Abstract
This study empirically examined expert and public attitudes toward applying gene editing to agricultural crops compared with attitudes toward other genetic modification and conventional breeding technologies. Regulations regarding the application of gene editing on food are being debated around the world. New policy measures often face issues of public acceptance and consensus formation; however, reliable quantitative evidence of public perception toward such emerging breeding technologies is scarce. To fill this gap, two web-based surveys were conducted in Japan from December 2016 to February 2017. Participants (Nā=ā3197) were categorised into three groups based on the domain-specific scientific knowledge levels (molecular biology experts, experts in other fields, and lay public). Statistical analysis revealed group differences in risk, benefit, and value perceptions of different technologies. Molecular biology experts had higher benefit and value perceptions, as well as lower risk perceptions regarding new technologies (gene editing and genetic modification). Although the lay public tended to have more favourable attitudes toward gene editing than toward genetic modification, such differences were much smaller than the differences between conventional breeding and genetic modification. The experts in other fields showed some characteristics that are similar to the experts in molecular biology in value perceptions, while showing some characteristics that are similar to the lay public in risk perceptions. The further statistical analyses of lay attitudes revealed the influence of science literacy on attitudinal change toward crops grown with new breeding technologies in benefit perceptions but not in risk or value perceptions. Such results promoted understanding on distinguishing conditions where deficit model explanation types are valid and conditions where they are not.
Introduction
Gene editing as a new breeding technology
Interest in gene editing in agricultural crops has increased remarkably. Countries such as the United States have taken a proactive stance on utilising this technique; however, the products and even the technology itself still need time in many countries for clear positioning beyond technical, normative, ethical, and political concerns Schultz-Bergin, 2018; Sprink et al., 2016a; Tachikawa, 2017). Japan, which has relatively strict regulations on genetically modified (GM) crops, also is at the final stage of decision-making process (Japan 224th Food Safety Group, 2019). Genetic modification and gene editing are indeed different technologies, and if there are differences in public perceptions between those two, empirically investigating such differences in a country with a lower acceptance of GM food, Japan in the case of the present study, should promote clearer understandings of determinants for perceptions of gene edited crops.
There are two different political standpoints related to gene editing (Sprink et al., 2016b). First, product-based policy regards gene editing as a technology that is closer to conventional breeding than to genetic modification. This view is seen in the case when no exogenous gene is introduced in gene editing; conventional breeding can also bring the same desired results after a much longer time. Thus, the safety of these two should be considered to be similar. The second idea, process-based policy, situates gene editing closer to genetic modification: as long as DNA manipulation exists, the outcome brings higher risks and uncertainties; therefore, the method should be considered unconventional.
In previous research investigating both expert and public perceptions of risk of biotechnology application on food, experts significantly perceived less risk compared with the lay public (Savadori et al., 2004). This result leads to the prediction that with great expectations about emerging technology, researchers who have domain-specific scientific knowledge in biotechnology would tend to adopt product-based policy. Meanwhile, according to a recent interview report by Hopp et al. (2017), the public tends to take the process-based policy. However, a salient shortage exists in quantitative evidence on peopleās risk perceptions toward application of gene editing in agricultural crops in relation to different levels of scientific knowledge. Thus, we statistically examined this topic in contrast with other existing technologies in genetic modification and conventional breeding using samples categorised into three groups by level of domain-specific scientific knowledge (experts in molecular biology, experts in other fields, and the lay public). Observing how different levels of domain-specific knowledge affect the response to each technology, including the latest, would deepen the understanding of public perceptions toward new science and technology (S&T), advancing related research.
Scientific knowledge, provided information, and attitude change
Psychological literature offers comprehensive evidence of the relationship between provided information and attitudinal change. People use available information when they make judgements (Finucane et al., 2002; Slovic et al., 1981). Thus, information should play an important role also in public risk, benefit, and value perceptions concerning food. The literature also suggests that outcomes are complex (Forgas, Cooper and Crano, 2011; Hyland and Birrell, 1979). A vast body of literature has discussed this topic in relation to scientific knowledge. For example, Zhu and Xie (2015) investigated the role of scientific knowledge in the above relationship and showed the effects of knowledge of both benefit and risk on attitudinal change related to GM foods, attributed to information provided. However, Frewer et al. (1998) claimed that the most important determinant of attitude changes toward genetic engineering after information provision was prior attitude. These findings suggest that an analysis capable of verifying changes within subjects would be necessary by taking differences in scientific knowledge into consideration.
Therefore, we focus first on the role of domain-specific scientific knowledge in the relationship between provided information and attitudinal change concerning the application to food of three technologies. As researchers in public communication of science stress the need of promoting reflections on scientific communities and stimulating dialogue between experts and the lay public (Kato-Nitta et al., 2017), answering this question should provide better mutual understanding. For this purpose, single-factor within-subject design of experimental survey was employed. By testing differences in responses to identical items by the same respondent for four conditions (before the information is provided and after information on three respective technologies is provided), other conditions, including the individual factors of respondents, are assumed to be controlled. Thus, this method matches our research goal.
Our first research question is as follows. RQ 1: How do attitudinal changes on different breeding technologies differ in three groups stratified by domain-specific knowledge? Our empirical study of statistically observing this issue would yield essential information on public perceptions of gene editing as new S&T.
