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Determining the chaotic behaviour of copper prices
in the long-term using annual price data
C. A. Tapia Cortez1, J. Coulton2, C. Sammut3 & S. Saydam1

ABSTRACT Mineral commodity prices are influenced by economic, technological, psychological,

and geopolitical factors. Stochastic approaches, and time series and econometric techniques have

been used to represent the dynamics of mineral commodity markets and predict prices. However,

these techniques cannot provide a comprehensive representation of market dynamics because they

do not recognise the relationship between these factors over time, and they are unable to capture

both the evolution and the cumulative effects of these factors on prices. Stability of motion and chaos

theories can detect sensitivity to initial conditions, and therefore the evolutionary patterns allowing a

proper understanding and representation of mineral commodity market dynamics. Most of the

techniques used to assess chaos require a colossal amount of data, so the use of small data sets to

assess chaos has been largely criticised. Nevertheless, by definition, the dynamics of a chaotic system

remain at different scales owing to its self-organisation features that exhibit ordered patterns in the

absence of codes or rules. Therefore, any deterministic chaotic behaviour of mineral commodity

prices can be captured by using small data sets if a detailed qualitative and quantitative analysis are

carried out. This paper examines the chaotic behaviour of annual copper prices between 1900 and

2015. To do so, we combine chaos theory, stability of motion and statistical techniques to reconstruct

the long-term dynamics of copper prices. First, we examine the time dependency and the presence of

a strange attractor by a visual analysis of the time series and phase space reconstruction based on

Takens’ theorem and determine embedding parameters. Then we examine the dynamic character-

istics of the system which assesses its complexity and regularity patterns to measure the system’s

entropy. Finally, we calculate the largest Lyapunov exponent λ to assess the sensitivity to initial

conditions and determine chaotic behaviour supported by a surrogate test. We find that annual

copper prices have a chaotic behaviour embedded in a high-dimensional space and short time delay.

The study suggests that copper prices exhibit only a single state of low prices, which fluctuate

through transitional periods of high prices. It challenges the assertion that metal markets have

fluctuated over four major super cycles and debate the adequacy of stochastic and econometric

models for representing mineral commodity market behaviour. This study recommends that the use

of chaotic behaviour improves our understanding of mineral commodity markets and narrows the

data searching, processing and monitoring requirements for forecasting. Therefore, it improves the

performance of traditional techniques for selecting key factors that influence the market dynamics,

and may also be used to select the most suitable algorithm for forecasting prices.
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Introduction

The impression that small causes may have a significant
effect through time is known as “sensitivity dependence to
initial conditions” (Lorenz, 1995) and has long been used

to explain historical events and their effects through time. This
phenomenon was formalised in 1962 by chaos theory and since
then the belief in random behaviour through time has been
questioned, both in nature and in markets (Debreu, 1991; Tapia
Cortez et al., 2017; Thom and Chumbley, 1983; Wolfram, 2002).
Sensitivity to changes in the initial conditions is the most
important characteristic of chaotic behaviour in complex
dynamic systems (Showalter and Hamilton, 2015). It is demon-
strated by the fast exponential growth of the divergence between
two near initial trajectories of the system across time known as
strange attractors (Azar and Vaidyanathan, 2015, p 10; Becks
et al., 2005; Guegan, 2009; Hegger et al., 1999; Kodba et al., 2005;
Navarro–Urrios et al., 2017; Panas, 2001; Panas and Ninni, 2000;
Reynolds et al., 2016; Rosenstein et al., 1993; Savi, 2005; Vlad
et al., 2010; Wernecke et al., 2017; Yamamoto, 1999). Strange
attractors contain the state of the system and plot its motion in
the form of infinite non-periodic unique orbits that never close
themselves. They occur in parallel sets with a gap between any
two members of the set. The most useful tool for examining the
sensitivity to initial conditions and detecting the presence of
chaotic behaviour has been the widely documented largest Lya-
punov exponent (λ) method (Becks et al., 2005; Chen et al., 2016;
Gaspard et al., 1998; Gottwald, 2009; Kodba et al., 2005;
Navarro–Urrios et al., 2017; Panas, 2001; Panas and Ninni, 2000;
Perc, 2006; Reynolds et al., 2016; Rosenstein et al., 1993; Savi,
2005; Showalter and Hamilton, 2015; Wernecke et al., 2017;
Zhong et al., 2017). According to a large body of literature,, large
datasets are required to assess chaotic behaviour, but this is often
not achievable due to cost, technical or temporal limitations
(Abraham et al., 1986; Kantz, 1994; Rosenstein et al., 1993). Data
scarcity can limit the power of the method to calculate λ (Abra-
ham et al., 1986; Kantz, 1994). However, a method has been
introduced by Rosenstein et al. (1993) to overcome this limita-
tion, allowing sufficiently accurate and precise calculations of λ in
small datasets (Becks et al., 2005; Graham et al., 2007; Kantz,
1994; Navarro–Urrios et al., 2017). Previous studies have proven
the suitability and reliability of small data sets with 50 observa-
tions in regards to their calculation of λ for assessing chaotic
behaviour of complex dynamic systems (Becks et al., 2005; Blank,
1991; Chen et al., 2016; Gaspard et al., 1998; Navarro–Urrios
et al., 2017; Raffalt et al., 2017; Reynolds et al., 2016; Sivakumar,
2000). Moreover, the same methodology has been successfully
applied to study the complexity of various dynamic systems,
including electrocardiograms, human gait recording, and laser
droplet generation (Krese et al., 2010; Perc, 2005a, 2005b).

Data length has been a critical issue for demonstrating the
nonlinear dynamics of signals generated in social and environ-
mental sciences. The introduction of the approximate entropy
(ApEn) by Pincus (1991) and the sample entropy (SampEn) by
Richman and Moorman (2000) have alleviated this restriction
(Ferrario et al., 2006; Yentes et al., 2013). Due to their statistical
and de facto noise filtering properties (Pincus, 1995), ApEn and
SampEn have proven their applicability and reliability for asses-
sing complexity (or regularity) in small data sets (Chen et al.,
2006; Ferrario et al., 2006; Molina-Picó et al., 2011; Pincus,
1995, 2001; Sarlabous et al., 2010; Yentes et al., 2013). ApEn is
robust to outliers and is nearly unaffected by noise which pro-
vides a good confidence at time to apply the algorithm to small
data set of at least 50 samples (Molina-Picó et al., 2011; Pincus,
1995, 2001; Sarlabous et al., 2010; Yentes et al., 2013). SampEn is
even less sensitivity to the length of data sets and provides more
consistent results which being also reliable to be used in small

data sets (Chen et al., 2006; Ferrario et al., 2006; Lake et al., 2002;
Yentes et al., 2013). It is important to note that ApEn and
SampEn have also been used as a metric to evidence the chaotic
behaviour of time series that presents positive λ (Cencini and
Ginelli, 2013; Chen et al., 2016; Gaspard et al., 1998; Kaplan et al.,
1991; Pincus, 1995; Sanei, 2013; Schreiber and Kantz, 1995)

The chaotic behaviour of the price sequence of several mineral
commodities has been assessed previously, however these studies
(Abdullah and Zeng, 2010; He et al., 2015; Panas, 2001; Panas and
Ninni, 2000) have been limited to sample periods of 15 years or
less, and used daily or monthly prices. It is important to verify the
time-related behaviour of mineral commodity prices in the long-
term by using annual data, due to the impact of economic deci-
sions, technological and regulatory changes which can be
observed over years (Bernanke, 2013; Slade, 2015; Yellen, 2013).
Changes in key variables driving the global economy such as
interest rate, monetary policy, taxes, and federal debts and
investment levels may have effects on the economy at least three
quarters ahead. The evolution of economy, due to the changes in
key variables, becomes even more extensive during financial crisis
where recovery may take up to 3 years, and they can affect the
economy for up to 6 years. Changes in these variables generate
extensive speculation that also affects commodity prices (Alquist
and Kilian, 2010; Bernanke, 2013, 2010; Calvo, 2008; Frankel,
2014; Friedman, 1988, 1968; Gürkaynak et al., 2005; Hoover,
1985; Lederman and Maloney, 2007; Yellen, 2013).

