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Scheduling optimisation of alcohol
test sites
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Drink driving is an infamous factor in road crashes and fatalities. Alcohol testing is a major
countermeasure, and random breath tests (RBTs) deter tested drivers and passersby (observers who
are not tested). We propose a genetic algorithm (GA)-based RBT scheduling optimisation method

to achieve maximal deterrence of drink driving. The RBT schedule denotes the daily plan of where,
when, and for how long tests should occur in the road network. The test results (positive and negative)
and observing drivers are considered in the fitness function. The limited testing resource capacity

is modeled by a number of constraints that consider the total duration of tests, the minimum and
maximum duration of a single test site, and the total number of test sites during the day. Clustering
of the alcohol-related crash data is used to estimate the matrix for drink driving on the scheduled
day. The crash data and traffic flow data from Victoria, Australia are analysed and used to describe
sober/drink driving. A detailed synthetic example is developed and a significant improvement with
150% more positive results and 59% more overall tests is observed using the proposed scheduling
optimisation method.

Drink driving is a major cause of fatal crashes. As a countermeasure, random breath tests (RBTs) were imple-
mented decades ago on a global scale. The program has been effective in deterring potential drink driving and
increasing overall road safety in many countries’.

To improve RBT performance, some testing operations specify target areas. This was investigated in? and
it was found in Victoria, Australia that there were more positive breath test results in targeted areas with high
alcohol prevalence in crashes/drivers. Better discretion to stop and test target drivers tends to have higher suc-
cessful detection rates®. A traffic enforcement resource allocation model in* and® was developed to assist police
in the deterrence of drink driving. In a study in South Australia®, it was reported that RBTs that adopted the
targeted-RBT approach captured 29 drink drivers per one thousand breath tests performed, in comparison with
5.7 drivers otherwise. We seek to optimise the locations and times of RBT sites to facilitate more tests and capture
more positive test results to achieve sustained safety performance.

Drivers infer the likelihood of apprehension by the observed level of police enforcement intensity. In 2016 and
2020, the New Zealand Transport Agency (NZTA) conducted two rounds of a Public Attitudes to Road Safety
Survey on drivers’ expectations of alcohol tests” and®. In both years, the survey results indicated that drivers had
correctly recognised 10pm-12am as the time period with the highest likelihood of encountering RBTs. It was
found by® and® that in the early evening (before 6:00 pm), if potential drink drivers observed roadside breath
test operations on the way to drinking venues, then they would re-evaluate whether to drink and drive. Strategic
temporal allocation of RBT sites could change drivers’ attitudes towards drink driving, increase positive test rates,
and enforce the general deterrence of drink driving.

Locations and times of RBT sites may be scheduled on a daily basis. A meta-analysis in'® focused on roadside
breath test locations and their impacts on crashes. It was found that the largest crash reductions were found in the
first 3-6 months after the establishment of a new test site. The randomness of RBT sites weakens the ‘grapevine
effect’ and strengthens the deterrence by observations of test sites®. In rural areas, unexpected RBTs can achieve
better efficiency and sustain longer deterrence with limited police resources'! and'?. The study used a control
group and reached a similar conclusion from test sites at the best-fixed locations to the randomly alternating sites
across potential checkpoints. The National Highway Traffic Safety Administration (NHTSA) in the United States
proposed alternative enforcement with flexible checkpoints, sometimes referred to as ‘phantom checkpoints’ or
‘mock sites, to supplement traditional test sites'’.

An effective measure to reduce alcohol-related road traumas is to increase testing capacity'?. The available
police resources define the overall testing capacity, and the duration of each testing site is vital to anticipate the
number of tests. In a study regarding RBTs', the duration was defined as the time elapsed between the first and
the last breath test conducted at an RBT site. With a larger testing capacity, an RBT site can obtain more test
results per unit of time, which means more possible positive test results. In the proposed optimization method,
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we will use a number of inequalities to accurately describe these operational constraints and find the optimal
RBT schedules within the testing capacity.

We present a Genetic Algorithm (GA)-based approach for the optimisation of test scheduling under limited
resources. The approach mathematically describes the testing schedules as a constrained optimisation program
given the restrictions on limited working capacity and testing force (police personnel). The objective function
of the optimisation program is to maximise the combination of positive test results and the overall number of
tests. The contributions of our research are summarised as follows:

e Mathematically formulate the problem of roadside test scheduling while considering constraints of limited
police resources;

® Define a fitness function that takes measured traffic flow and RBT test results into account;

® (Cluster alcohol-related crash data by date types and adjust the RBT allocations to weekdays, weekends, and
public holidays, which adds randomness to the locations and times of test sites;

® Propose a simulation-based procedure and design a GA optimisation scheme that achieve maximal general
deterrence.