Boundary conditions of deficit model framework
Our second research question aims to shed light on how the general scientific knowledge or science literacy of the lay public influences attitudinal change concerning acceptance of science owning to the information provided. The relationship between science literacy and peopleās acceptance toward emerging S&T such as GM crops has been studied extensively in connection with the deficit model frameworkāin other words, an increase in āproperā scientific knowledge among the public linearly improves their acceptance of new S&T. These studies were mainly associated with criticism for its oversimplified assumption, and there is also empirical evidence rejecting this. For instance, Bucchi and Neresini (2002) proved that better-informed people do not always show more positive attitudes toward GM food. Midden et al. (2002) reported that scientific knowledge or information may promote negative perceptions of the lay public.
Some researchers explain that scientistsā preconception of the public and its affinity with easily implemented policy may explain why the deficit modelās assumption continues to occupy a prominent position in science communication (Simis et al., 2016; Suldovsky, 2016). Nonetheless, as Slovic (1999) claimed, even if it is not the most dominant variable, scientific knowledge remains closely and importantly linked with public attitudes toward S&T. Ahteensuu (2012) attends to relevance by stating that scientific knowledge does explain, at least partially, public negative attitudes of new S&T. He further stressed the need of distinguishing between cases in which deficit-model explanations are warranted and cases in which they are not.
This discussion demonstrates that further studies must be conducted on the relationship between public science literacy and acceptance of food-related applications of new S&T. To explore this issue, the current study examines attitudinal changes in various facets of peopleās perceptions, particularly of changes in risk, benefit, and value perceptions. It can be considered that peopleās acceptance is promoted if decreases in risk perception and increases in benefit perceptions or value perceptions were observed. By investigating those three aspects of peopleās perceptions, we multidimensionally provide insight into peopleās acceptance of emerging S&T. Furthermore, this study introduces to the above discussion the elaboration likelihood model (Petty and Cacioppo, 1986) to explore the relationship among science literacy, provided information, and attitude change. The modelās foundational assumption is that attitude change is achieved with not only individual knowledge but also individual relevance to the information.
Therefore, we address RQ 2: Does science literacy influence the attitudinal changes that result from information provision about the differences in applied breeding technologies on agricultural crops? A confirmation of the empirical results for this question by taking into account individual relevance and different cases of applied technologies should contribute to the discussion on the relationship between scientific knowledge and the lay publicās acceptance toward emerging S&T.
Methods
Data
Two web-based surveys were conducted from December 2016 to February 2017. The surveys were entrusted with a survey company, Nippon Information Incorporated. Survey 1 used a quasi-representative sample from the companyās large opt-in panel of approximately 1,100,000 volunteers from the online population in Japan. An initial screening was made to mitigate the potential bias in demographic distributions, and allocation was made in proportion to the size according to region, gender, and age based on the 2015 Japan national population census, and drew 3350 respondents aged between 20 and 69 years on a first-come, first-serve-basis. Then, the final participants of 3000 were selected by excluding respondents with extreme-shorter response time (from the shorter side of time to be about less than 1/10 of median total response time). This treatment was made to enhance reliability of the data based on the idea of āsatisficingā in quantitative survey methodology (Krosnick, 1991; Maniaci and Rogge, 2014; Tourangeau et al., 2013). This idea is based on behaviour which respondents do not pay enough amount of cognitive effort to provide the suitable answers in a survey.
The participants for Survey 2 were scientists with and without expertise in molecular biology. We adopted an opportunistic sampling method in addition to recruiting volunteers using academic societiesā websites, such as the Molecular Biology Society of Japan and the Physical Society of Japan. We also utilised electronic mailing lists for recruiting participants, including TENNET (operated by the Japan Astronomical Society) and Jeconet (a Japanese academic mailing list related to ecology). Survey 2 participantsā fields of specialty were distributed as follows: Micro-biology, such as molecular biology, 56.3%; macro-biology, such as ecology, 13.7%; physical sciences, informatics, chemistry, or geology, 11.6%; social sciences and humanities, 6.1%; medicine, nursing, or health, 4.6%; other disciplines, 7.6%. The final sample size for the second survey was 197. Table 1 shows the survey demographics.
The data in this study were used in previous studies (Kato-Nitta et al., 2017; Tachikawa et al., 2017), and the surveys utilised were conducted under Japanese Privacy Information Protection Law. Participation was completely voluntary, and participants could withdraw at any time. Informed consent of all participants was obtained by Nippon Information Incorporated.
The surveys provided fundamental information, starting with the definition of genome and to textual explanation of the basic genome research, as well as health and agricultural applications of genome research. At this point, the initial attitudes, as a baseline of within-subject experimental design, were measured with 11 items on benefit, risk, and value perceptions toward genome research applied to agricultural crops. Details of the fundamental information provided are shown in Fig. 1.
