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Spatiotemporal patterns of US drought awareness
Sungyoon Kim1, Wanyun Shao 2,3 & Jonghun Kam 1,3*

ABSTRACT Drought is a creeping climatological phenomenon with persistent precipitation

deficits. Unlike rapid onset natural hazards such as floods and wildfires, the intangible and

gradual characteristics of drought cause a lack of social response during the onset. The level

of awareness of a local drought increases rapidly through mass media reports and online

information searching activities when the drought reaches its peak severity. This high level of

local drought awareness drives concerns for water shortage and support for water policy.

However, spatiotemporal patterns of national-scale drought awareness have never been

studied due to constraints imposed by time-consuming and costly survey data collection and

surveys’ limited sample sizes. Here, we present the national-scale study to reveal the spa-

tiotemporal patterns of drought awareness over the contiguous United States (CONUS)

using Google Trends data and Principal Component Analysis (PCA). Results show that the

first two PC modes can explain 48% (38% for PC1 and 10% for PC2) of the total variance of

state-level drought awareness. We find that the PC1 mode relates to a national pattern of

drought awareness across the CONUS. The spatiotemporal patterns further imply that

residents in the Northeastern US region are the most aware of the emergence of drought,

regardless of the geographic location of the occurrence. The results illustrate how big data,

such as search query and social media data, can help develop an effective and efficient plan

for drought mitigation in the future.
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Introduction

Drought is the least understood natural hazard due to the
complexity of the generating mechanisms. Previous stu-
dies have been heavily focused on identifying potential

sources of predictability (Schubert et al., 2008, Hoerling et al.,
2013, Seager et al., 2015) and evaluating the current prediction
skill of existing climate models (Seager et al., 2009, Yuan et al.,
2011). In addition, detection and attribution of US regional
droughts have been assessed (Seager et al., 2014, Cook et al.,
2009, 2015). Despite the advanced understanding of the gen-
erating mechanisms and predictability, recent US droughts
caused multi-billion-dollar economic losses (Smith and Mat-
thews, 2015). This raises a concern about a lack of the effec-
tiveness and efficiency of the current US drought monitoring and
forecasting systems in generating timely social responses (Hayes
et al., 2004). A better understanding of the key drivers and
mechanisms of social response during the occurrence of drought
crisis is warranted.

Past research on attitudes towards drought has been pre-
dominantly based on traditional survey instruments (Switzer and
Vedlitz, 2017, Carlton et al., 2016, Stoutenborough and Vedlitz,
2014). While surveys often shed light on individuals’ stated pre-
ferences, deeper analyses are required to understand behavioral
adjustments to mitigate droughts over time (Lazrus, 2016). Fur-
ther, conventional surveys focus on the variations among indi-
viduals while public policies are designed and implemented at an
aggregate level. This mismatch on geographic scales naturally
creates a gap between research results obtained from surveys and
actionable policy items (Shao et al., 2018). Due to the time con-
suming and costly procedures, traditional surveys are conducted
only at discrete points of time with a coarse temporal scale. This
static nature in survey data limits our understanding of the
dynamics of drought awareness (Nguyen et al., 2015).

In recent years, search engine query data and social media data
have become popular alternative data sources to advance our
limited understanding of the potential triggers and dynamics of
social responses to natural disasters (Wang and Zhuang, 2017,
Kam et al., 2019). These social monitoring data are classified into
two main types: active (e.g., Twitter) and passive (e.g., Google
Trends). While active social monitoring systems are often used as
a tool of risk communication during the disaster emergence
(Wang and Zhuang, 2017), they can be subject to misinformation
(Wang and Zhuang, 2018). Whereas passive social monitoring
systems provide observational data that can more accurately
depict the growth and decay patterns of awareness of free agents
during disaster emergency (Kam et al., 2019).