The long term data availability for copper prices traded in open
market dates back from 1877, when the London Metal Exchange
(LME) was established (Cuddington and Jerrett, 2008); hence, at
best, only 139 annual observations can be used, and obtaining at
least 2000 observations to assess chaos as suggested by Gottwald
(2009) is not feasible. Therefore, using annual observations for
assessing the long term chaotic dynamics of economic time series
such as mineral commodity prices can only be assessed with small
datasets because the potential sample period is limited to available
reliable historical market data (Huffaker, 2010; Kantz, 1994;
Ramsey et al., 1990). The literature shows that the long term
copper prices behaviour has been determined using between 107
and 137 observations in annual basis (Ahrens and Sharma, 1997;
Chen, 2010; Cuddington, 2010; Svedberg and Tilton, 2006). Thus,
the use of 116 observations as presented in this study is consistent
with previous research.

We investigate the chaotic behaviour of annual mean copper
prices between 1900 and 2015. First, we examine the time
dependency and the presence of a strange attractor by a visual
analysis of the time series and phase space reconstruction based
on Takens’ theorem (Takens, 1981). Then, we examine the
dynamic characteristics of the system assessing its stationarity
and determinism features to guarantee the quality and relevance
of invariant tests such as λ (Ahrens and Sharma, 1997; Perc,
2006). Subsequently, we investigate the complexity of the annual
copper prices time series (Original) by calculating Approximate
(Kaplan et al., 1991; Pincus, 1995, 1991) and Sample Entropy
(Lake et al., 2002; Richman and Moorman, 2000) of the system.
Based on the methodology used for Castiglioni and Di Rienzo
(2008), Lu et al. (2008) and Yentes et al. (2013), we characterise
the behaviour and generation process of the time series (Original)
by comparing its entropy with the entropy of well understood
chaotic, periodic and stochastic systems. A periodic time series
was generated using the Logistic Maps (Eq. 13) using α equals to
3.4. A chaotic time series was generated using the Logistic Maps
(Eq. 13) and α equals to 4.0. Two stochastic time series
(Experimental) were generated applying a random function
arrangement over the “Original” data sets (using Microsoft Excel).
All data sets contain 116 samples. Finally, we assess sensitivity to
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initial conditions and determine chaotic behaviour calculating λ
using a simple method (Rosenstein et al., 1993) that has been
widely used to determine chaotic behaviour (Navarro–Urrios
et al., 2017). It does not require an accurate knowledge of the
embedding parameters to reconstruct the phase space so called
embedding dimension (m) and time delay (τ). However, a proper
choice of both parameters is important to assure the reliability of
the assessment (Cao, 1997; Huffaker, 2010; Kumar et al. 2004).
Thus, we calculateτ by the average mutual information technique
(Becks et al., 2005; Chen et al., 2016; Hegger et al., 1999; Huffaker,
2010; Kumar et al., 2004; Nichols and Nichols, 2001; Perc, 2006;
Raffalt et al., 2017), m by the false nearest neighbours method
(Becks et al., 2005; Cao, 1997; Chen et al., 2016; Hegger et al.,
1999; Huffaker, 2010; Kennel et al., 1992; Nichols and Nichols,
2001; Raffalt et al., 2017; Reynolds et al., 2016). To confirm
embedding parameters combinations, we also calculate the
Theiler window (ω) by the space-time separation plot technique
(Provenzale et al., 1992). Results obtained from the λ were sup-
ported by a surrogate test which was conducted based on the
methodology describe on Cutler and Kaplan (1997), Das and Das
(2007), Graham et al. (2007), Hegger et al. (1999), Kumar et al.
(2004), Miller et al. (2006), Raffalt et al. (2017), So et al. 1996 and
Theiler et al. (1992). All analyses were performed using the
software R® (R Development Core Team 2015) version R × 64
3.3.3 with a statistical confidence level of at least 95%.

We reveal that annual copper price time series do not exhibit
periodic behaviour and are not generated by a stochastic process.
In addition, we observe the presence of a strange attractor
describing an orbit running through a “stable” low-price state
only interrupted by several years of price increases. We name
these fluctuations “price transition periods” which should be
addressed as exceptional adjustment periods rather than cycles.
We demonstrate that a small dataset of annual mineral com-
modity prices with 116 annual observations is adequate for
assessing chaotic behaviour via the Lyapunov exponent λ. We
observe the chaotic behaviour of copper prices in a high
embedding dimension (m) of seven variables and short time delay
(τ) of two periods. We reveal that variables driving prices are time
related, evolve in a cause and effect manner, and effects propagate
over time. In our case of study, we show that mineral commodity
price fluctuations have cumulative effects over time where
changes affect not only current states but also future states that
then become the starting point for the next price change
describing a continuous temporal relationship. These findings
contribute to understanding the long-term nature of mineral
commodity prices.

Results
Phase space reconstruction. A visual analysis is required for the
early recognition of common faults in experimental and real data
such as breaks, drifts or rare events (Kantz and Schreiber, 2004).
The visual analysis provides information about variation ampli-
tude, possible trends and pattern evolution (McCullough et al.,
2007; Perc, 2006). To investigate the temporal relation between
“current” and “past” events we reconstruct the phase space using
the time delay embedding theorem proved by Takens in 1981
(Huke, 2006; Kennel et al., 1992; Perc, 2006). Takens’ theorem is
one of the most well-known, and has been widely used in tests to
recognise chaotic behaviour in time series. It asserts that the
orbits of chaotic systems are attracted to one specific limited area
of the phase space, so-called “strange attractors”, and that changes
of their shape provide significant information hidden inside the
dynamics of the system (Huke, 2006; Perc, 2006; Povinelli, 2001;
Takens, 1981). Recreating the dynamics of the entire system by
reconstructing the phase space dimension from a single scalar

measurement “may appear somewhat mystic” (Kodba et al.,
2005), due to its unexpected results. However, Takens’ theorem
proved that if, at time t, only the value of a variable x is known, at
time t+τ the measurement x will implicitly carry not only infor-
mation of x at time t, but also of other variables of the system at
time t (Perc, 2006).

In Fig. 1, we plot the copper price time series, with the original
evolution appearing in Fig. 1a, and the phase space reconstruction
in Fig. 1b, τ = 1 at the left side and τ = 2 in Fig. 1c. From the
original evolution (Fig. 1a), we identify two behaviours bounded
by price trends change (stable and up-down) evolving in a similar
manner. We observe that the low-price trails are connected by
high-price transitional periods describing an orbit running
through a “stable” low-price state that moves to a more “volatile”
high-price state for a short period and then returns to the low-
price state (Figs. 1b and 1c).