Then, figures with texts (Figs. 2 and 3) were used when explaining the differences among the three existing breeding technologies of conventional breeding, genetic modification, and gene editing. The tomato is considered as a fine model plant by biologists (Busch et al., 1991), so we used figures depicting tomatoes to explain the technological differences. Next, three measurementsāone of perceptions of applying conventional breeding, one of perceptions of applying genetic modification, and one of perceptions of applying gene editingāwere made, each using 11 items (33 total items) spanning the oldest to the newest technologies. In order to answer these items, participants were allowed to refer to the figures (Fig. 2) and access the provided URL links to the website of the Ministry of Agriculture, Forestry, and Fisheries during the survey.
Information on technological differences in text. Information provision in text to explain the differences among the three existing breeding technologies of conventional breeding, genetic modification, and gene editing. This information is provided with the information described in Fig. 2
Measures and analyses
Relationship between domain-specific knowledge and attitudinal change
To answer the first research question, we assessed various facets of perceptions on applying genome research to agricultural crops with the 11-item scale. Nine of the eleven items were adopted from the JSPS KAKENHI (17019024) research project āPublic attitudes toward genomic researches in Japan (g-elsi)ā, and two extra items were added for the current study. Four measurements were made using this scale: before the explanation of technical differences (1st, baseline) and after presentation of technical differences among the three breeding technologies (2nd, 3rd, and 4th). The details of the 11 items are provided below, as well as in Fig. 4 and Table 4. The participants were asked to answer using a five-point scale (1ā=ādisagree to 5ā=āagree).
What do you think of a genome research application for breeding agricultural crops using the technology of (conventional breeding/genetic modification/gene editing)?
-
1.
Beneficial to stable food supply
-
2.
Beneficial to human health care
-
3.
Beneficial to economic development
-
4.
Impacts plant and insect ecology
-
5.
Insufficient safety confirmation
-
6.
Fear of unexpected adverse effects
-
7.
Possibility of misusing this technology
-
8.
Bioethically questionable
-
9.
Cannot understand well and feel somewhat fearful
-
10.
Universally favoured to be promoted
-
11.
Research considered insignificant
On the above 11 items, we statistically explored the differences in mean values of the four conditions of (1) before information on technologies, (2) conventional breeding, (3) genetic modification, and finally, (4) gene editing, using a single-factor repeated measures ANOVA. As the result of the statistical test depends on the sample size, we further calculated effect sizes to determine the extent of attitudinal changes and also conducted power analyses. We categorised participants into three groups by level of domain-specific knowledge of molecular biology: (A) lay public (nā=ā3000), (B) experts in the other fields (nā=ā86), (C) experts in molecular biology (nā=ā111). We also observed differences in attitudinal changes of the three groups from the data including the above three groups.
Influence of science literacy on attitudinal change
To answer the second research question, we tested the following hypothesis with regression analyses: peopleās scientific knowledge influences their attitudinal change on agricultural crops owing to information provided that explains the differences among applied technologies. For these analyses, we exclusively used the data from Survey 1 (the lay public).
Dependent variables
We constructed two composite variables using nine items out of the above 11 items: benefit perception comprised three items and risk perception comprised six items. A Cronbachās alpha coefficient for each of these constructs was calculated to confirm the internal consistency and reliability for each item. These values are shown in Table 2.
There were two items related to value perception: āUniversally favoured to be promotedā and āResearch considered insignificantā. Since the former is assessing individual perception of other individualsā value perception and the latter is assessing individual perception per se, the two items were considered to be unsuitable for aggregation; therefore, we used only the latter item to be included in regression models for the purpose of analysis in assessing individual attitude change on value perceptions.
After the above operationalisation, we calculated the sizes of the respective changes (difference scores) described as follows (Y1 to Y9) and then used them as dependent variable in regression analysis.
[Benefit perceptions]
Y1ā=āGene editing minus before information
Y2ā=āGenetic modification minus before information
Y3ā=āConventional breeding minus before information
[Risk perceptions]
Y4ā=āGene editing minus before information
Y5ā=āGenetic modification minus before information
Y6ā=āConventional breeding minus before information
[Value perceptions]
Y7ā=āGene editing minus before information
Y8ā=āGenetic modification minus before information
Y9ā=āConventional breeding minus before information
We decided to use the difference score (gain score) after weighing both its pros (Cronbach and Furby, 1970) and cons (Edwards, 1970) and its intuitive appeal on interpretability of results. Our dependent variables represented the perceived superiority or inferiority of each technology to the baseline of ābefore the information on technological differencesā. R-squares of regression equations are generally lower compared with the analysis not using such operation, as is characteristic when the major source of variations (baseline) is subtracted from the dependent variable. When the size of Y1 to Y3 and Y7 to Y9 are positive, the change can be interpreted as positive, and the benefit or value perception is higher compared with the perception before information provision. When the size of Y4 to Y6 is positive, the change can be interpreted as positive, and the risk perception is higher compared with the perception before information provision.
Independent variables
Science literacy: We measured participantsā general scientific knowledge with 11 items that have been repeatedly used in international comparative studies (European Union, 2001; National Science Board, 2016), as well as by the Japanese government (Ministry of Education, Culture, Sports, Science and Technology, 2004). The scale consists of items such as āAntibiotics kill viruses, as well as bacteria: True or falseā. We calculated the total sum of the correct answers to the 11 questions. The current studyās participants (the lay public) in Survey 1 recorded a correct answer rate of 53.6%, which was about a same correct answer rate of 54% reported in the previous survey conducted by the Japanese government (Ministry of Education, Culture, Sports, Science and Technology, 2004).