Google Trends provides passive social monitoring data based
on online search actions that are non-communicative activities
and presumably only motived by the user’s interest. These search
activities can therefore reveal the users’ true interests and atten-
tion more accurately. Google Trends generates their data from
search activities of over two billion users of Google Product
around the world (Popper, 2017). These abundant Google Trends
data can certainly provide an exhaustive overview of dynamical
aggregate behaviors based on individual search activities. They
have been used in previous studies to predict stock prices (Preis
et al., 2013), to monitor disease outbreaks (Carneiro and Mylo-
nakis, 2009), and to understand public perception of climate
change (Anderegg and Goldsmith, 2014). In recent years, Google
Trends data have been used to validate simulated drought
awareness (Gonzales and Ajami, 2017) and to investigate the
potential triggers and dynamic patterns of drought awareness
during the 2011–2017 California drought (Kam et al., 2019).

Recently, the limitations of Google Trends data have been
discussed (Nuti et al., 2014). One limitation is related to noise
search activities that are defined as search activities using search

terms including a common word (herein, drought) but not rele-
vant to actual drought events. For example, Beyoncé released
“Love Drought” on 24 April 2016 and it drove additional public
search activities using the common term, “drought”, during the
on-going California drought (Kam et al., 2019). However, actual
severe drought conditions increase the public interest or aware-
ness about drought dramatically and consequently reduces the
relative importance of these noise search activities irrelevant to
the 2011–2017 California drought (Kam et al., 2019).

Drought risk can be quantified as the spatial extent of an area
under a certain level of drought severity (Sheffield et al., 2009b).
With the spatial extent reaching its maximum, the broad socio-
economic impact of drought becomes tangible, which leads to
surges in awareness of and interest in the drought among a large
group of people. This rapidly increased public awareness of
drought drives search activities for drought information. Recent
studies have used Google Trends data to explore the propagation
of local drought awareness and interactions with other natural and
human factors. For instance, Gonzales and Ajami (2017) investi-
gated how water use patterns changed along with changes in
public awareness of drought at the city level during the 2011–2017
California drought. Other studies investigated potential key dri-
vers of the peaks of public awareness during the 2011–2017
California drought using Google Trends (Quesnel and Ajami,
2017, Kam et al., 2019). Different from all these previous studies in
terms of scale, data source, and method, we conduct the first
national-scale study to reveal the spatiotemporal patterns of
drought awareness and their associations with drought risk using a
passive social monitoring dataset (Google Trends) and a popular
data compression technique (Principal Component Analysis).

Data and methods
Google trends and US drought monitoring data. Google Trends
provides the information of public awareness about the specific
search interest with a range of spatiotemporal scales through
Google Search (http://trends.google.com). Google Trends data are
available from 2004. In this study, state-level drought awareness
(DAi; i is an indicator of a US state (i=AL,…, WY)) is defined as
the search activity using the specific term, “Drought” within the
state of interest. The monthly relative search activity values of the
49 states of the contiguous US (CONUS) were retrieved on
November 19th, 2018. Google Trends shows an index of relative
search activity during a specific period that the user can deter-
mine since 2004. Depending on the chosen search period, the
interval of relative search activities is automatically determined
(from daily through monthly time steps). This relative search
activity index is computed by dividing the total numbers of
research activities within an interval by the maximum number of
research activities during the chosen period.

The US Drought Monitor (USDM) provides the drought
information by classifying the following four major drought
intensities: abnormal dry (D0), moderate drought (D1), severe
drought (D2), extreme drought (D3), and exceptional drought
(D4). In this study, drought risk is defined by the total areal
extent under abnormally dry condition (D0) and four types of
drought severity (moderate (D1), severe (D2), extreme (D3), and
exceptional (D4)). This study focuses on state-level drought risk
(DRi) over the 49 states of the CONUS during 2004–2017 to
correspond to the temporal coverage of Google Trends. At the
USDM website (https://droughtmonitor.unl.edu/), weekly per-
centages of the area under drought per state from 2000 are
available. In this study, monthly state-level drought risk (DRi) is
defined as the percentage of the areal extents under drought
condition reported in the middle week of each month. The
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monthly averages of drought awareness are consistent across
different averaging methods (not shown) because drought risk
(herein, the areal extent of drought) has long-term persistency,
which means that the spatial extent under drought does not
rapidly change within one month.

Principal component analysis: a tool for spatiotemporal pat-
terns of drought awareness. Principle Component Analysis
(PCA) is a statistical method to sort the maximum variance of the

data in a projection using an orthogonal linear transformation
(Wilks, 2011). The loadings of PC modes (a 49-element vector)
are computed from eigenvectors of the covariance matrix, which
reveal the spatial patterns for the corresponding modes. The
scores of the PC modes (a 168-element vector) are computed by
projecting the monthly Google Trends data (the 49 by 168
matrix) on the loadings of the corresponding PC mode.