The remainder of the paper is organised as follows. We start with the problem statement in Section "Problem
statement". An outline of the goals, approaches, and assumptions in this study will be given. Then, we present
the definitions of testing schedules and the fitness function in Section "Problem formulation". We propose the
GA-based optimisation approach and present clustering of alcohol-related crashes in Section "Optimisation
method". Data analysis, numerical experiments setup, and simulation results are presented in Section "Data
and numerical experiments". Limitations of the proposed approaches and future work are discussed in Section
"Limitations and future work". The research is summarized in Section "Summary".

Problem statement

One goal of roadside RBT is to maximise general deterrence to drivers such that they are dissuaded from drink
driving in the future. Such deterrence is achieved by delivering alcohol tests to all drivers (sober drivers who
could potentially drink drive in the future, and drink drivers who could potentially cause road casualties). There
are several different types of deterrence against drink driving. Specifically, direct contact with random breath
testing has the strongest deterrent impact on drink driving®. Delivering more tests generates higher deterrence,
while indirect contact, such as delivering tests in a high-traffic area, has less impact®. We combine these circum-
stances and use the number of tests and observing drivers to quantify the effectiveness (general deterrence) of a
roadside testing schedule. The number of positive test results is used as an additional item in the measurement
of the general deterrence scores. Intuitively, more positive test results lead to a higher likelihood of drink driving
being captured, which helps discourage recidivism and mitigate the potential casualty caused by drink driving.
The higher the deterrence score is, the larger the deterrence the schedule is expected to deliver.

The location and the start and finish times characterise a test site. On a given day (24 h), the set of all testing
sites (location and time) constitutes the RBT schedule. The attributes of a testing schedule include the total num-
ber of test sites, the duration of individual test sites, and the total testing duration. Testing schedules are restricted
due to limited resources. A schedule consists of a limited number of test sites because there are limited trained
police personnel and equipment; the duration of a test site is lower and upper bounded because the police can
only work on reasonable rosters; and due to the overall limited budget, there is an upper bound on the maximum
total duration of all tests. A testing schedule is eligible only if it satisfies all the constraints, and the schedule is
optimal if it achieves the maximal fitness value. We define the fitness function based on the number of tests and
observing-but-untested (passerby) drivers. We propose a GA-based approach to optimise the testing schedules.

To fully capture the effect of RBT schedules on positive and negative test results and general deterrence, we
should model drink and sober driving in the network. The spatial and temporal characteristics of vehicle-based
travel may differ between drink and sober drivers. The likelihood of drivers drinking and driving varies based on
the time of day and location. We use alcohol-related crash data to reconstruct the temporal/spatial distributions
of drink driving and use traffic flow data to find out the distribution of sober driving.

Police recordings of RBTs and traffic flow sensors (e.g., loop detectors) provide estimates of drink drivers
and counts of passing vehicles on different links. However, due to confidentiality around RBT results and the
scarcity of traffic flow measurement sensors (e.g., at the state level), drink driving and traffic flow data are only
partially available. We estimate traffic flow on roads where there are no traffic flow sensors. We also infer the
occurrence of drink driving on roads with no police RBT records solely based on alcohol-related crash data. After
the temporal/spatial distributions of drink and sober driving are obtained, we use them to optimise schedules
of roadside alcohol tests and generate simulated drink driving instances.

Figure 1 illustrates the flowchart of the test scheduling optimisation process. First, to take advantage of avail-
able alcohol-related crashes through generalisation, we partition the alcohol-related crash data into a number
of clusters using the K-medoids clustering method. Attributes of the data points include the time of each crash
and the total number of daily crashes on each road segment. The days are labelled with weekdays, weekends, and
public holidays. A single crash is regarded as an instance, and the severity is not considered. Then, alcohol-related
crashes are projected onto the road network by latitude and longitude. The crashes are categorised into t* time
intervals per road segment to form the overall crash matrix (without loss of generality, we assume t* = 96, i.e.,
a day is divided into 96 15-min intervals).

We also project the latitude and longitude of the available traffic flow data to the road network. We consider
the number of vehicles, the time intervals (15-min), and the locations (the road segments) from traffic flow sen-
sors to complement flows on roads with no traffic flow sensors (see Section "Traffic flow imputation").
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Figure 1. Flowchart for test scheduling optimisation.

We use four types of RBT schedules for benchmarking:

® The random RBT schedules (RBT-rand) are generated with random start/finish times and random locations
sampled from the road network.