Our visual analysis supports the assertion of the long-term
copper prices which have a single low-price state that eventually
fluctuates over the short high-price adjustment states that we
name “price transition periods”. This behaviour is consistent with
the price-demand inelasticity of the mining industry, and in
particular because of the significant time delay between invest-
ment and production. From Fig. 1a, we note that global copper
price decreases coincide with inflation and recessions in the
world’s largest economy, the United States (for more details see
Supplementary Fig. 1).

Dynamic behaviour. Stationarity and determinism properties
must be tested to ensure the suitability of the analysis and
guarantee the quality and relevance of invariant tests such as λ
(Ahrens and Sharma, 1997; Perc, 2006). Many economic and
financial time series such as exchange rates, asset prices and
macroeconomic aggregates, such as real Gross Domestic Product,
are non-stationary. However, they may become stationary com-
puting the differences between consecutive observations by using
one of the two differencing techniques: first differencing or
transformation (Hyndman and Athanasopoulos, 2013; Zivot and
Wang, 2007). Establishing the stationarity of a system is a com-
plex task and almost impossible to determine by a single test. As
the null hypothesis (H0) is commonly rejected for large sampling
sizes (Alquist et al., 2011), rejecting H0 from a single test may not
be assumed as a system’s behaviour and complementary tests
are require (Kantz and Schreiber, 2004). We performed three
tests to determine the stationarity of the system. The Augmented
Dickey–Fuller test rejected H0 for the first differencing (ρ -value
< 0.001, significance at the 1% level). The Phillips–Perron
test rejected H0 in level (ρ -value< 0.001, significance at the 5%
level). The Kwiatkowski–Phillips–Schmidt–Shin test rejected H0

in level (ρ -value> 0.1, significance at the 5% level). We therefore
reject the null hypothesis and conclude that the series is
stationary.

We evaluate the uniqueness of the solution of the reconstructed
vector in the phase space to distinguish between a deterministic
chaos and the irregular random behaviour (Kaplan, 1994; Kaplan
and Glass, 1992; Kodba et al., 2005; Perc, 2006). We assess the
deterministic behaviour by two tests. Firstly, we use a test
(Kaplan, 1994) which is built on a very simple question: If two
points zj and zk are very close together, are their images zj+1 and
zk+1 also close together? (Kaplan, 1994). This test examines the
continuity of the orbits of the phase space reconstructed from the
delayed original series and measures the separation between E-
statistics of the original time series and a set of surrogates created.
We determine the level of determinism of the time series by
examining the percentage of overlapping E-statistics between the
original time series and its surrogates in a barplot. We observe a
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Fig. 1 Annual copper real prices base 2012= 100. a Evolution between 1900 and 2015 flagged by major price state and trends. Data includes remarkable
economic and financial events in the period (Hong et al., 1996; Radetzki, 2009; Slade, 2015; Tapia Cortez et al., 2017; The Federal Reserve, 2017). During
the first 18 years, prices sharply rise for 4 years until reaching the maximum value. Then, prices fall for longer periods and remain fluctuating at low level
until the next price rising attempt. The next price rally extended for 3 years whereupon prices fall dramatically to the lowest level of the time series. Low
prices during the following 44 years shows that three sharp price rising trends evolving between three to 5 years. After reaching the maximum value of the
rally, prices strongly decrease and remain fluctuating at low level for about eight to 10 years. This is a similar pattern exhibited during high prices period;
however, it is much longer. High price pattern repeats between 1964 and 1975 exhibiting the two price rise attempts followed by the sharp falls. Then,
between 1975 and 2005, low price pattern comes back showing the three short prices growing periods followed by larger price decreasing and fluctuation
periods. Finally, between 2006 and 2015 the high prices dynamic is repeated. The two price ascents evolved in a shorter period; however, the characteristic
sudden prices decline is also displayed. b Time delay plot (τ= 1, m= 2) and (c) Time delay plot (τ= 2, m= 2). Values heuristically chosen. As the scale of
the time series is annual (Δt= 1 year), τ= 1 and τ= 2 are small enough and appropriate to cover the dynamics of the system were the effects of changes of
main macroeconomic variables can be perceived in the economy at from three quarter up to 6 years (Alquist and Kilian, 2010; Bernanke, 2013, 2010; Calvo,
2008; Frankel, 2014; Friedman, 1988, 1968; Gürkaynak et al., 2005; Hoover, 1985; Lederman and Maloney, 2007; Yellen, 2013). In both cases, τ= 1 and τ=
2, we identify five trails named TS_01, TS_02, TS_03, TS_04 and TS_05 which are grouped in two states: low-prices (TS_02 and TS_04) and high-prices
(TS_01, TS_03 and TS_05)
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noticeable separation between them which leads us to conclude
that the signal is deterministic (see Supplementary Fig. 1).
Secondly, we use the false nearest neighbours method which uses
the function E2(d) (Cao, 1997) that can distinguish between
deterministic and stochastic signals. Thus, while stochastic signals
exhibit invariant E2(d) values approximately equal to one, for all
values of m, E2(d) values fluctuate for deterministic signals and
diverge from one (Cao, 1997) (see Supplementary Fig. 5c). We
assert the deterministic features of the time series by the high
determinist level of the E-statistic and fluctuations of E2(d) values.

System complexity and analysis of dynamics. The complexity of
systems can be used to distinguish between periodic, chaotic and
genuine random behaviour of the systems related to biology and
social sciences. Entropy is a statistical tool to measure the com-
plexity of nonlinear dynamics systems (Balasubramanian et al.,
2015; Boulamanti and Moya, 2016; Castiglioni and Di Rienzo,
2008; Chen et al., 2006; Ferrario et al., 2006; Kantz and Schreiber,
2004; Kaplan et al., 1991; Kristoufek and Vosvrda, 2014; Lu et al.,
2008; Molina-Picó et al., 2011; Pincus, 1995; Richman and
Moorman, 2000; Sanei, 2013). In dynamic systems (often chaotic)
(Pincus, 1995) entropy is known as the rate of new information
generation (Lake et al., 2002; Richman and Moorman, 2000)
apprising the amount of information required to predict future
state of the system (Kaplan et al., 1991). In theory, periodic
systems are less complex having the lower entropy, and random
noise systems are more complex and less predictable having the
higher entropy and chaotic systems present intermediate values of
entropy (Ferrario et al., 2006; Kaplan et al., 1991; Pincus, 1995;
Sarlabous et al., 2010; Yentes et al., 2013). Entropy measures the
conditional probability that in two similar sequences samples
embedded in a dimension µ remain similar in the next sample µ
+ 1 within a threshold tolerance r (Castiglioni and Di Rienzo,
2008; Lake et al., 2002; Lu et al., 2008; Pincus, 1995, 1991; Sar-
labous et al., 2010; Yentes et al., 2013). The capacity to char-
acterise the behaviour of a time series without need of a previous
established hypothesis regarding the genesis of the system (Fer-
rario et al., 2006) is perhaps its main feature.

Systems complexity has been associated to the presence of
chaotic patterns. It reflects systems’ flexibility and capacity to
adopt a wide range of behaviours to adapt to unpredictable
environmental changes (Lipsitz, 2002; Lipsitz and Goldberger,
1992). Complex systems present coordinated movements and an
evolutive learning and development process (Yentes et al., 2013).
These are prominent features to assess on systems involving
human being such as markets behaviour. The development,
adaptation and evolution of human social learning and cognitive
skills in the economic environment is based on experiences
acquired from environmental stimulus through time. These skills
are crucial for setting perception, preferences and the decision-
making process of humans interacting into the economic
environment (Baker et al., 2017; Bechara and Damasio, 2005;
de Bot et al., 2007; Frederick, 2005; Fryer and Jackson, 2003;
Glowacki and Molleman, 2017; Kenrick et al., 2009; Lefebvre
et al., 2017; Smith, 1991; Vriend, 1996).