Using the PC1 and PC2 mode scores (Fig. 1(a, b), respectively),
we create the maps of temporal correlations between each of the
first two PC modes (DAPC1 and DAPC2) on the one hand, and

Fig. 1 Major principal components of state-level drought awareness and state-level drought risk over the United States. Scores of the first and second
principal component modes of drought awareness (DAPC1 and DAPC2) are shown in (a) and (b), respectively. Temporal correlations of DAPC1 with DAi and
DRi are shown in (c) and (e), respectively. Temporal correlations of DAPC2 with DAi and DRi are shown in (d) and (f), respectively
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DAi and DRi, respectively, on the other hand. By doing so, we aim to
understand the associations of the major PC modes with state-level
drought awareness or state-level drought risk. For example, the map
of the temporal correlations between DAPC1 and DAi show the states
in which the local drought awareness is temporally significantly
correlated with DAPC1. The map of the temporal correlations
between DAPC1 and DRi show the states in which the actual
condition is positively correlated with DAPC1 (drought) and the
actual condition is negatively correlated with DAPC1 (no drought). A
pluvial (a period with increased rainfall) and associated flood often
reduce significantly the spatial extent of a drought condition. These
temporal correlation maps are known in the atmospheric science
field as homogeneous (DAPC1 and DAi) and heterogeneous (DAPC1

and DRi) correlation maps for the PC1 mode. Here, we compute the
49 Pearson sample linear correlations of DAPC1 with DAi and DRi,
respectively. Since the sampling distribution of the correlations is not
normally distributed, the Pearson sample linear correlations are
converted to Fisher’s z-statistic and then are tested for significance at
the 95 or 99% confidence level. The homogenous correlation map
enables us to quantify the strength of the correlations between
DAPC1 and DAi via temporal correlation coefficients that range
between −1 and 1, while their key spatial features are similar to
those of the corresponding PC loadings. Comparison between the

homogeneous and heterogeneous correlation maps for the first PC
mode informs which and how significantly actual drought and flood
occurrences (the states with positive and negative correlation
coefficients, respectively) contribute to the associated spatial patterns
of DAi with the first PC mode.

In this study, we find that Google Trend data are unstable over
certain states due to a lack of search activities in rural areas until
the advent of 3G wireless mobile telecommunications technology
in 2008 (Lewis, 2018). Therefore, we use PCA to identify these
noise states. The scores of three PC modes (PC7, PC10, and
PC15) show rapid temporal fluctuations from 0 to 100 over
2004–2008. Their scores are consistent with the temporal patterns
of instability of Google Trends data between 2004 and 2008. We
superimpose these PC modes (a 168-element vector; the sums of
these PC loadings at time t (t= 1, …, 168)) and compute their
temporal correlation coefficients with state-level drought aware-
ness (DAi). These superimposed PC scores show statistically
significant temporal correlation coefficients at the significance
level, 0.05, with DAi in nine states including Idaho, Wyoming,
North Dakota, Colorado, Vermont, New Hampshire, Maine,
Rhode Island, and Mississippi. These nine states were therefore
defined as the noise states of Google Trends for drought
awareness analysis (see Section 1 in Supplementary Information).

