versus Brier score—can lead to different model
rankings, affecting model selection in both internal and external
validation. Even in simpler hypothesis testing scenarios, e.g.,
treatment is better than placebo, choosing a null hypothesis
testing method instead of a Bayesian approach can lead to the of a
multitude of results inconsistencies that flatten the model
importance and hamper the survival of a subset of good models.
In every study, the researchers may tweak the analyses to make
sure that their model is better. There are many statistical vali-
dation methodologies which may be combined at will to favor
one particular result. The plague of selective reporting based on p-
values, and the misuse of p-values in general (Wasserstein et al.,
2019) can still affect internal and external validation. To some
extent, registered reports here may be resurrected because they
allow the publication of negative results. Nevertheless, our pro-
posed framework does not prevent, rather it emphasizes the
publication of replication studies that validate someone else’s
model, for which a more objective validation standard could be
agreed by the relevant scientific community.

Future perspectives
Despite abundant literature on HARK, data dredging and p-
hacking, there is little theory that can be used to test strategies for
increasing reproducibility and decreasing publication bias. Pre-
registration and registered reports have become increasingly
popular but need to demonstrate their effectiveness, since cur-
rently results are not clear (Allen and Mehler, 2018; Claesen et al.,
2019). Our proposed framework for big organic data also requires
assessment. A start could be to investigate how external validation
affects survival of models in practice. For instance, one possible
study could compare papers presenting prediction models (for a
specific problem of interest) carried out following the TRIPOD
guidelines (Collins et al., 2015) versus those that did not; the
evaluation criteria could include common performance functions,
citations or test in prospective populations. Another critical
challenge that deserve further scrutiny are the effects of the
variety of validation methodologies on the model space. Does the
external validation converge on the true models, i.e., once one
inspects a sufficient number of external datasets, does the fitness
landscape of models reach an equilibrium?

Conclusions
We have summarized a spectrum of HARK-related reproduci-
bility problems and opportunities, from narrow inferences made
in the analysis of confined studies that can be p-hacked to big
data explorations involving complex systems where HARK can
become a virtue. That virtue of HARK expands the theoretical
and inferential area being addressed. One dimension along the
HARK vice-to-virtue scale relates simultaneously to the system
complexity and to the distance of causal actions along causal
chains from the measured variables to the measured outcomes
being addressed. Those two scales are closely related because
systems with extensive feedback and with complex patterns of
joint effects between two variables generally have long causal
chains. Even if causality is not the objective of the investigation,
system complexity creates challenges for all types of modeling.

We presented a HARK-solid inference framework for big,
ubiquitous and organic data, where prediction and postdiction
often mingle, and commonplace safeguards do not work well. In
hybrid abductive-deductive settings, HARK acquires a different
epistemological role, becoming a building block of the inference
process.
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We have shifted the focus from hypotheses to models, which
are (more computable) formalizations of hypotheses and provide
their empirical verification. With a model-centered paradigm, the
reproducibility focus changes from the ability of others to
reproduce both data and specific statistical inferences from a
study to the ability to evaluate representation of reality, theories,
and the validity of scientific theory inferences. We highlighted the
benefits—and limitations—of internal and external validation
enabled by the data globalization, wherein inferred models are
aired openly and are available for efficient falsification. One
limitation of our framework is that it may be unfit for causal and
dynamic system models. The models that could be most helpful
for getting reproducible inferences from big organic data are
causal process models, and the great advances in relating dynamic
system models to data in recent years already call for new per-
spectives in analytics theory. Indeed, an interesting framework for
inference in epidemiology that focuses on identifiability of para-
meters and causal theory misspecification, called inference
robustness and identifiability analysis (IRIA), has been proposed
by Koopman et al. (2016). IRIA may be considered almost
HARK-solid, since it foresees model refinement through iterative
data collection and robust inference, although does not explicitly
addresses external validation.

Model validation through many organic datasets serves as a
‘natural selection’ criterion in the space of models/theories
inferred and published by the scientific community. The com-
munity itself is facilitated to work more productively on gen-
erating and critically evaluating deeper theory that integrates
more complex realities.

One could argue the futility of making inferences about
hypotheses by examining data without an encompassing theory
for the hypotheses being generated. Examining data should not be
pursued for the purpose of evaluating hypotheses devoid of some
larger theory encompassing the processes relevant to the
hypotheses being considered. Without an overarching theoretical
context, reproducible science cannot be assured. The reproduci-
bility crisis has been often attributed to lack of transparency and
statistical rigor, but a more deep-rooted problem is scientists’
“illusion of certainty” from established “statistical rituals”
(Gigerenzer, 1998). Such rituals, like the focus on statistical sig-
nificance, eliminate judgment and flatten scientific thinking.
Science evolves through collaboration from diverse perspectives
producing theoretical structures that wider groups build on. A
HARK-solid framework for big organic data may help open and
connect dialogue, theory and data research in a gestalt manner.
The social change is that collaborative communities with highly
diverse opinions coalesce around model inferences that make a
difference either to policy or to science.

The cultural challenge may be greater than the theoretical or
technical challenges in realizing HARK-solid frameworks. Cultures
that force strongly held opinions to compete map more easily to
Popperian ‘tearing down’ than to community-based, crowdsourced
‘building up’ of hypotheses, models and theory. If that community
of scientists is not working to build a larger theoretical structure, if it
just uses data to gather evidence for and against a single hypothesis,
any methodological refinement for big data dredging will not
contribute significantly to reproducible science.

Data availability
Data sharing not applicable as no datasets were generated or
analyzed during this study.
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