Individual relevance to the information (benefit of general genome research, risk of general genome research, and value of general genome research): We measured participantsā individual relevance to the information by measuring participantsā benefit, risk, and value perceptions on general genome research. As this research focuses on peopleās perceptions of genome research application on agricultural crops, we defined perceptions on general genome research as āperceptions on basic genome science and genome research as applied to medicineā. We adopted benefit of general genome research as control variables for models Y1 to Y3, risk of general genome research for Y4 to Y6, and value of general genome research for Y7 to Y9. Items for construct variables of individual relevance were measured before provision of information on technological differences (Figs. 2, 3) and the respective Cronbachās alpha values for each of the aggregated independent variables are provided in Table 3. As is shown in Table 3, Cronbachās alphas for the aggregated independent variables yielded adequate internal consistency and reliability.
Trust in food governance: Previous studies noted that trust has been considered the essential variable to understanding peopleās risk perceptions (Lobb, 2005; Slovic, 1999; Slovic et al., 1981). Recent empirical studies have also shown that trust was an important factor for both risk and benefit perceptions on the application of biotechnology to agricultural crops (RodrĆguez-Entrena, M. and Salazar-Ordóñez, 2013; Slovic, 1999). We introduced this concept as controls to test the hypothesis associated with the second research question. Trust in Japanese food governance was assessed with items used in previous Japanese studies (Kato-Nitta et al., 2017). This scale consists of four items evaluating participantsā trust in governmental food safety policy, as well as safety measures of food business companies. The participants were asked to answer using a seven-point scale (1ā=ācompletely disagree to 7ā=ācompletely agree). The Cronbachās alpha value for this scale is shown in Table 3.
Risk-avoidance orientation: We utilised this concept for controlling the level of original disposition of the participants with respect to risk. The part of this scale was used in the previous studies (and two extra items were added for the purpose of the current study (Kato-Nitta et al., 2017). The scale consists of six items and was developed to assess if the participants have a āzero-riskā orientation or whether they favourably evaluate products described as āadditive-freeā or āpesticide-freeā. The answers to this scale was made with a five-point scale (1ā=āDo not praise at all to 5ā=āPraise highly). The Cronbachās alpha value for this scale is shown in Table 3.
Results
Evaluation of mean differences of four conditions
Figure 4 shows the mean values of the four measurements from left to right (1ā=ābefore the information on technological differences is provided; after the information on technological differences is provided: 2ā=āconventional breeding, 3ā=āgenetic modification, and 4ā=āgene editing) of the three groups, categorised with domain-specific knowledge of molecular biology. Table 4 shows the result of single-factor repeated measures ANOVA in the mean value of the responses in each group.
Group mean differences of four conditions. Line charts of each item represent the mean values of the four measurements assessing benefit, risk, and value perceptions (1ā=ābefore the information on technological differences is provided; after the information on technological differences is provided: 2ā=āconventional breeding, 3ā=āgenetic modification, and 4ā=āgene editing) of the three groups, categorised with domain-specific knowledge of molecular biology. Red coloured linesā=āLay public, Green coloured linesā=āExperts in other fields, Blue coloured linesā=āExperts in molecular biology. Note: Given that the variable on the x axis is not strictly continuous, bar charts are more appropriate. However, we used the line charts for readability
Considering the overall positions of the three curves shown in Fig. 4, the following trends were observed. Experts in molecular biology showed the highest benefit perceptions, the lay public showed the lowest, and experts in other fields were in the middle. For risk perceptions, experts in molecular biology were the lowest, the lay public was the highest, and experts in other fields were in the middle. By reading the comprehensive shapes of the three curves, it can be observed that for both benefit and risk perceptions, there is a similarity among the lay public and experts in other fields. In contrast, for the two items of value perceptions, experts in other fields showed a similar trend with that of experts in molecular biology. Thus, the domain-specific knowledge of genome literacy affects the relationship between the provision of information and attitudinal change concerning food application of three technologies.
Group A (the lay public)
The red curve in Fig. 4 and statistical tests in Table 4 revealed that the lay publicās perception of food-related application changed after the information was provided. As for benefit perceptions, all statistical tests were significant. The results of multiple comparisons with Bonferroni correction shown in Table 4 also suggest that people consider benefit aspects of gene editing higher than those of genetic modification out of all three items assessing benefit perceptions. As for the two items of ābeneficial to stable food supplyā and ābeneficial to economyā, the values of effect size f were smaller than 0.10, as shown in Table 4. According to the criteria proposed by Cohen (1988), the interpretations for effect size f include the following: fāā„ā0.10 as āsmallā, fāā„ā0.25 as āmediumā, and fāā„ā0.40 as ālargeā. Therefore, although the results of statistical tests were significant for those two items, the degree of changes was small.
All statistical tests were significant for risk and value items, and the values of effect size f were larger than 0.10. The overall tendency of the red curves indicates that the lay public considers the risks of conventional breeding as the lowest and those of genetic modification as the highest. The results of multiple comparisons with Bonferroni correction, suggest that the risk perception for gene editing was lower than that for genetic modification; however, such difference was relatively small compared with the difference between conventional breeding and genetic modification.