Fig. 2 Impact of drought severity on nation-wide drought awareness. Solid dots depict temporal correlation coefficients between DAPC1 and DAi (y-axis)
and DAPC1 and DRi (x-axis; a D(1–4), b D(2–4), c D(3–4), and d D(4)). Black, blue, orange, and red indicate Western (W), Central (C), Northeastern (NE),
and Southeastern (SE) region, respectively. Dashed lines and the shaded gray box denote the areas with insignificant temporal correlation coefficient at the
99% confident level
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Results
Spatiotemporal patterns of US drought awareness from the
PCA. The first two principal component modes of drought
awareness (DAPC1 and DAPC2) can explain about half of the total
variance of drought awareness in the contiguous United States
(CONUS) (38 and 10% of the variance, respectively). The peaks
in the scores of DAPC1 are well correlated with the occurrences of
the three major US droughts, namely the 2007–2008 Southeastern
and Western US drought, 2012 Midwestern US drought, and
2011–2017 California drought (Fig. 1(a)). The map of the tem-
poral correlation between DAPC1 and DAi shows positive corre-
lations across the states (the national drought awareness; Fig. 1
(c)). This national drought awareness is driven by drought
occurrences over the Eastern and Western US regions, namely the
2007–8 Southeastern US drought and California droughts during
2007–2008 and 2011–2017 (Fig. 1(e)). Negative correlations
between DAPC1 and DRi over the Southern Great Plains states are
driven by the 2007 flood extremes (Dong et al., 2011). Histori-
cally, co-occurrence of a flood over the Southern Great Plains and
a drought over the Southeastern US originate from one
mechanism related to moisture transport from the Gulf of
Mexico. Weak southerly meridional (in the south-north direc-
tion) fluxes and westerly zonal (in the west-east direction)
moisture fluxes at low level cause anomalous moisture transport
from the Gulf of Mexico and thus precipitation surplus over the
Southern Great Plains and precipitation deficit over the South-
eastern US region (Kam et al., 2014).

The map of temporal correlation between DAPC2 and DAi

identifies the Central Great Plains and the western part of the
Southwest US region as the regions associated with the PC2 mode
(Fig. 1(b)). The peaks in the scores of DAPC2 match well with the
occurrence of the 2012 Midwestern US drought (Fig. 1(d)). The
DAPC2 scores show negative anomalies during 2007–2010 when
flood extremes occurred over the Southern Great Plains. These
negative anomalies drive negative correlations between DAPC2

and DAi over Southeastern US states. It indicates that DAPC2

captures regional-scale search activities among the drought-
affected states. The third principal component (DAPC3; 8% of the
variance) is related to the 2011–2017 California and 2016–2017
Northeastern US drought (see Section 2 in Supplementary
Information) at a smaller regional scale than the two major
PC modes.

Sensitivity test of drought severity to drought awareness. To
understand the impact of drought severity on correlations
between DAPC1 and DRi, we compute temporal correlations
between DAPC1 and DRi with the four different levels of severity
(x-axis in Fig. 2). Here, the four levels are classified as the
cumulative areal extents under moderate through exceptional
drought (D(1–4)), severe through exceptional drought (D(2–4)),
extreme and exceptional drought (D(3–4)), and only exceptional
drought (D4). As the severity of the drought increases, the areal
extent decreases. Results show that a majority of the Northeastern
and Southeastern US states show statistically significant temporal
correlations between DAPC1 and DAi (the y-axis in Fig. 2),
regardless of the severity. Most of Northeastern US states (16 out
of 20 states) have not experienced drought with severity of D4
over 2004–2017 however drought awareness of these North-
eastern US states show strong temporal correlations with DAPC1

(Fig. 2(d); see Section 3 in Supplementary Information).
To further investigate the timing of the peak of search activities

over the Northeastern and Southeastern US, we compute monthly
time series of the regional averages of drought awareness during
the 2007–2008 Southeastern US drought. Results show that the
timing of the first peak of search activities over these US regions
happened in June 2007 when the Northeastern US experienced
no local drought condition but search activities in the North-
eastern US grew at the same rate as search activities in the
Southeastern US did (Fig. 3). It indicates that the Northeastern
US is very sensitive to drought emergency, regardless of the
geographical location of the occurrence.

Most of the Western and Central US states show insignificant
temporal correlation coefficients between DAPC1 and DRi (D(4);
Fig. 2(d)). Most of these regions except for New Mexico, Idaho,
Wyoming, and North Dakota show relatively weaker, but still
significant, temporal correlations between DAPC1 and DAi than
the Southeastern and Northeastern states. The results imply that
the Western and Central states are also aware of drought
regardless of whether they experience local drought or not.