An appropriate value for µ was estimated using the AMI and
FNN (Lu et al., 2008). We determine threshold r values via the
maximum ApEn (ApEnMax) obtained from the maximum r
(rMax). Thus, we investigate ApEn outputs for combination of
values 2 ≤ µ ≤ 5 and 0.1 ≤ r ≤ 0.9 (Lake et al., 2002; Sarlabous
et al., 2010; Yentes et al., 2013). Using the chaotic Logistic Map
data set, for µ = 2 ApEnMax was calculated at 0.65 and rMax at 0.32.
For µ = 3 ApEnMax was calculated at 0.60 and rMax at 0.44. Results
show that ApEn and SampEn are sensitive to large µ values of
“experimental” data sets. However, results from the Logistic Map

(periodic and chaotic), are consistent using different µ values
which is congruent with previous studies (Ferrario et al., 2006;
Richman and Moorman, 2000; Yentes et al., 2013) providing a
solid base of comparison. For µ = 2, results are consistent for the
Logistic Map (periodic and chaotic) for all r values. For the
“Original” time series, results are consistent for r values between
0.20 and rmax. For the “Experimental” time series, results are only
consistent for r values greater than 0.5. This pattern only reflects
the design of both algorithms, while values decreases while r
increases (Lu et al., 2008; Richman and Moorman, 2000) for the
SampEn, values increase steadily until reach rMax and then
decrease as r increases (Castiglioni and Di Rienzo, 2008) for the
ApEn (Fig. 2 and Supplementary Fig. 3).

We selected SampEn because it is more reliable for assessing
small data sets (Lake et al., 2002; Richman and Moorman, 2000;
Yentes et al., 2013) and more consistency exhibited within
assessed time series (Fig. 2 and Supplementary Fig. 3). SampEn
values for µ = 2 and 0.1 ≤ r ≤ 0.4 are shown in Table 1. To
facilitate values comparison, rMax and r ≥ 0.25 of the original and
chaotic time series are highlighted in blue and light blue,
respectively. We concluded that the original copper price time
series exhibits chaotic patterns similar with the chaotic Logistic
Map. Thus, we assert that the time series was not generated by a
stochastic process neither has periodic behaviour. This finding
reaffirms our assertion that copper prices do not exhibit periodic
behaviour fluctuating in super cycles and the debatable adequacy
of stochastic models for representing mineral commodity prices
(Giles, 2004; Mandelbrot, 1963; Sanei, 2013; Watkins and
McAleer, 2004).

Embedding parameters. To examine chaotic behaviour we cal-
culate λ using a simple method (Rosenstein et al., 1993) that does
not require an accurate knowledge of the embedding parameters
to reconstruct the phase space. However, considering the sym-
biotic relationship and mutual assistance between m and τ where
shorter τ can be generally compensated with a larger m, a proper
choice of both parameters is essential (Cao, 1997; Huffaker, 2010;
Kumar et al., 2004; Nichols and Nichols, 2001) for an adequate
reconstruction of the attractor governing the system. The product
between τ and m, the so-called Theiler window (ω) is an addi-
tional and useful tool for setting embedding parameters. The
embedding vector ω represents the time span that can be used for
an appropriate and flexible selection of τ and m (Hegger et al.,
1999; Kumar et al., 2004; Provenzale et al., 1992).

We note that values greater or equal than one are appropriate
values for τ which is also consistent with the strange attractor
observed at τ = 1 (Fig. 1b) and τ = 2 (Fig. 1c). Using the false
nearest neighbours method (Becks et al., 2005; Chen et al., 2016;
Hegger et al., 1999; Huffaker, 2010; Kennel et al., 1992; Nichols
and Nichols, 2001; Raffalt et al., 2017; Reynolds et al., 2016), we
observe that m= 7 is the optimum value. However, as this
method is based on some subjective and criticisable assumptions
such as the heuristic tolerance Rt (Cao, 1997) we conduct a
second test. Using a false nearest neighbours method developed
by Cao (1997) we also observe that m= 7 is the optimum value.
Using a phase separation plot (Provenzale et al., 1992), we note
that a ω is ~14 are consistent with the range of combination of m
and τ values. It allows us to examine λ testing additional
combinations of m and τ(m = 7, τ ≥ 1).

Chaotic behaviour. The Lyapunov exponent λ has been widely
used to examine the sensitivity to initial conditions and detect the
presence of chaotic behaviour (Becks et al., 2005; Chen et al.,
2016; Cvitanović et al., 2013; Gaspard et al., 1998; Gottwald, 2009;
Graham et al., 2007; Kodba et al., 2005; Navarro-Urrios et al.,
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2017; Panas, 2001; Panas and Ninni, 2000; Perc, 2006; Pincus,
1995; Raffalt et al., 2017; Reynolds et al., 2016; Rosenstein et al.,
1993; Savi, 2005; Wernecke et al., 2017; Zhong et al., 2017) as it
quantifies the exponential divergence of nearby trajectories
between initial close space-states (Supplementary Fig. 3). Sensi-
tivity to the initial conditions is asserted by the rapid exponential
divergence of initially close trajectories through time (Becks et al.,
2005; Chen and Aihara, 1995; Chen et al., 2016; Cvitanović et al.,
2013; Graham et al., 2007; Kodba et al., 2005; Navarro-Urrios
et al., 2017; Panas and Ninni, 2000; Perc, 2006; Pincus, 1995;
Raffalt et al., 2017; Reynolds et al., 2016; Rosenstein et al., 1993;
Savi, 2005; Wernecke et al., 2017). Thus, if at least one positive λ

exists, the chaotic behaviour of the system is presumed (Supple-
mentary Table 2).

It can be asserted that the chaotic behaviour of a data set
should be assessed by generating several trajectories starting from
a given point surrounded by a number of initial conditions.
However, this methodology is only true for theoretical or ideal
chaotic systems, theoretical stochastic dynamic models or for
elementary models of well-known chaotic behaviour represented
by a set of differential equations or time-delay models that reduce
the complexity of their dynamic behaviour (Fradkov and Evans,
2005; Guegan, 2009; Vlad et al., 2010). In the absence of an a
priori analytical model, or if little insight of the system is

Fig. 2 Time Series ApEn and SampEn. For both, ApEn and SampEn, periodic process reports smaller values, stochastic process higher values that can go
toward infinity for the SampEn and chaotic systems reports intermediate values. Consistency of entropy results is measure by comparing the relative
distance between ApEn and SampEn values obtained from each data sets for different setting of r and m. a ApEn (2, 0.1≤ r≤ 0.9, 116) random times series
move apart from the chaotic behaviour. Original copper prices show values closer to chaotic behaviour at 0.3≤ r≤ 0.5. b ApEn (3, 0.1≤ r≤ 0.9, 116)
random time series move apart from chaotic behaviour. Original dataset shows values close to chaotic behaviour for 0.35≤ r≤ 0.47. However, there is not
possible to reach any conclusion due to the erratic behaviour of random and original time series. c SampEn (2, 0.1≤ r≤ 0.9, 116) random times series move
apart from the chaotic behaviour. Values of original copper prices are closer chaotic behaviour at 0.3≤ r≤ 0.44 which is consistent with the selection of
rmax. d SampEn (3, 0.1≤ r≤ 0.9, 116) values of random times series move describe and erratic shape moving through infinity at small r which is
characteristic of stochastic systems. Original dataset values are close to chaotic behaviour for 0.25≤ r≤ 0.4. e AppEn and SampEn (2, 0.32, 116) and f
AppEn and SampEn (3, 0.44, 116). Chaotic system and original times series show high similarities which are intensified by the consistency of both tests
exhibiting almost the same results. Random times series exhibit divergent values for both tests and largest errors compare to chaotic and original time
series. SampEn shows higher values compare to ApEn which can be the result of limitations to assess short stochastic datasets