Group B (experts in other fields)
The green coloured curve in Fig. 4 and statistical tests in Table 4 revealed that Group Bās attitudes changed after the information was provided, except for one item of ābeneficial to food supplyā. The results suggest that this group consider the benefit aspects of gene editing as similar to those of genetic modification out of all three items assessing benefit perceptions. This finding is based on the lack of statistical difference found between the two technologies. Because the mean of 4 (gene editing) is higher than that of 3 (genetic modification), and there is a statistical difference between 3 and 4 in Group B for the item āpossibility of misusing this technologyā, risk perception of gene editing was marked higher than that of genetic modification. The value of effect size f for this item was 0.823, which was much larger than Cohenās criterion: fāā„ā0.40 as ālargeā.
Group C (experts in molecular biology)
The blue coloured curve in Fig. 4 and statistical tests in Table 4 revealed that Group Cās perceived benefits did not change after the provision of information. The results of statistical tests in Table 4 suggest that risk perceptions of the experts in molecular biology changed before and after the information technological differences was provided, except for one item, ācannot understand well and feel somewhat fearfulā.
In this group, there were no statistically significant differences among the three technologies for the risk perception items, including āimpacts plant and insect ecologyā, āinsufficient safety confirmationā, and āfear of unexpected adverse effectsā. The shapes of the curves of these items are distinct from those of the other two groups. Given the statistical differences between 2 (conventional breeding) and 3 (genetic modification) and between 2 and 4 (gene editing) for the items of āpossibility of misusing this technologyā, and ābio-ethically questionableā, the risk aspects of those items were considered as being ādifferently naturedā in this group from those of āinsufficient safety confirmationā or āfear of unexpected adverse effectsā. The values of effect size f for those items were 0.551 and 0.398, which were higher than the Cohenās criteria: fāā„ā0.40 as ālargeā; fāā„ā0.25 as āmediumā, respectively.
As the large sample size of lay public participants might have influenced the result, we further conducted power analyses. For example, concerning the item with the smallest effect size f of 0.045 in Table 4 (beneficial to stable food supply), a sample size capable of obtaining the Cohenās proposed convention of power value of 0.8 (αā=ā0.05) was 271. Therefore, we would have obtained the same results even if the sample size of the lay public had been less than 1/10 of the current study. This result enabled us to conclude that the results of the statistical tests were not dependent on the sample size.
Evaluation of effects of science literacy on attitudinal change
To test the hypothesis based on RQ 2 that science literacy influences attitudinal change on agricultural crops caused by the provision of information, regression analyses were used. Table 5 shows the results of benefit perceptions, Table 6 shows those of risk perceptions, and Table 7 shows those of value perceptions.
The results showed that the hypothesis above was confirmed for benefit perceptions of all three breeding technologies. It was also confirmed for risk perceptions and value perceptions of conventional breeding. However, it was not confirmed for risk perceptions and value perceptions of the two new technologies of genetic modification and gene editing. The details of regression analyses are as follows.
Benefit perceptions
All three models (Table 5) were statistically significant. Looking at the effects of science literacy, this variable has a positive coefficient and is statistically significant for all the three models of benefit perceptions. Thus, the results for the benefit perceptions supported the hypothesis by showing the positive effects of scientific knowledge in increasing benefit perceptions after the information was provided as for all three breeding technologies.
Risk perceptions
All three models (Table 6), were statistically significant. As to the effects of science literacy, this variable has a negative coefficient and is statistically significant for Model Y6. In contrast, this variable is not statistically significant for the models of new S&T (Models Y4 and Y5). Thus, the result for Model Y6 supported the hypothesis, but those for Models Y4 and Y5 did not. Therefore, the positive effects of scientific knowledge to reduce risk perceptions, after the information is provided, was observed only for the conventional breeding technique. There were no effects of scientific knowledge to reduce risk perceptions of the two new S&T of gene editing and genetic modification.
Value perceptions
Model Y9 was statistically significant whereas Models Y7 and Y8 were not statistically significant. As to the effects of science literacy, this variable has a positive coefficient and is statistically significant for Model Y9. Thus, the result for Model Y9 supported the hypothesis, but those for Models Y7 and Y8 did not. Therefore, the positive effects of scientific knowledge to increase value perceptions, after the information is provided, was observed only for the conventional breeding technique. There were no effects of scientific knowledge to increase value perceptions of the two new S&T of gene editing and genetic modification. Overall trends of the models of value perceptions were similar to those of risk perceptions.
Discussion
We investigated both expert and lay perceptions on food application of new S&T by statistically examining whether attitude changes toward applied technologies were observed in relation to peopleās scientific knowledge. The approach of the current study, which empirically elucidated the perceptions of three groups (experts in molecular biology, experts in other fields, and the lay public) on gene editing compared with genetic modification and conventional breeding techniques, provides essential evidence for stakeholders concerning new breeding technologies.