® The deterministic RBT schedules (RBT-det) are obtained using the cluster crash matrix and traffic flow matrix
by a deterministic algorithm. The aim of this benchmark is to schedule RBTs based on historical alcohol-
related crashes. Its performance will provide the baseline for the evaluation of the optimised RBT schedules.

e Optimised RBT-optl schedules are obtained by the GA-based approach using the cluster crash matrix and the
traffic flow matrix. In the process, we combine the cluster crash matrix and the traffic flow matrix to calculate
the fitness values of the RBT-opt1 schedules, which are used by GA to optimise the testing schedules.

e Optimised RBT-opt2 schedules are obtained by the GA-based approach using the overall crash matrix and the
traffic flow matrix. In the process, we combine the overall crash matrix and the traffic flow matrix to calculate
the fitness values of the RBT-opt2 schedules, which are used by GA to optimise the testing schedules. This
benchmark is considered to evaluate the effectiveness of crash data clustering on the performance of RBT
schedule optimisation.

More details are presented in Sections "Benchmark methods" and "RBT performance results".

We use simulations to verify the performances of RBT schedules. The simulated drink drivers are generated
between random origins and destinations using the shortest travel time paths and starting at times drawn from
cluster temporal distributions. The likelihood of being tested at RBT test sites is calculated based on the traffic
flow values. The simulation outputs include the numbers of positive and negative test results, and the percentage
of trip travelled for each identified simulated offender.

Problem formulation
This section presents the mathematical descriptions for the RBT schedules, constraints, and the fitness function.
The definitions and inequalities will be used for the optimisation and analysis of RBT scheduling performance.

Test schedule formulation

We consider the RBT to be scheduled daily. In theory, the start and finish times of test sites are continuous; in
practice, the times may be rounded to the quarter hour. We divide the 24 h in a day into t* intervals of 1440/¢*
min. Thus, the ¢-th interval is from hour : minute to hour : minute + 15, where hour and minute are the quotient
and remainder of (t — 1) /4.

Scientific Reports|  (2024) 14:12202 https://doi.org/10.1038/s41598-024-63026-7 nature portfolio



www.nature.com/scientificreports/

The value of the testing state on any road segment is regarded as binary (1 or 0) where 1 means that testing is
scheduled on the road segment and 0 means no testing is scheduled on the road segment. The state value stays
1 for the duration of the testing on the road segment. In practice, the location of a test site on a road segment
may be random. For simplicity, we assume that the locations are always at the midpoint of the road segment.
Moreover, we define the testing states of any road segment by a vector of t* elements. The testing schedule is
denoted as the matrix of all the state vectors for all the road segments on the day.

We use binary matrix S(k) of testing states s;¢ (k) € {0, 1} in (1) to denote the testing schedule on day «:

S1(x) sp1(k) s1p(k) .. sy ()

SO =1 560y | = | 5160) si2t0) ... i) | (1)

where S; (k) is the testing state vector of road segment i on day «; s;; (k) is the testing state value for road segment
i during ¢-th interval on day «.
The testing schedules can also be defined by the test sites, which are described by the start and finish times

and the location. We can use these attributes of test sites to define the testing schedule S(« ) below.

S(K) z{{zlazlril}w-'){EN)iNJ'N}}’ (2)

<ty IN <ty (3)

where there are N test sites in total; test site g, (x),1 < w < N, starts from 7, and lasts till £,, on road segment
il <f,....ty <tfandl <f,...,ty < t*

Both S(k) and S(k) can be used to describe the testing schedule on day . Note that S(x) and S(x) are mutu-
ally convertible. S(«) is useful in deriving the number of positive results, the total number of tests and observing
drivers, and analysing the performance of testing schedules. S(«) is expressed as a sequence, which is suitable
for GA-based optimisation. The variable S(x) is used in Algorithm 1 and S(k) is used to calculate fitness values
in Section "Fitness function".

Police resources and funding are usually limited. In addition, the duration of a test site is lower- and upper-
bounded as police normally work on predefined rosters. The maximum total duration of testing in one day is also
limited. The testing schedule S(x) or S(x) is subject to the aforementioned constraints. We use the inequalities
below to describe the constraints.

N < Nmax» (4a)

fmin <ty — by < tmax>s  Vgw(K), (4b)
N

>t —t) <A, (4¢)
w=1

where there are maximum N,y test sites in total during a day (4a); testing duration at any test site is not shorter
than i hours and not longer than . hours (4b); and the total duration of all testings is no longer than A
hours (4c). Note that the inequalities in (4a—4c) are used in GA-based optimisation to obtain the optimised
testing schedule.