Impact of lead and lagged times on drought awareness and
risk. To further investigate how timely each state responds to
actual local droughts and how fast local drought awareness
spreads across the nation, we computed temporal correlations of
DAPCA1 and DAi from three lead to three lagged months (−3
through +3 month time step; Fig. 4). Correlations at one month
lead and lag are computed by temporal correlations between DAi

(t− 1) and DAPCA1 (t) (t= 2, …, 168) and DAi (t+ 1) and
DAPCA1 (t) (t= 1, …, 167), respectively. All four CONUS regions
show the strongest temporal correlations of DAPCA1 and DAi at
zero lead month, indicating that awareness of a major drought
can reach to the national-scale from the local drought occurrence
within a month. The eight Northeastern states including Mary-
land, Michigan, New Jersey, New York, Ohio, Pennsylvania,
Virginia, and Washington DC, show stronger temporal correla-
tion coefficients of DAPC1 and DAi than other Northeastern US
states. The results suggest that a high level of public awareness of
drought over these Northeastern states might be due to their
strong socioeconomic background, such as high GDP per capita,
and high education level among others. Earlier research has
shown the strong predictive power of educational attainment in

Fig. 3 Temporal patterns of drought awareness and drought risk over the
Northeastern and Southeastern US states ((a) and (b), respectively). In a
and b, dark red, light red, orange, gold, and khaki lines depict monthly time
series of regional averages of the areal extents under exceptional drought
(D4), extreme drought (D3), severe drought (D2), moderate drought (D1),
and abnormally dry (D0). In a and b, black lines depict monthly time series
of regional averages of drought awareness

PALGRAVE COMMUNICATIONS | https://doi.org/10.1057/s41599-019-0317-7 ARTICLE

PALGRAVE COMMUNICATIONS |           (2019) 5:107 | https://doi.org/10.1057/s41599-019-0317-7 | www.nature.com/palcomms 5

www.nature.com/palcomms
www.nature.com/palcomms


climate change awareness worldwide (Lee et al., 2015) and
income in local drought awareness in the U.S. (Switzer and
Vedlitz, 2017).

Moreover, temporal correlations between DAPC1 and DRi at
the severity level, D(1–4), are higher at the lagged months in the
four US regions than those at the lead months. The Western and
Northeastern regions have the strongest temporal correlation
coefficients of DAPC1 and DRi at one lagged month (+1 month)
and the Southeastern states show the strongest temporal
correlations at three lagged months (+3 month). Positive
correlations between DAPC1 and DAi of the Central states
indicate that their residents who experienced the 2007–2008
floods (negative temporal correlation between DAPC1 and DRi)
are willing to search the information for droughts that occurred
remotely like the 2007–2008 Southeastern drought.

In the Southeastern US states, correlations between DAPC1 and
DRi for D(3− 4) are the strongest at the three lagged months
when the monthly drought areal extent values (DRi (t+ 3)) lead
the monthly values of nation-wide drought awareness (DAPC1 (t))
(Fig. 5). North Carolina and Florida have different regional
climate systems that are influenced by not only the Gulf of
Mexico but also the Atlantic Ocean, leading to insignificant
correlations of DAPC1 and DRi. The results suggest that people in
this region are quick to be aware of the development of local
drought condition (D1 or D2) and their awareness reaches its

peak even before the actual condition arrives at its climax. For
example, the Southeastern states showed timely public awareness
of drought even before the peak of drought such as the 2007–2008
drought (see Fig. 3). The public was certainly aware of this
ongoing drought. This suggests that the substantial economic
losses during the 2007–2008 Southeastern US drought might be
due to other factors such as not having effective and efficient
drought policy and mitigation plans in place. A further study
obviously needs to be conducted to investigate the effectiveness
and efficiency of the current drought policy and mitigation plans
in the Southeastern US to validate this speculation.

State-level correlation analysis of drought awareness and
drought risk. To investigate linkages of drought risk among
states, we compute temporal correlations of DRi, among the 49
US states (left triangle in Fig. 6). Within a region, temporal
correlations of DRi among the states are significantly positively
correlated, indicating that the areal extent of severe US droughts
tends to be at least the regional-scale (Sheffield et al., 2009a). The
Southeastern states and the adjacent Northeastern states such as
Delaware, Kentucky, Maryland, Virginia, and Washington DC
show significantly positive correlations. The Southeastern region
and the Northwestern region show negative correlations of DRi

due to the 2006 pluvial floods in Idaho, Oregon, and Washington.