Results of the current study demonstrated that domain-specific scientific knowledge affects peopleās risk, benefit, or value perceptions, according to the stratification of participants into three groups of experts in molecular biology, experts in other fields, and the lay public. The experts in molecular biology showed the highest benefit and lowest risk perceptions compared to the other two groups. As stated by Sandin and Moula (2015), those who believe in the potential of new agricultural technologies tend to refer to benefit aspects, while those who criticise tend to raise concerns of risk aspects.
The lay public tended to consider gene editing as closer to genetic modification by clearly differentiating the conventional breeding technique from the two newer techniques. They showed a dramatic increase in benefit perceptions and a significant reduction in risk perceptions after being provided information of conventional breeding (Fig. 4 and Table 4). Thus, the lay public appraised this technique with respect to outcomes as the one with the lowest risk and the highest benefit. However, the results of the single-factor within-subject ANOVA among the lay public also suggested that their perceptions of gene editing slightly improved compared with genetic modification. As such, the lay public somewhat identified the technical differences between gene editing and genetic modification, perhaps through process-based thinking.
The current studyās approach of differentiating experts into two groups according to domain-specific scientific knowledge empirically showed that the perceptions of a specific science or technology will be different if scientistsā expertise is different. Similar to those of the lay public, experts in other fields differentiated the benefit outcomes of the three technologies, probably based on process-based thinking. Contrary to the other two groups, experts in molecular biology did not differentiate the benefit outcomes of the three technologies. This finding is noteworthy because it empirically supported our hypothesis, suggesting that experts in molecular biology assessed the benefit aspects of gene editing through product-based thinking, not through process-based thinking.
Our further investigation revealed that the levels of perceptions of experts in other fields fall between those of experts in molecular biology and of the lay public in many items. That said, it is important to note that there were some characteristics that the two groups of experts generally shared and some aspects they did not share. As to the value perception concerning the application and promotion of scientific research to food, experts in other fields showed similar responses to experts in molecular biology to all three breeding technologies. Nevertheless, they responded similarly to the lay public concerning most of the items assessing risk perceptions. In fact, they displayed higher risk perception toward gene editing than toward genetic modification for the item āpossibility of misusing this technologyā, while the lay public showed higher risk perception toward genetic modification than toward gene editing for this item. As there was no statistical difference between the two technologies in the group of experts in molecular biology for this item, the relationship between domain-specific scientific knowledge and risk perceptions on new S&T remains complex; perhaps there is no linear situation in their association.
The regression analyses of Tables 5ā7 revealed that the influence of science literacy on the lay publicās attitudinal change toward agricultural crops is confirmed all in benefit, value, and risk perceptions for the conventional breeding technique. For this technique, the effects after information provision were inverse: science literacy increased the benefit and value perceptions and reduced the risk perception. This hypothesis based on RQ2 was also confirmed in the benefit perceptions for the two new S&T of gene editing and genetic modification. Notably, however, such assumption was rejected by the analyses of risk perceptions and value perceptions for the two new S&T.
In interpreting the contradictory results presented above, one possible interpretation is that the assumption of the deficit model was valid only for conventional S&T, knowledge on which can be acquired through classroom education, but not valid for emerging S&T, knowledge on which may be acquired mainly through informal learning. An alternative interpretation is that the modelās assumption on new S&T is valid only for increasing benefit perceptions but not for reducing risk perceptions or increasing value perceptions. We propose that the two interpretations above together constitute a new hypothesis about the relationship between scientific knowledge and public perceptions toward emerging S&T. In proposing the above hypotheses, we empirically demonstrated the deficit modelās boundary conditions, and offered logic to explain previous empirical studiesā inconsistency on deficit model type of explanations.
Limitations and future suggestions
Further empirical investigation should be conducted to confirm our new hypotheses about the deficit model. The assumption of the model was valid only for conventional S&T but not for emerging S&T; moreover, the modelās assumption on new S&T is valid only for increasing benefit perceptions but not for reducing risk perceptions or increasing value perceptions, including all the possible other interpretations.
Because it was almost impossible for the current study to exclusively extract experts in molecular biology without a conflict of interest in this field, our participants who were experts in molecular biology may face this conflict, as their major earnings might be from gene editing or genetic modification. As a previous study investigating peopleās attitudes toward climate change risks (Kahan et al., 2012) proposed that attitude stemmed more from conflict of interest than from scientific knowledge, future studies may be needed methodologically to exclude experts in molecular biology with conflicts of interest in this field.
The statistical analyses were focused on attitudinal changes before and after the provision of information on the technological differences among gene editing, genetic modification, and conventional breeding. Our interest was in the factors of technological differences among the three technologies; therefore, we could not cover the contextual-specific factors related to gene editing. This point was raised by Bauer, Heinz (2002): context-specific factors, such as knowledge gaps and information gaps related to specific S&T in different countries or in different cultures, would affect study results. Further examinations should be conducted in different national and cultural contexts by methodologically separating these two factors.
The analyses were conducted using datasets obtained through online surveys. This method was suitable for the current studyās approach of within-subject experimental design, but further studies should be conducted including utilising different modes of measurement. Replications should also be made with different items to assess peopleās benefit, risk, and value perceptions because number format and framing conditions of items may influence the obtained results (Peters et al., 2011). In addition, as we did not have a control group, we could not completely control the order effect or the effect from information provision. This is a limitation of the current study, and the accumulation of data for reproducibility shall ensure that the results can stand as foundation for future related work.