Traffic flow imputation
The total number of tests is a crucial part of RBT and consequent general deterrence, which is largely determined
by the traffic flows at the test sites. We use matrix F(k) in (5) to denote the traffic flows on day .

Fy(x) Su1() fiale) ... fre()

FOO= 1 Eo) | = | o) fiato -~:fi,t*.(") ’ ©

where F;(k) is the flow vector along road segment i on day «; f; (k) is the number of vehicles (per unit time)
passing road segment i during interval ¢ on day «. Testing is scheduled on a daily basis, and in theory, the flow
matrix is a function of date.

Traffic flow measurements can be obtained by various sensors, e.g., loop detectors'®. However, there are a
limited number of traffic flow sensors. Consequently, the method requires estimating the traffic flow on links
with no traffic flow sensors. Origin-destination matrix estimation is often used to assess the demand for trans-
port and impute flows on unequipped links'®. In the absence of an accurate state-wide OD matrix, we use data
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from traffic flow sensors to estimate the flows on the nearby road segments. For the sake of simplicity, we use
the imputation method in (6) to estimate the unknown flow values using the known.

The locations of traffic flow sensors are denoted as X = {x;,x2, ...}, where x; =[latitude, longitude] is the
location of road segment i that has a traffic flow sensor; the detected flow at x; on day « is denoted as f(x;, k).
Similarly, the set of locations of roads that do not have traffic flow sensors is denoted as Y = {y;,y2,...}; the
actual flow of road segment j on day « is f(yj, k). Note that f(x;, k) and f(y;, k) are traffic flow vectors, where

fxisn) = [fi,l(K), e fir (/()}andf(yj,/() = [ﬁ)l(/c), oS (K)}. For any yj, we find Ujlocations xi, . . . xy; € X
that are closest to y;. We estimate the flow at y; € Y as below.

Yi .
fUjK) = ZO.S 1— U|]|y]7le| f(xisx). .
=1 Sy — (©)
i=1

Ixi = yjll < lIx" = yjll.¥1 <i < Uj,x" € X and x; # .

The estimated traffic flows are the weighted averages of flows of nearest segments with measurements and are

regarded as elements of the flow matrix, as f (y;, k) = f i> k).
We thus obtain F(«), which is a function of the day. Also, we can calculate the averaged traffic flow matrices

E (Monday), - - -, F (Sunday) on the days (Monday-Sunday) of the week. Given a date to be scheduled, we find the
traffic flow matrix that is on the same day of the week. Then, it will be used in the calculation of fitness values
for GA-based optimisation.

The temporal distributions of the averaged weekday/weekend traffic flows in 2019, Victoria, Australia are
shown in Fig. 2. The y-axis is the daily average number of vehicles per 15 min on roads with traffic flow sensors
(see Fig. 7 displaying the roads that mainly include rural roads). It can be seen that the flows are high from 8am
to 5pm during the weekdays.

Characteristics of alcohol-related crashes
Drink drivers would not typically report drink driving themselves, and the police would also not know the
origins, destinations, or paths of drink driver offenders. Data on traffic crashes are publicly available in some
jurisdictions, and a proportion of them are related to alcohol. We use alcohol-related crash data to estimate drink
driver path characteristics.

We have obtained traffic crash records in Victoria, Australia, which include the date, time, and location of
the alcohol-related crashes. We divide the number of crashes in the day into t* intervals and present the drink
driving patterns using matrix C(x) in (7).
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Figure 2. Temporal distribution of traffic flow per 15 min in 2019, Victoria, Australia. (a) Averaged traffic flows
on weekdays (b) Averaged traffic flows on weekends.
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where ¢;; (k) is the number of crashes during the t-th interval on road segment i on day k. We endeavour that the
spatial and temporal distributions of the synthetic crashes of simulated drink drivers in the simulation be similar
to C(k) obtained from field crash data. See Section "Drink driving simulation" and Fig. 8 for further details.
The temporal distributions of alcohol-related crashes from July 2015 to June 2020 are presented in Fig. 3.
The y-axis is the total number of alcohol-related crashes per 15 min and the x-axis is the time of the day. The
crashes on weekdays are displayed in Fig. 3a and the crashes on weekends are plotted in Fig. 3b. It can be seen
that the numbers of alcohol-related crashes are higher at night, after 5 pm (weekdays and weekends) and before
4 am (weekends). Additionally, there are more alcohol-related crashes on the weekends than on the weekdays.