Fig. 4 Lead and lagged correlations of the nation-wide drought awareness (DAPC1) with the state-level drought awareness (DAi) or risk (DRi) over the four
US regions (aWestern Region, b Northeastern Region, c Central Region, and d Southeastern Region). Blue dots depict the temporal correlation coefficients
of DAPC1 and DAi (left in each panel)/DRi (right) from −3 months through +3 months. Black (red) dots depict the means (medians) of lead and lagged
temporal correlation coefficients of the corresponding states to each region
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These extreme events of the Northwestern regions was caused by
landfalling intense atmospheric rivers (Neiman et al., 2008). We
also compute temporal correlations of DAi among the 49 US
states to investigate connections of drought awareness. The
temporal correlations of DAi show that the Northeast US states
are significantly positively correlated with all the other US states,
except for Montana, Wyoming, North Dakota, Oklahoma, and

South Dakota. It indicates that a high level of drought awareness
in the Northeastern US states play a role in reaching national
drought awareness over the US (DAPC1).

Linear regression analysis of socioeconomic factors. The
strength of temporal correlations between DAPC1 and DAi might
be determined by different natural conditions and socioeconomic
structures (see Section 3 in Supplementary Information). Simple
linear regression analyses are conducted to assess the effects of
three socioeconomic factors, including the ranks of each state by
population, GDP per capita, and education, (the x-axis in Fig. 7
(a–c), respectively) on correlations between DAPC1 and DAi

among all 49 states (the y-axis in Fig. 7). In this study, the per-
centage of the adult resident with bachelor’s degree or higher1 is
used for an indicator of education level (see Section 4 in Sup-
plementary Information). A state with a lower rank show a more
population, a higher GDP per capita, and a high percentage of the
adult residents with bachelor’s degree or higher. We find that
population is the highest influential socio-economic factor on
correlations between DAPC1 and DAi explaining 40% of the total
variance (R2= 0.41). The ranks of GDP per capita and education
explain less than 5% of the total variance. As Fig. 6(a) demon-
strates, three outliers exist. California, the most populated state,
shows a relatively low temporal correlation between DAPC1 and
DRCA possibly due to the significant increase of recent search
activities in recent years (Gonzales and Ajami, 2017). Despite
having the second most population, Texas shows a correlation
between DAPC1 and DRTX, 0.5, much lower than the expected
correlation from the linear model (0.82; −0.01 × X+ 0.84 from
Fig. 7(a), X is the rank of each state by population). This low
correlation of Texas might be due to the 2007–8 flood events in
the Southern Great Plains. The District of Columbia (DC), in
spite of having a small population (the 47th ranked in popula-
tion), shows a high temporal correlation between DAPC1 and
DADC, above 0.8, which is much higher than the expected cor-
relation, 0.37. These results indicate other factors including both
socioeconomic and natural ones should be accounted for in order
to identify powerful predictors of drought awareness.

Discussion
Large populations, high GDP per capita, and high percentage of
the population with bachelor degree (i.e., the low ranks of

Fig. 5 Impact of drought severity on correlations between DAPC1 and DRi
over the Southeastern US states. Lead and lagged temporal correlation
coefficients between DAPC1 and DAi of the Southeastern US states are
shown in the y-axis with the total areal extents from abnormal dry through
exceptional (D0–4), moderate through exceptional (D1–4), severe through
exceptional (D2–4), extreme and exceptional (D3–4), and exception (D4)
in the x-axis. Red and black solid circles depict the means and medians of
the temporal correlations of DAPC1 and DRi over the Southeastern US
states, respectively, from −3 months through +3 months. Blue cross,
asterisk, and empty circles depict the temporal correlations of DAPC1 and
DRi over the state of Florida, North Carolina, and the rest five states of the
Southeastern US region