Conclusion
In this study, the lay public attitudes toward gene edited crops tended to be higher both in benefit and value perceptions and lower in risk perceptions than attitudes toward GM crops. Obtaining such results even in Japan, with its relatively lower acceptance and strict regulations on GM food, may further boost the potential of this emerging technology. We must note, however, the differences between gene editing and genetic modification were exceedingly small, compared to the differences between conventional breeding and genetic modification. Further, the effect of the lay publicās science literacy on perceptions toward new S&T of gene editing or genetic modification after the information provision on applied technological differences was observed only for increased benefit perceptions and not for increased value perceptions or decreased risk perceptions.
We empirically demonstrated the deficit modelās boundary conditions and offered logic to explain previous empirical studiesā inconsistency in deficit model-type explanations. We demonstrated that (1) the modelās assumption is valid for conventional science and technology (S&T) but not for emerging S&T, and (2) the modelās assumption regarding emerging S&T was valid for increasing benefit perceptions but not for increasing value perceptions or reducing risk perceptions. These empirical results emphasise the uncertainty of peopleās attitude toward emerging breeding technologies. The ability of scientists, as well as policy makers to face such a complex situation is put to the test.
Data availability
The datasets generated and/or analysed during the current study are not publicly available due to the regulation from Japanese privacy protection law, but are available from the corresponding author on reasonable request.
References
Ahteensuu M (2012) Assumptions of the deficit model type of thinking: ignorance, attitudes, and science communication in the debate on genetic engineering in agriculture. J Agric Environ Ethics 51:295ā313
Bauer MW, Heinz B (2002) Controversy, media coverage and public knowledge. In: Bauer MW, Gaskell G (eds) Biotechnology: the making of a global controversy. Cambridge University Press, Cambridge, pp 149ā175
Bucchi M, Neresini F (2002) Biotech remains unloved by the more informed. Nature 416:261
Busch L, Lacy WB, Burkhardt J, Lacy L (1991) Plants, power and profit: social, economic and ethical consequences of the new biotechnologies. Blackwell, Cambridge
Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum, Hillsdale, New Jersey
Cronbach LJ, Furby L (1970) How we should measure āchangeā: or should we? Psychological Bull 74:68
Edwards JR (1970) Alternatives to difference scores as dependent variables in the study of congruence in organizational research. Organ Behav Hum Decis Process 64:307ā324
European Union (2001) Eurobarometer 55.2: Europeans, science and technology. European Commission. https://ec.europa.eu/research/press/2001/pr0612en-report.pdf. Accessed 23 Jan 2019
Finucane ML et al. (2002) Aging and decision-making competence: an analysis of comprehension and consistency skills in older versus younger adults considering health-plan options. J Behav Decis Mak 15:141ā164
Forgas JP, Cooper J, Crano WD (eds) (2011) The psychology of attitudes and attitude change. Psychology Press, New York
Frewer LJ, Howard C, Shepherd R (1998) The influence of initial attitudes on responses to communication about genetic engineering in food production. Agriculture Hum Values 15:15ā30
Hopp M, Lange S, Epp A, Lohmann M, BƶlG F (2017) Durchführung von Fokusgruppen zur Wahrnehmung des Genome Editings (CRISPR/Cas9). BfR-Wissenschaft. https://mobil.bfr.bund.de/cm/350/durchfuehrung-von-fokusgruppen-zur-wahrnehmung-des-genome-editings-crispr-cas9.pdf#search=āHopp+M%2C+Lange+SEpp+A%2C+Lohmann+M+and+B%C3%B6l+G+F+%282017%29+Durchf%C3%BChrung+von+Fokusgruppen+zur+Wahrnehmung+des+Genome+Editings+%28CRISPR%2FCas9%29.+BfRWissenschaftā. Accessed 23 Jan 2019
Hyland M, Birrell J (1979) Government health warnings and the āboomerangā effect. Psychological Rep 44:643ā647
Pharmaceutical Safety and Environmental Health Bureau,Ministry of Health, Labour and Welfare, Japan (2019) Japan 224th Food Safety Group, Food Safety Standards and Evaluation Division, USDA Foreign Agricultural Service Global Agricultural InformationNetwork (GAIN) Report Number: JA 910, https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Japan%20224th%20Food%20Safety%20Group_Tokyo_Japan_7-19-2019.pdf. Accessed 15 Sep 2019
Kahan DM, Peters E, Wittlin M, Slovic P, Larrimore Quellette L, Braman D, Mandel G (2012) The polarizing impact of science literacy and numeracy on perceived climate change risks. Nat Clim Change 2:732ā735
Kato-Nitta N, Maeda T, Tachikawa M (2017) Different genomic technologies applied for plant breeding influence differently on peopleās risk perceptions. J Food Syst Res 24:257ā262
Kato-Nitta N, Maeda T, Iwahashi K, Tachikawa M (2017) Understanding the public, the visitors, and the participants in science communication activities. Public Underst Sci 27(7):857ā875
Krosnick JA (1991) Response strategies for coping with the cognitive demands of attitude measures in surveys. Appl Cogn Psychol 5(3):213ā236