Traffic flow and random breath testing capacity at each site

Random breath tests are normally carried out by police. There are limited police resources at a single test site,
and each test site has a limited testing capacity. The number of tests per minute at a test site has an upper bound
of ¢. This means that the larger the traffic flow, the more likely drivers would not get tested.
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Figure 3. Number of alcohol-related crashes in Victoria, from July 2015 to June 2020. (a) Number of alcohol-
related crashes on weekdays (b) Number of alcohol-related crashes on weekends.
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Figure 4. Number of RBT tests per min and likelihood of being tested under different traffic flows.

We define that one test result is obtained if one driver is tested. If the number of passing vehicles per minute
on a road segment with a test site is equal to or less than ¢, all drivers will be tested. If the number of vehicles
per minute on the road is greater than ¢, then the likelihood of an arbitrary driver being tested decreases as the
number of passing vehicles increases. Without loss of generality, we assume that ¢ = 4/min.

In Fig. 4a, in the low traffic flow regime, more tests are performed as there are more vehicles passing on the
road. As the rate of passing vehicles reaches the capacity of the test site, the rate of tests remains at ¢ = 4/min.
In Fig. 4b, all vehicles passing on the road are tested as long as the rate is below the capacity of the test site; the
more vehicles there are on the road, the lower the likelihood of being tested. In practice, the likelihood is lower
bounded as there is a finite number of vehicles on the road. We use (8) to calculate the likelihood p; (k) of a
driver being tested during the ¢-th interval on road segment i on day «.

Pi,t(K)={ Lo f”’(")mgofg, o

440 o oo T
P & ful) g > s

Note that f;; (k) is the number of vehicles along road segment i during interval t on day «; f,‘)t(K)% is the
number of vehicles during a one-minute interval. The number of vehicles per minute is assumed to be constant
during each interval.

In comparison with the number of passing vehicles, the number of drink drivers is small. In GA-based opti-
misation, the likelihood in (8) is used to calculate the fitness values. In the simulation, the likelihood determines
whether drink drivers are tested. The performance of testing schedules can be verified from simulations. In this
way, evaluations of scheduled performances will be reliable and can be used in optimisation.

Fitness function
The goal of roadside alcohol testing is to increase general deterrence. We measure the testing-delivered deter-
rence by the number of tests and the number of observing drivers. Note that the observing drivers are general
drivers (sober or drunk) who drive past a test site but do not get tested. The overall deterrence can be measured
by a weighted sum of the numbers of positive tests, negative tests, and observing drivers.

Positive test results can be approximated from drink drivers being tested at a test site. We can find the expected
number A (k) of positive results by (9).

-
Ay =D “siali) (Zqzxx)pi,t(fc)), )
1 u

i t=

where g}, () = 1 or 0 denotes whether the u-th drink driver travels along road segment i at time interval ¢ on
day « or not. Note that (9) might lead to insignificant overestimation because in reality a drink driver will be
stopped in the first encountered RBT test site. Whereas (9) counts the number of positive test results based on
the number of test sites on the routes of drink drivers.
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The routes of drink drivers are difficult to estimate. Thus, we strike a simple proxy by relating the routes of
drink drivers to the historically aggregated number of alcohol-related crashes. So, we replace ) gy, (k') with ¢; ; (i)
u

in (9) and obtain the approximation of the expected number of positive tests on day «, P(k), as:

t*
P) = E(P() = D Y sis ()i ()pise (k) (10)

i t=1

where E(-) is the expected value.

Traffic flows traversing through test sites determine the number of total tests. In this paper, we consider that
drivers who do not drink can be tested multiple times. We estimate the expected number of total tests Q(x) by
(11) below.

t*
Q) = EQUO) = Y Y sig ()i (k)pie (k). (1)

i t=1
After the number of total tests is obtained, we can find the difference between traffic flows traversing through the
test sites and the number of tests. This quantity would be the number of observing drivers. Below, we calculate
the number R(k) of observing drivers.
t*
R(c) = ER()) =Y > siz(0)fis () — Q). (12)
it=1
General deterrence is measurable by the number of tests (positive and negative) plus observing drivers. Based
on P(x), Q(k), and R(x), we introduce (13) to define fitness value V (k).
Vi) = aP(k) + BQk) + Y R(x), (13)

wherea > 0, 8 > 0,and y > 0are constant weights. We can obtain V (k) as below.