ARTICLE PALGRAVE COMMUNICATIONS | DOI: 10.1057/s41599-017-0060-x

6 PALGRAVE COMMUNICATIONS |  (2018) 4:8 |DOI: 10.1057/s41599-017-0060-x |www.nature.com/palcomms

www.nature.com/palcomms


available, a proper assessment of m and τ of the time series is
required to describe its dynamics. In economics time series, a
single time series trajectory is often the main and solely available
source of information describing systems dynamics. Thus, to gain
knowledge of its dynamics and evaluate whether it has chaotic
behaviour, the phase space should be reconstructed to verify the
presence of an estranged attractor embedded on certain
dimension m and time delay τ to calculate λ and confirm the
presences of chaos (Abraham et al., 1986; Becks et al., 2005;
Fradkov and Evans, 2005; Guegan, 2009; Nichols and Nichols,
2001; Pincus, 1991; Reynolds et al., 2016; Rosenstein et al., 1993;
Vlad et al., 2010; Wolf et al., 1985).

Experimental series of complex systems involving biological,
physics and social sciences are constrained by using short data
sets, because of their technical, temporal or physiological
restrictions (Becks et al., 2005; Ferrario et al., 2006; Kaplan,
1994; Nichols and Nichols, 2001; Pincus, 1995; Ramsey et al.,
1990; Yentes et al., 2013). Although several attempts have been
made to describe the copper price dynamics, there is not yet a
mathematical time delay model or a set of differential equations
describing its long-term behaviour (annual base) in the last
century. Thus, copper price behaviour using experimental data
sets should be carried out by analysing the invariant elements of
the systems, such as λ, directly from the data sets. The calculation
of λ to determines chaotic behaviour of dynamic systems that
occurs in nature (biology, physics and social sciences) has been
largely and well documented in the literature even for data sets
small as 50 observations (Blank, 1991; Chen et al., 2016; Ferrario
et al., 2006; Gaspard et al., 1998; Gottwald, 2009; Kaplan and
Glass, 1992; Navarro-Urrios et al., 2017; Nichols and Nichols,
2001; Panas, 2001; Panas and Ninni, 2000; Pincus, 1995; Raffalt
et al., 2017; Reynolds et al., 2016; Wernecke et al., 2017; Wolf
et al., 1985).

We calculate λ based on the optimumm and τ values calculated
(m = 7, τ ≥ 1), as well as for different combinations of 3 ≤m ≤ 8
and 1 ≤ τ ≤ 4 close to ω is ~14. Possible combinations are
highlighted in light blue (Table 2). Using embedded parameters
m = 7 and τ = 2 we calculate λ = 0.4823 and is highlighted in blue.
For m = 8 and the combination of high m and τ was not possible
to calculate λ due to the lack of neighbours (Values in white on
Table 2). It reflects the loss of sensitivity of the systems at high
embedding dimension and long-time delay. For all remaining
possible combinations we calculate λ> 0. However, to confirm
the chaotic behaviour of each combination of m and τ that has the
potential to reconstruct the dynamics of the systems, we
investigate the evolution of perturbations of nonlinear dynamics
and instability analysing the shape of the Lyapunov spectrum
using the 'ln(divergence)' vs. time plot (Constantoudis and

Theodorakopoulos, 1997; Hegger et al., 1999; Reynolds et al.,
2016; Rosenstein et al., 1993) (Fig. 3) and assess the nature of time
series fluctuations and the statistical significance of the results via
surrogate analysis (Cencini and Ginelli, 2013; Kumar et al., 2004;
Miller et al., 2006; Raffalt et al., 2017; So et al., 1996; Theiler et al.,
1992) (Supplementary Table 3).

'ln(divergence)' vs. time plot analysis. We plot the number of
iterations Δt in the x axis vs. the natural logarithm of error
divergence 〈In dj(i)〉 in the y axis where each slope of lines is
proportional to λ (Fig. 3). Chaos behaviour exists when the curves
exhibit an “exponential divergence of initially close state-space
trajectories” (Navarro–Urrios et al., 2017; Reynolds et al., 2016)
and positive slope reflecting the exponential nature of the test
(Rosenstein et al., 1993). Stochastic or quasi-periodic systems
exhibits sudden jumps from small separation of the initial time (t
= 0), and curves are mostly flat (Rosenstein et al., 1993). We reject
chaotic behaviour for all possible combinations of τ ≥ 3, due to
incongruent pattern exhibited (Fig. 3c). For m = 5 and τ = 2, and
for m = 6 and τ = 2, chaotic behaviour is doubtful because,
although there is initial exponential divergence trajectories at
close state-space, curves continue to grow that can be related to a
power law. Thus, the adequacy of results should be confirmed by
a surrogate analysis. For all combinations of τ = 1 a chaotic
behaviour could exist (Fig. 3a). However, as short delay of one
tend to concentrate all delayed vectors around the diagonal of the
embedding space that yield in a strong correlation between them
(Hegger et al., 1999; Navarro–Urrios et al., 2017; Rosenstein et al.,
1993), a surrogate analysis is required to validate the suggested
behaviour. For τ = 2 and m = 3,4 and 7 a chaotic behaviour is
suggested as we observe that initially close state-space trajectories
diverge in an exponential manner and the presence of a positive
slope (Hegger et al., 1999; Navarro–Urrios et al., 2017; Reynolds
et al., 2016; Rosenstein et al., 1993) (Fig. 3b).

Surrogate analysis. Surrogate analysis consisted in the creation of
random datasets (surrogates) that preserve the statistical prop-
erties of the original times series that can be objectively assessed
using the same techniques. The relevance of this method for
assessing the reliability for our results leads in the fact that the
statistical significance of the test can be measured by comparing
both outputs the original dataset and surrogates to estimate the
statistical probability that observed chaotic behaviour could arise
from linear stochastic process modelled by the surrogates (Raffalt
et al., 2017; So et al., 1996; Theiler and Prichard, 1997). We
construct 50 surrogates using the Theiler’s amplitude adjusted
Fourier transform algorithm (Graham et al., 2007; Hegger et al.,
1999; Kumar et al., 2004; Theiler et al., 1992). We calculate λ of

Table 1 SampEn (µ= 2, r= 0.10-0.15-0.20-0.25-0.30-0.32 and 0.40, N= 116) for each data set

Threshold r
.051.01.0 2 0.25 0.3 0.32 0.35 0.4 

Data 
Sets

Original Copper Prices 1.766 1.330 1.086 0.893 0.755 0.736 0.696 0.632
Experimental Copper Prices-Random 01 3.497 2.565 2.157 1.693 1.745 1.598 1.482 1.366 
Experimental Copper Prices-Random 02 2.565 2.398 1.936 1.856 1.695 1.614 1.419 1.316 
Logistic Map - Periodic (α = 3.4) 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 
Logistic Map - Chaos (α = 4) 0.728 0.769 0.696 0.695 0.708 0.695 0.672 0.664