Lobb A (2005) Consumer trust, risk and food safety: a review. Food Econ-Acta Agriculturae Scandinavica, Sect C 2 2:3ā12
Maniaci MR, Rogge, RD (2014) Conducting research on the Internet. In: Reis HT, Judd CM (eds), Handbook of research methods in social and personality psychology, 2nd edn. Cambridge University Press, New York, NY, pp 443ā470
Midden C et al. (2002) The structure of public perceptions. In: Bauer MW, Gaskell G (eds) Biotechnology: the making of a global controversy. Cambridge University Press, Cambridge, pp 203ā223
Ministry of Education, Culture, Sports, Science and Technology (2004) White paper on science and technology 2004: Science and technology and society in the future. MEXT. http://www.mext.go.jp/en/publication/whitepaper/title03/detail03/1372839.htm. Accessed 7 Aug 2018
National Science Board (2016) Science and engineering indicators 2016. National Science Foundation. https://www.nsf.gov/statistics/2016/nsb20161/uploads/1/10/tt07-03.pdf. Accessed 7 Aug 2018
Peters E, Hart PS, Fraenkel L (2011) Informing patients: the influence of numeracy, framing, and format of side effect information on risk perceptions. Med Decis Mak 31(3):432ā436
Petty RE, Cacioppo JT (1986) The elaboration likelihood model of persuasion. In: communication and persuasion. Central and peripheral routes to attitude change. Springer, New York, pp 1ā24
RodrĆguez-Entrena M, Salazar-Ordóñez M (2013) Influence of scientificātechnical literacy on consumersā behavioural intentions regarding new food. Appetite 60:193ā202
Sandin P, Moula P (2015) Modern biotechnology, agriculture, and ethics. J Agri and Environ Ethics 28(5):803ā806
Savadori L et al. (2004) Expert and public perception of risk from biotechnology. Risk Anal 24:1289ā1299
Schultz-Bergin M (2018) Is CRISPR an ethical game changer? J Agric Environ Ethics 31:219ā238
Simis MJ, Madden H, Cacciatore MA, Yeo SK (2016) The lure of rationality: Why does the deficit model persist in science communication? Public Underst Sci 25:400ā414
Slovic P (1999) Trust, emotion, sex, politics, and science: surveying the risk-assessment battlefield. Risk Anal 19:689ā701
Slovic P, Fischoff, Lichtenstein S (1981) Informing the public about the risks from ionizing radiation. Health Phys 41(4):589ā598
Sprink T, Eriksson D, Schiemann J, Hartung F (2016a) Plant genome editing in the European Unionāto be or not to beāa GMO. Plant Biotechnol Rep 10:345ā351
Sprink T, Eriksson D, Schiemann J, Hartung F (2016b) Regulatory hurdles for genome editing: process-vs. product-based approaches in different regulatory contexts. Plant Cell Rep 35:1493ā1506
Suldovsky B (2016) In science communication, why does the idea of the public deficit always return? Exploring key influences. Public Underst Sci 25:415ā426
Tachikawa M (2017) New trends in biotechnology: regulatory situation of genome editing. Nogyo Keizai (Agriculture Econ) 83:17ā22
Tachikawa M, Kato-Nitta N, Maeda T (2017) Consumer awareness on governance of gene edited products: Agricultural and food applications. J Food Syst Res 24:251ā256
Tourangeau R, Conrad FG, Couper MP (2013) The science of web surveys. Oxford University Press
Zhu X, Xie X (2015) Effects of knowledge on attitude formation and change toward genetically modified foods. Risk Anal 35:790ā810. https://doi.org/10.1111/risa.12319
Acknowledgements
This work is supported by Japan Society for the Promotion of Science (JSPS) KAKENHI (JP16H04992; JP17K01015) and JST Program on Open Innovation Platform with Enterprises, Research Institute and Academia (OPERA) āGene editingā Consortium grant.
Author information
Authors and Affiliations
Contributions
N.K.N. designed the current research, designed and organised the experimental questionnaire surveys, conducted the statistical analyses, and wrote the paper; T.M. designed the experimental questionnaire surveys; Y.I. conducted the statistical analyses; M.T. designed and organised the research project. All authors reviewed the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisherās note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the articleās Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the articleās Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Kato-Nitta, N., Maeda, T., Inagaki, Y. et al. Expert and public perceptions of gene-edited crops: attitude changes in relation to scientific knowledge. Palgrave Commun 5, 137 (2019). https://doi.org/10.1057/s41599-019-0328-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1057/s41599-019-0328-4
This article is cited by
-
Risk perception associated with an emerging agri-food risk in Europe: plant viruses in agriculture
Agriculture & Food Security (2022)
-
Gene Editing Technologies for Sugarcane Improvement: Opportunities and Limitations
Sugar Tech (2022)
-
Strategic framing of genome editing in agriculture: an analysis of the debate in Germany in the run-up to the European Court of Justice ruling
Agriculture and Human Values (2022)
-
A Q methodology study on divergent perspectives on CRISPR-Cas9 in the Netherlands
BMC Medical Ethics (2021)
-
Effects of information on consumer attitudes towards gene-edited foods: a comparison between livestock and vegetables
CABI Agriculture and Bioscience (2021)