V(k) =E(V (k) = E(@P(x) + BQ(K) + yR(x))
=aP(k) + BQK) + yR(x)

t* t* t*
=) Y st (e (it () + (B =)D Y sisl)fis(Opie (k) + 7Y D st ()fi(€),  (14)

i t=1 i t=1 i t=1

t*
=D s (@pic)cia () + (Bpas ) + v (1= pis ) )fia () )

i t=1

We use (14) to obtain the fitness values of RBT schedules. It is a weighted sum of historically aggregated alcohol-
related crashes and traffic flows. Note that there is no direct way to obtain the values for «, 8, and y. In Sec-
tion "RBT performance results", the values are obtained by trial and error. The optimisation approach in this
study is used as a guide for policymakers on RBT testing. In practice, by reasonably increasing the value of o
or decreasing the value of B, we can use the method to increase the number of positive results out of the same
number of total tests or budget. Alternatively, by reasonably decreasing the value of « or increasing the value
of B, we can increase the number of total tests while capturing relatively the same number of positive results.

Figure 5. Mutation and crossover of genes.
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Optimisation method

In this section, we present a GA-based optimisation method and use k-medoids clustering to partition days
based on the temporal occurrence of alcohol-related crashes. Given testing schedules, we use the fitness func-
tion in (14) to evaluate the testing schedules, and use mutation and crossover to optimise the testing schedules.

GA-based optimisation
The testing schedules can be represented by a sequence of testing states (see Eq. (2)). The variables are discrete
and GA-based optimisation is credible as a solution (e.g.,'”'®). Mutation and crossover can be used to generate
new genes (test schedules in the proposed method). For example in Fig. 5, the genes S, S, and S, are denoted by
ABCD, ABCD, and HGFE, respectively (A-H each denotes a test site). By mutation, B turns into E and S turns
into a new gene §', as is shown on the left of Fig. 5. By crossover, S and S, exchange C and H, turning into S} and
S5, as is shown on the right of Fig. 5. Based on the current schedule, new schedules are obtained by mutation and
crossover. Different RBT schedules have different fitness values, and mutation and crossover do not necessarily
produce new schedules with higher fitness values. As schedules with higher fitness values are obtained and the
fitness values continue to increase, the optimal schedule will be found with the highest fitness value. We regard
a test schedule as a gene, and GA is used to obtain the optimal test schedule.

A testing schedule can have multiple test sites, g, («),l <w < N on day «; such a notion contains a road
number, start- and finish-time for testing. By (3), we have:

~ N
St0) = ¥ gule),

where g, (k) = {f, 1, i} is a test site that starts from #,, and lasts till £,, along road i,, on day «. Given ®; RBT
schedules, we can obtain new sites and schedules by mutation and crossover, which randomise not only the time and
duration of RBT sites but also their locations. See below the pseudo-code for GA RBT optimisation. Note that we
WNmax = 58, tmin = 1, tmax = 3, A =58, &1 =100, &, = 30, P3 = 34, Py = 50, pg = 40%, ps = 30%, pG = 30%, pe = 50%
and ps = 50% in Algorithm 1. The GA-related parameters are tuned based on trial and error procedure.

The parameters pg, ps, PG, Pe> and ps control the possibility of an operation in Algorithm 1, such that after a
schedule is selected for mutation, one of the three operations of ‘Extend;, ‘Split, and ‘Generate’ will be executed.
The possibilities of these operations are pg, ps, and pg with pg + ps + pg = 1. When the operation ‘Extend’
takes place, a random test site from the selected schedule will be picked. The possibility that the test site gets
extended by starting one interval earlier is pe. Similarly, the possibility that the test site gets extended by finish-
ing one interval later is 1 — pe. With the operation ‘Split, a random test site will be picked on the premise that
its duration is at least twice the minimal testing duration (#min) and divided into two parts. Another location
will be randomly picked where a new test site can be set up. The possibility that the new test site duration is the
same as the first split part is ps, and accordingly, the possibility that the new test site duration is the same as the
second split partis1 — ps.

Clustering of days based on temporal occurrence of alcohol-related crashes

Drink driving characteristics such as departure time and trips origins and destinations differ from sober driving.
We consider that drink driving has relevance to temporal and spatial distributions of alcohol-related crashes. We
obtained data on alcohol-related crashes, which includes latitudes and longitudes and the time and date of the
crashes. The alcohol-related crash matrices will be used to account for drink driving to evaluate the performance
of the testing schedules.