Results show that stochastic (experimental) data sets report the higher values for all r values. It confirms that, indeed, they were generated by a stochastic process. Periodic Logistic Map (α= 3.4) reported
the smaller values that confirms its well-known periodic behaviour. For r≥ 0.25, the original copper prices time series exhibits values like those obtained from the Chaotic Logistic Map (α= 4). This close
similarity supports our belief that the original time series exhibits chaotic systems patterns. It also confirms that, by any case, the original copper price time series was generated by a stochastic process or
presents periodic behaviour. Largest values obtained for the original times series at small r values can be the result of the unbiased method of the algorithm as a small number of self-matches may results in
loss of information to describe the behaviour of the time series (Lu et al., 2008)
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surrogates (Das and Das, 2007) for all combinations of 3 ≤m ≤ 7
and 1 ≤ τ ≤ 2 and define their significance by calculating the p-
value (Eq. 24). We observe that, except for m = 3, all λ calculated
for τ = 1 are bellow of 95% confidence interval of λ calculated on
the surrogates as, S< 2 and ρ-value> 0.05. On the other hand, all
λ calculated for τ = 2 are above the 95% confidence interval of λ
calculated on the surrogates as S is always greater than 2 and ρ-
values are close to zero (Supplementary Table 3).

The surrogate analysis at statistical confidence level of at least
95% confirms the existence of more than one positive λ, and a
Lyapunov spectrum describing divergent trajectories at initially
close state-space evolving in an exponential manner with positive
slope. These findings provides us with sufficient evidence to
presume the chaotic behaviour of the systems (Becks et al., 2005;
Kantz and Schreiber, 2004; Kodba et al., 2005; Panas, 2001; Perc,
2006; Raffalt et al., 2017; Rosenstein et al., 1993; Savi, 2005). Thus,
we confirm sensitivity to initial conditions and chaotic behaviour
of the time series embedded in a high dimension (m = 7) and
short time delay (τ = 2). We have also found evidence that the
system might present chaotic behaviour embedded in the same
short time delay (τ = 2) and 3 ≤m ≤ 6 (Table 2).

Methods
Data. We use a single dataset of annual copper prices, acquired from the World
Bank (Takeuchi et al., 1987) (1990–1934) and from the Chilean Copper Cor-
poration (Cochilco) (Comision Chilena del Cobre de Chile, 2017) (1935–2015).
Our original dataset consists in 116 observations corresponding to annual constant
(2012 = 100) refined copper prices quoted in the LME between 1900 and 2015.
Observation values are quoted in the U.S. Dollar per pound of metallic copper
(USD cents/lb) (See the Supplementary Table 4 for details).

Phase space reconstruction. We reconstruct the phase space by using the delay
embedding theorem of Takens (Takens, 1981). It asserts that if the qualitative
features of the phase space are reconstructed using a time delay it is possible to
obtain the information of the original system from the evolution of the variables
(Eq. 1). Here τ represents the embedding delay and m represents the embedding
dimension (Huke, 2006; Perc, 2006; Povinelli, 2001; Takens, 1981).

p ið Þ ¼ xi; xiþτ; xiþ2τ; :::xiþ m�1ð Þτ
� � ð1Þ

Although the literature suggests several theorems to narrow the search for an
appropriate combination of τ and m (Huffaker, 2010), the heuristic approach
provided by the visual analysis of delay plots is a useful and simple method.

Dynamic behaviour-stationarity. We perform three unit root tests to verify sta-
tionarity. For the Augmented Dickey–Fuller test, we use a regression model based
on the first-differenced series y0t y0t ¼ yt � yt�1

� �
that includes several lags repre-

sented by (k) where the coefficient ø = 0 if y0t is stationary (Eq. 2). For the
Phillips–Perron test, we use a regression test where ut is the alternative null
hypothesis (H1) and may be heteroskedastic (Zivot and Wang, 2007) (Eq. 3). For
the Kwiatkowski–Phillips–Schmidt–Shin test, we break the time series into sta-
tionarity and random walk components (Hyndman and Athanasopoulos, 2013;
Panas, 2001) (Eq. 4 and 5). Here Dt contains deterministic components, ut

corresponds to H0 and μt is a pure random walk process with variance σ2ϵ . We test
the score statistic σ2ϵ¼0 against the alternative that σ2ϵ>0 (Eq. 6) (Zivot and Wang,
2007).

y′t¼;yt�1 þ β1y′t�1 þ β2y′t�2 þ ¼ þ βky′t�k ð2Þ

Δyt ¼ β′Dt þ πyt�1 þ ut ð3Þ

yt¼B′Dtþμtþut ð4Þ

μt¼μt�1 þ εt ; εt � WN 0; σ2ε
� � ð5Þ

KPSS ¼
T�2

PT
t¼1

bS2t
� �

bλ2
ð6Þ

Dynamic behaviour–determinism. We use a method (Kaplan, 1994) (Eq. 7–9)
that can be used to assess very small datasets with low dimension and large λ, as
well as moderate dimension (≈7) noisy systems. We examine the possible con-
tinuity of the orbits contained in the reconstructed phase space in three stages.
Firstly, we create a set of surrogate data. Then, we calculate an appropriate E-
statistic for τ embedding the original time-series and the surrogates. Finally, we
analyse the deterministic structure of the time series by calculating the cumulative
sum over the Bin average (e(r)) and compare with the E-statistics (Eq. 10).

δj;k¼ zj � zk
�� �� ð7Þ

ϵj;k¼ zjþk � zkþk

�� �� ð8Þ

e rð Þ � ϵj;k for j; k s:t:r � δj;k<r þ Δr ð9Þ

E rð Þ �
X

e rð Þ ð10Þ

Here δj,k is the Euclidian distance between phase space points (zj−zk), k is the
global orbital lag, ∈j,k is the separation distance between(k) future points measured
along an orbit, Δr is the width increments of Euclidian size. Deterministic signals
are recognised by a noticeable separation of E-statistic between the original time
series and the set of surrogate data (Constantine and Percival, 2016; Kaplan, 1994).
Determinism level percentage is calculated by using the overlapping fraction
between the E-statistics of the original series and the ensemble of surrogates
(Supplementary Fig. 1).

We also use the false nearest neighbours method developed by Cao (1997) that
allows testing the deterministic characteristics of the system along with
determining m (Supplementary Fig. 5c). We use the function E2(d) (Eq. 11–12) to
distinguish between deterministic and stochastic signals. While stochastic signals
exhibit invariant E2(d)values, approximate to 1, for all values of m, in deterministic

Table 2 Lyapunov exponent (λ)

Embedding dimension ( )

3 4 5 6 7 8 

Time 
delay 
( )

1 0.5431(2) 0.4345(2) 0.2643(2) 0.2896(2) 0.2501(2) (nf) 

2 0.7031 0.4629 0.2751 0.3256 0.4828 (nf)

3 0.7882(1) 0.7358(1) 0.6353(1) 0.7747(1) (nf) (nf)

4 0.7866(1) 0.6569(1) 0.6606(1) (nf) (nf) (nf)

The results show that more than one positive λ exists. Therefore, the chaotic behaviour of the system is asserted (Kantz and Schreiber, 2004; Kodba et al., 2005; Panas, 2001; Perc, 2006; Rosenstein et al.,
1993; Savi, 2005) (see the Supplementary Table 2 for details). The Lyapunov exponent λ is positive for calculated embedding parameters m= 7 and τ= 2. Other combinations of m≤ 3 and τ= 2 within ω
boundaries have also positive values of λ. Positive λ values for m≥ 3 confirms the high dimension nature of the system. It also demonstrates the symbiotic relationship between m and τ into the system,
where the high dimensionality compensates low τ values
(nf)-Values not found
aRejection of chaotic behaviour by 'ln(divergence)' vs. time plot analysis
bRejection of chaotic behaviour by surrogate analysis
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signals E2(d) values fluctuate and move away from 1 E2(d)≠1 (Cao, 1997).