Fig. 6 State-level correlation analysis of drought awareness and drought risk. Colors in the grid cells depict temporal correlation coefficients of DAi (left
triangle) and DRi (right triangle; D(1–4)) of one state drought awareness with those of the rest 48 states. To assist interpretation, areas that depict interstate
relationships within the region (green colored boundaries) and across regions (blue colored boundaries) are shown in the legend box at upper-left corner
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socioeconomic indicators) among the Northeastern and Western
states still suggest that residents in these states would be willing to
search information for not only local but also remote droughts
and are more aware of issues beyond their geographic boundaries.
This speculation is grounded in Maslow’s theory of human
motivation, suggesting that people tend to satisfy their physio-
logical needs such as food and shelter before turning their
attention to other needs such as self-actualization, aesthetics, and
environmental values (Maslow, 1943). Simply put, people with
more socio-economic resources can afford to show concern for
environmental issues even when they occur elsewhere. Past severe
drought experiences (Dustbowl drought in 1930s; Schubert et al.,
2004) and economic interests (e.g., agriculture states) in the
Central US states might condition these residents to be highly
alert to droughts and thus propel drought awareness to reach a
nation-wide level. A further analysis with other socio-economic
factors from different data sources (active monitoring data and
traditional survey data) are required to reveal the key socio-
economic factors on the dynamics of drought awareness diffusion
and how local drought awareness is interacted across states.

The observational results from Google Trends raise the fol-
lowing questions about a causal mechanism of drought awareness
diffusion. What factors create this high level of drought awareness
in the Northeast region? In addition to the aforementioned socio-
economic status, may the concentration of federal agencies in this
region be another factor? These agencies might be involved in
drought monitoring and forecasting (e.g., Department of Agri-
culture, National Aeronautics and Space Administration, and
National Oceanic and Atmospheric Administration) and policy-
making (e.g., The Whitehouse and Congress) and thus the
Northeastern US be highly alert to the emerging droughts in any
US state. Is the Northeastern US a hub of the diffusion routes of
drought information?

We propose a hypothesis about the US drought information
diffusion route: socio-politically influential states, not the
drought-affected states, serve as a key factor driving the national-
scale drought awareness through an information diffusion route.
The data and methods used in this study are limited in testing this
hypothesis. First, Google Trends data do not provide an indica-
tion of how information is disseminated. Second, the temporal
correlation analysis between DAPC1 and DAi reflects joint
awareness in some states, and an information diffusion route is
far from being determined. To explore the US drought

information diffusion route, a network structure or model is
required via national panel data and active social monitoring data
such as Twitter (e.g., Fig. 5 of Musaev et al. (2018)) to investigate
possible hubs and inter-state connections. However, this study
provides insights that will generate further interests in identifying
a drought information diffusion route and help policy makers
design and implement more effective and efficient drought
mitigation plans at the interstate level.

Conclusion
This study presents the observational evidence of the spatio-
temporal pattern of the US drought awareness. The key findings
are (1) Northeastern US is the most sensitive to the emergence
of drought, regardless of the geographic location of the occur-
rence; (2) once a major drought’s impact is felt, others who live
nearby search for the information about drought almost
simultaneously within one month. This study succeeds in
expanding the utility of passive social monitoring data from
billions of the users of Google Products to reveal the social
dynamics of drought awareness during the propagation of
drought at the national scale.

More in-depth research is required to identify a causal
mechanism of drought awareness diffusion through an inte-
grative qualitative and quantitative assessment. Social responses
to droughts are multidimensional and consist of awareness,
emotions, perceptions, and actions. Social awareness of drought
can certainly interact with other types of relevant natural
hazards (e.g., flood, wildfire, and heatwave) and it can be
conducive to the formation of risk perception, which in turn
can facilitate adaptation actions. Eventually, the advanced
knowledge of social dynamics via a synthetic assessment of
surveys and social monitoring data (passive and active) will be
instrumental in the development of proactive drought mitiga-
tion programs, such as national water saving incentive pro-
grams, by utilizing the key players in the existing drought
diffusion route.

Data availability
All datasets analyzed or generated are presented in the paper.
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Fig. 7 Impact of socioeconomic factors on correlations between DAPC1 and DAi. In the x axis, the states with lower ranks have more population (a), higher
percentage of the residents with bachelor’s degree or higher (education) (b), and more GDP per capita (c) (e.g., 1 is the state with the most population).
Dotted line depict the regression lines between the ranks and the temporal correlation coefficients between DAPC1 and DAi. The equation of the regression
line and R2 are shown in the top-right corner of the sub-figures
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Notes
1 https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?
pid=ACS_17_5YR_S1501
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