On day «;, the crash vectors are denoted as ¥, = WK,I) . 1/;,(,24], where V. j, is the number of alcohol-crashes
from (h — 1) : 00 to h : 00 on day «. There are 24 attributes for the crash vector of any day. We use k-medoids
clustering to partition the set W = {yr, ¥, ... } into k clusters A, B, . . .. Under the clustering function z(-), a data
point ¥, € W is assigned to set W}, whose medoid is ¥} = z(,). We consider N. = 14 types of days, which
are listed in Table 1 as Holiday Mondays - Sundays and the Non-Holiday days. After K clusters are obtained, we
use o(-) as a function from date type to cluster such that we are able to assign date type j,1 <j < N, to cluster
o(j). my; is the number of data points of date type j that is assigned to cluster Wy. We use Algorithm 2 and results
show the best performance with K = 4 clusters.
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Step O: Initialise
0.1: Obtain the traffic flow matrix F(x) and the crash matrix C(x) from raw data;
0.2: Set constraints:
Nmax test sites at most; A hours as the total duration of all test sites;
tmin hour as the minimal test site duration; fyax hours as the maximal test site duration;
0.3: Generate ®; random initial RBT schedules, {S|(x),...,Sq,(x)};
The initial schedules are random in number of test sites and total duration, which are at most Npax and A, respectively;
0.4: By (14), calculate the fitness values of the initial schedules as {V1, ... Vo, IS
Step 1: Mutation:
1.1: Choose @, schedules with the highest fitness values for mutation;
1.2: Perform 1.2.1 by probability of pg, 1.2.2 by ps, and 1.2.3 by pg for schedules selected in Step 1.1;
1.2.1: Extend:
Randomly choose test site g,,(k) = {#,t,,,iw } from the chosen schedule S(x);
Extend the testing duration of g,,(k):
By probability of pe: gl,(k) = {(f, — 1,1,,),iw};
By probability of 1 — pe: gl,(k) = {fu,t,, + 1,iw};
Check condition (4a-4¢) and whether g/, (k) overlap with other test sites on road segment iy,;
If there is no overlapping, replace g,,(x) with g;,(k) and obtain §'(k);
1.2.2: Split:
Randomly choose test site g,,(K) = {f,1,,,iw } from schedule S(k);
Split g, (k) into g, (k) and gJ, (K):
By probability of ps: g,(k) = {fw, 1 iw}, gh(x) ={',1,,,il,}, where £, <t' <10/, # iw;
Otherwise: g, (k) = {fw, ', i, }, gin(k) = {t',1,,,iw}, where £, <" <., # iw;
Check condition (4a-4c) and whether g/, (k) and g/ (k) overlap with other test sites on road segments i,, and 7/,;
If there is no overlapping, replace g, (k) with g/,(x) and g//(k) to obtain §'(k);
1.2.3: Generate:
Randomly sample road segment i,,+ from the road network;
Randomly sample the start and finish times 7.+, z,,+ ;
Generate a new test site g,,+ (K) = {f,,+, L, b+
Check condition (4a-4c) and whether g,,+ (k) overlap with other test sites on road segment i,,+ ;
If there is no overlapping, add g,,+ (k) to schedule S(x) and obtain S'(k);
1.3: Calculate the fitness value of §'(k);
1.4: Replace S(x) with §'(x) if the fitness value of §'(k) is higher than that of S(k);
Step 2: Crossover:

2.1: Choose two schedules S’(x) and S”(k); the probability of S;(k) being chosen is )ZVi 7 X 100%;
B
2.2: Choose two sites, g,(K) = {f,1,,, iy} from S'(x) and g,,+ (k) = {f,,+,t,+, i+ } from §”(x);

2.3: Obtain g/,(x) and gJ,(k) from g,,(k) and g,,+ (x),

g;(K) = {fwvﬁwviw*}ﬁ g:/v(K) = {fwr+:£w+vivv}7 Iy 7£ iw+;
2.4: Obtain §'(x) and §” (k) from §'(x) and S”(x),

§' (1) = (8'() — () Ugi,(x), §"(k) = (8" (k) — g+ (k) Ugyi(x):

2.5: Check condition (4a-4c) and whether there are overlap among test sites for §(x) and 5§ (x);
2.6: If there is no overlapping, drop schedules with lower fitness values between §'(x) and S'(k), §” (k) and $”(x);
2.7: Repeat Steps 2.1-2.6 for &3 times;
Step 3: Natural selection:
3.1: Drop ®4 schedules with the least fitness values;
3.2: Generate @4 random RBT schedules such that there are still ®; schedules;
3.3: Calculate the fitness values of the new schedules;
Step 4: Terminate if the highest fitness value stops increasing; otherwise return to Step 1;

Algorithm 1. GA for RBT Optimisation
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Dates Holiday

Clusters | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday

A Basn 105% |0 0 125% |0 0

B 8.3% v 0 16.7% A R 0

o 8.3% 0 20.0% 8.3% 0 0 100%

D 0 10.5% |2 v 0 143% |0
Non-Holiday
Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday

A 10.9% | 3.7% 10.19% 9.1% A v 11.3%
72.6%

B 0 3.7% 10.7% 11.2% 9.0% |133% | 122%

o 6.3% 7.4% 16.8% 0% 67% |148% |

D 102% |52 v 9.1% 9.1% | 9.7% 9.6%

Table 1. The association among the K = 4 clusters and N. = 14 day types.