E� dð Þ ¼ 1
N � dτ

XN�dτ

i¼1
xiþdτ � xn i;dð Þþdτ

�� �� ð11Þ

E2 dð Þ ¼ E� d þ 1ð Þ
E� dð Þ ð12Þ

Here N denotes the length of the time series and xn(i,d)+dτ the time delay
reconstructed vectors.

Entropy. For testing entropy, four additional datasets were used. Two random data
sets were generated rearranging copper price sequences of the original dataset. The
proven Logistic Map (Eq. 13) was used to generate periodic (α = 3.4) and chaotic
(α = 4) signals (Yentes et al., 2013). In Eq. 13, xn is a real number and the rate of
grow of decay is represented by α.

xnþ1¼α xnð Þ 1� xnð Þ ð13Þ
ApEn and SampEn algorithms are based in three parameters so called length of

the data segment being compared (µ), similarity criterion (r), and data length (N)
(Yentes et al., 2013). ApEn measures the conditional probability that in two similar
sequences samples embedded in a dimension µ remain similar in the next sample µ
+ 1 within a threshold tolerance r (Eq. 14) (Chen et al., 2006; Pincus, 1995, 1991).
SampEn is the negative natural logarithm of the conditional probability that a
series of data points separated by a distance µ would repeat itself at µ + 1, without
counting self-matches in a dataset of length N (Eq. 15) (Chen et al. 2006; Lake
et al., 2002; Richman and Moorman, 2000; Yentes et al., 2013). Given a set of N
data points {u(i)}, a vector sequence x(1) to x(N−μ+1) by
x ið Þ ¼ u ið Þ; � � � ; u iþ μ� 1ð Þ½ �. The maximum distance between vectors x(i) and x
(j) is defined as d x ið Þ; x jð Þ½ � ¼ max x iþ kð Þ � x jþ kð Þj j½ � for 0 ≤ k ≤ μ−1.

ApEn is defined as. For each i � N � μþ 1;Cμ
r ið Þ ¼ Vμ ið Þð Þ= N � μþ 1ð Þ,

where Vμ = number of j � N � μþ 1 such that
d x ið Þ; x jð Þ½ � � r:ϕμ rð Þ ¼ N � μþ 1ð Þ�1PN�μþ1

i¼1 lnCμ
i rð Þ.

ApEn μ; r;Nð Þ ¼ ϕμ rð Þ � ϕ μþ1ð Þ rð Þ ð14Þ
SampEn is defined as. For each

1 � i � N � 1;Bμ
i rð Þ ¼ N � μþ 1ð Þ�1 ´No: of dμ x ið Þ; x jð Þ½ � � r; i≠j. For each

1 � i � N � μ;Aμ
i rð Þ ¼ N � μþ 1ð Þ�1 ´No: of dμþ1 x ið Þ; x jð Þ½ � � r; i≠j:

Bμ rð Þ ¼ ðN � μÞ�1 PN�μ
i¼1 Bμ

i rð Þ and

Aμ rð Þ ¼ N � μð Þ�1PN�μ
i¼1 Aμ

i ðrÞ.

SampEn μ; r;Nð Þ ¼ �ln
Aμ rð Þ
Bμ rð Þ

� �
ð15Þ

Low similarity probability demonstrates the low predictability of the system;
therefore, stochastic behaviour is presumed, which is enunciated by large ApEn
values that trend toward infinity in the case of SampEn (Castiglioni and Di Rienzo,
2008; Lake et al., 2002; Pincus, 1995, 1991; Sarlabous et al., 2010; Yentes et al.,
2013). High probability reflects repetitive patterns demonstrating a more
predictable or regular system enunciated by small values of both ApEn and
SampEn (Pincus, 2001; Pukthuanthong and Roll, 2011; Sarlabous et al., 2010;
Yentes et al., 2013). Chaotic signals are presumed at intermediate values (Yentes
et al., 2013) (Supplementary Table 5). We determine parameters r and µ based on
the guidelines provided by Castiglioni and Di Rienzo (2008), Lu et al. (2008) and
Yentes et al. (2013). Then, obtained parameters were used for testing ApEn and
SampEn algorithms in the five data sets, entropies were compared and data sets
process characterised according algorithms definitions (Castiglioni and Di Rienzo,
2008; Chen et al., 2006; Ferrario et al., 2006; Lake et al., 2002; Pincus, 1995, 1991;
Sarlabous et al., 2010; Yentes et al., 2013).

Embedded parameters-time delay (τ). We chose τ through the average mutual
information (AMI) method and use a visual analysis to corroborate the results (Fig.
1b). The AMI method show us the amount of information that a time series at the
time (t +Δt) may learn from another time series at the time (t) at given τ (Huf-
faker, 2010). If two vectors vs and vn are independent, the mutual information
between them should not significantly diverge from one, and zero bits of infor-
mation are shared (Collins and Turvey, 1999). Hence, the average mutual infor-
mation informs us of the joint probability that x(t) is a bin of n and that x(t + τ) is a
bin of s where the first minimum between two time series reveals the bottom
threshold for choosing the optimum value of τ (Eq. 16) (Hegger et al. 1999; Kumar
et al., 2004; Perc, 2006). Values above the average mutual information drops
sharply (first minimum) are considered good candidates for τ (Hegger et al., 1999;
Kumar et al., 2004; Perc, 2006; Sanei, 2013). We calculate AMI setting the

Fig. 3 ln 'divergence' vs. time plot. a Analysis of τ= 1. All m values are appropriate. b Analysis of τ= 2. m= 5 and m= 5 are doubtful. m= 3, 4, and 7 are
appropriate. c Analysis of τ= 3. All combinations are rejected
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maximum time lag at six (Ahrens and Sharma, 1997).

M τð Þ ¼ �
X

ij
pij τð Þln pij τð Þ

pipj
ð16Þ

Here pi represents the probability of finding a time series in the i-th interval and
pi,j(t) the joint probability that an observation falls into the i-th interval and then
observation at time τ falls into the j-th interval.

Embedded parameters–embedding dimension (m). We determine m by using
the false nearest neighbours method (Hegger et al., 1999; Kennel et al., 1992). We
choose a sufficiently large, but minimum m capable of containing the reconstructed
attractor (Huffaker, 2010; Kumar et al., 2004) assuring that the nearest neighbour
of each reconstructed vector in the n-dimensional space must be found with
respect to any metric. Thus, neighbours should be inside a sphere of radius (r)
smaller than the diameter of the reconstructed attractor (d) and the number of
neighbour candidates (Γ(r)) should be greater than 1 (Eq. 17–19) (Kennel et al.,
1992; Kumar et al., 2004; Rosenstein et al., 1993). Here D is the dimension of the
attractor and N the number of observations or data points (size of the dataset).

Γ rð Þ 	 1 ð17Þ
Next recognise that

Γ rð Þ 
 const: ´ dD ð18Þ
thus,

Γ dð Þ 
 N ð19Þ

Embedded parameters–Theiler window (ω). We use the space-time separation
plot (Provenzale et al., 1992) to identify the value of ω. We examine the manner in
which closer points converge at given Δt separation. As scatter points are difficult
to interpret, we use the contour map plots for plotting the fraction of points closer
than a distance (δ) and separated by a given time Δt, as a function of Δt in a
probabilistic approach (Eq. 20) (Provenzale et al., 1992).

P x t þ Δtð Þ � x tð Þj j<φð Þ ð20Þ
In the contour map plot, the axis x shows the temporal separation Δt and the

axis y shows the separation in space represented by the different curves that
correspond to the different fractions, which correspond to the fractions of points
closer than a distance (φ) at a given separation time Δt (Hegger et al., 1999). In
chaotic systems, the contour map plot shows a characteristic and persistent pattern
in the long-term structure that reflects its memory to initial conditions. The
correlation decays through time and the different fractions converge to a particular
Δt at constant Δt (Provenzale et al., 1992).

Chaotic behaviour–Lyapunov exponent (λ). We measure the divergence (δ(t)),
both global and local, between two close states or trajectories starting from a very
close initial starting point (Eq. 21) (Cvitanović et al., 2013; Savi, 2005). Here x0
denotes the initial state, δx0 the very close neighbourhood of the trajectory x0 and δ
the infinitesimal difference in the time space.

x tð Þ ¼ ft x0ð Þ
x tð Þ þ δx tð Þ ¼ ft x0 þ δx0ð Þ ð21Þ

We assess the sensitivity of the system to initial conditions by measuring the
mean rate of separation of the trajectories between both states (Eq. 22) where two
trajectories cannot separate further than the size of the attractor (Cvitanović et al.,
2013; Kantz and Schreiber, 2004). Observing that, in a finite time, the mutual
separation increases exponentially through time until reaching the size of the
accessible state space, we detect evidence of the existence of a strange attractor;
therefore, a signal of chaotic behaviour (Supplementary Fig. 4).

δx tð Þj j 
 eλt δx0j j ð22Þ
We determine chaotic behaviour based on a method that allows us to use small

noise datasets to calculate λ accurately by using the least-square fit to the average
line (Rosenstein et al., 1993) (Eq. 23).

y ið Þ ¼ 1
Δt

ln dj ið Þ
	 
 ð23Þ

Here 〈In dj(i)〉 denotes the average over all values of j, and dj(i) denotes the
divergence between trajectories over all values of j.

We validate chaotic behaviour by reconstructing the dynamic of the systems
using the 'ln(divergence)' vs. time plot (Rosenstein et al., 1993) (Fig. 3). We plot the
number of iterations Δt in the x axis vs. the natural logarithm of error divergence
〈In dj(i)〉 in the y axis where each slope of lines is proportional to λ.

Surrogate analysis. We investigate the nonlinear behaviour of the time series
using a surrogate analysis developed by Theiler et al. (1992) that has been largely
used to assess and confirm the chaotic behaviour from experimental data (Das and
Das, 2007; Raffalt et al., 2017; So et al., 1996; Theiler and Prichard, 1997).

Surrogates were created using the Amplitude adjusted Fourier transform
algorithm (Theiler et al., 1992). The statistical significance of surrogates was
determined by measuring the difference between the statistics of the original times
series (QD) and the mean of surrogates (vH) divided by their standard deviation
(σH). This is a dimensionless quantity (Eq. 24). Then, ρ-values where calculated
using the complementary error function (Eq. 25). The null hypothesis state that
statistical obtained from the original time series are equal to those obtained for the
surrogates and is rejected at low ρ-values (ρ-values ≤ 0.05).

S ¼ QD � νHj j
σH

ð24Þ

ρ� value ¼ erfc S=
ffiffiffi
2

p� �
ð25Þ

Discussion
We prove that small datasets of 116 observations can be used to
investigate the chaotic behaviour of mineral commodity prices by
using the Lyapunov exponent λ method (Becks et al., 2005; Blank,
1991; Chen et al., 2016; Gaspard et al., 1998; Gottwald, 2009;
Kodba et al., 2005; Navarro–Urrios et al., 2017; Panas, 2001;
Panas and Ninni, 2000; Perc, 2006; Raffalt et al., 2017; Reynolds
et al., 2016; Rosenstein et al., 1993; Savi, 2005; Showalter and
Hamilton, 2015; Sivakumar, 2000; Wernecke et al., 2017; Zhong
et al., 2017) using copper as a representative mineral. This finding
is important for understanding long-term patterns of mineral
commodity prices as available annual data is limited. We find that
the copper price dynamic is embedded in a relative high
dimension m = 7 and, in compensation, in a short time delay τ =
2. This outline may be further explored and used for improving
mineral commodity price forecasting models. If used as inputs,
these parameters may simplify the forecasting task by increasing
our understanding of mineral commodity markets and narrowing
the data searching, processing and monitoring requirements. Our
study provides appropriate guidelines for the inclusion of time-
related variables in datasets in the form of delayed features which
might improve the capacity of forecasting algorithms to “mem-
orise” information and “learn” their effects. The chaotic behaviour
can also be used to assist and improve the performance of tra-
ditional techniques for feature selection such as principal com-
ponent analysis. As chaos theory can detect sensitivity to the
initial conditions governing the dynamics of the system in a time-
related way and can precisely determine the time delay and
embedding dimension, it provides a more realistic, efficient and
unbiased guideline to select the key features driving the long-term
behaviour of prices for forecasting. The finding of chaotic-time
related behaviour in mineral commodity prices may also assist in
the selection of a more suitable algorithm for forecasting prices, as
the algorithm should match the nature of the system. In the case
of forecasting mineral commodity prices, the algorithm should be
able to mimic the evolutive and time-related nature of human
decision-making process, where the concept drift through the
perceptron learner appears to be the more suitable technique.

We observed that four λ calculated based on the embedded
parameters of the systems have positive values and statistical
significance at 95% confidence interval. Thereby, we find sensi-
tivity to the initial condition in annual copper prices, suggesting
chaotic behaviour. This finding is particularly important because
of the debate on the adequacy of stochastic and econometric
models for representing mineral commodity market behaviour
(Mandelbrot, 1963; Sanei, 2013; Watkins and McAleer, 2004).
Even though these models are considered as mathematically
accurate and precise, they still have some incompleteness. Sto-
chastic models have low probability of similarities and their
predictability (which is depicted by their high Entropy) do not
represent the time-related behaviour of copper prices. On the
other hand, econometric models have a lack of evolutive time-
related features of human cognition which is required for
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decision-making in the economic environment, and it is also
unclear how their key variables are selected. Our assertion,
through SampEn values, is that copper prices have similar pat-
terns with well-known chaotic systems (Logistic Map). Hence, we
can state the long-term copper prices time series was not gen-
erated by stochastic processes and does not exhibit periodic
behaviour. Finally, we find a single long-term state of low prices
only interrupted by periods of high demand lasting four or 5
years which challenges the assertion that metal prices have fluc-
tuated over four major super cycles during the last 150 years
(Cuddington and Jerrett, 2008; Jerrett and Cuddington, 2008;
Rossen, 2015), at least for copper.

The assessment of the dynamics of small data series requires
rigorous and combined visual and numerical analysis to identify
the patterns which govern the system and the parameters which
describe it. A joint numerical and visual analysis is vital to discard
any result that seems to be consistent in theory but is incorrect in
practice.
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