Step 0: Raw data are put in a set of data points ¥ = {y,y»,... };

Step 1: Choose K points yy,..., g in ¥ as medoids;

Step 2: Randomly assign the rest of the points in ¥ to the medoids;
P} is the set of points that are assigned to y;

Step 3: Reward I1(z,0) of matching function z(-) and o(-) are defined below:
3.1: Calculate the values of I (z), IT1;(z,0), and I13(z,0) below:

_ el = L N R g
Hl(z)fvg,‘},d(z(W)le)v HZ(Zv )7 max(Nc,K) 7H3(Z’ )*J; 3

I ™M=

mkj

k=1

where 1(X) is the number of unique elements in set X;
IT; is cost of k-medoids clustering; d( W, Wy ) is the L, norm distance between y; and yj,

h=1

24 ’
Ay, we) = <Z |Wk,h - V’k’.h|p> ;

3.2: Calculate I1(z,0) below:
Hz(Z,O)H3 (Z, 0)

I(z,0) = ()

Step 4: Optimise the clusters:

4.1: Randomly pick two clusters;
Randomly pick two data points from each of the two clusters and swap them;
Keep the swapping if a higher I1(z, 0) is obtained;
4.2: Randomly pick one cluster;
Randomly pick a non-medoid data point and swap it with the medoid;
Keep the swapping if a higher I1(z,0) is obtained;
4.3: Randomly pick two clusters;
Randomly pick one data point from one cluster and move it to the other cluster;

Keep the data point if a higher I(z,0) is obtained and cluster sizes are no less than )

7K >
Step 5: Repeat Steps 4.1-4.3 till the maximal iteration (e.g., we used 200000) is reached;

Algorithm 2. k-medoids Clustering

Note that we set K = 4 and obtain four clusters W}, ..., W] (denoted as A, B, C, and D) by Algorithm 2.
Algorithm 2 guarantees the cluster sizes to be no smaller than % to make sure that the clusters contain adequate
data points and are statistically significant. From the four clusters, we obtain the cluster crash matrices C4, - - -,
CP for clusters A, - - -, D, respectively.

We consider types of dates including holiday and non-holiday Monday-Sunday and obtain Table 1. Each type

of date most likely belongs to one cluster (marked by mark). Thus, given any date to be scheduled, we are able
to identify one type of date from the 14 date types in Table 1 and a matching cluster. We then obtain the cluster
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Figure 6. Temporal distributions of alcohol-relted crashes in the 4 clusters.

crash matrix from data points in the cluster. By combing the matrix with the daily flow matrix F («), we determine
RBT-optl and RBT-det schedules detailed in Sections "GA-based optimisation" and "Benchmark methods".

We use the alcohol-related crash data in Victoria, Australia for clustering of days based on the temporal occur-
rence of drink driving crashes from July 1st, 2015 to June 30th, 2020. The data are represented by the number of
crashes in 24 h. There are 2256 cases of alcohol-related crashes in 1189 days when there is at least one alcohol-
related crash. The number of clusters needs to be reasonably small such that there is an adequate number of data
points in each cluster and the cluster crash matrices are statistically significant. We divide the data points into
4 clusters such that there are at least 75 data points in each cluster. The clusters’ temporal distributions of the
alcohol-related crashes are shown in Fig. 6a-d.

Drink driving has different characteristics on different types of dates, such as weekdays, weekends, and public
holidays. The clusters 4, - - ., D include particular date types. Given a date and whether it is a weekday, weekend,
or public holiday, we can decide whether such a date belongs to a certain cluster using Table 1. We then use the
crash matrices obtained from the cluster to describe drink driving on the day. Ultimately, we can proceed to the
scheduling optimisation.

Data and numerical experiments
We investigate the performance of the proposed RBT scheduling method using the road network of Victoria,
Australia. Crash data and traffic flow data are crucial in determining RBT schedules and analysing performances.

Road Network: The road network of VIC, Australia in this paper is extracted from the VIC OpenStreetMap
file. The network contains 115596 links.

Crash Data: The crash data were obtained from VicRoads Open Data. Each alcohol-related crash was recorded
with a time, date, and location (latitude and longitude). A total number of 2256 alcohol-related crashes were
found from July 2015 to June 2020, and they are projected to 2215 links in the road network.

Traffic Flow Data: Traflic flow data in 2019 is obtained from Data Vic. Each traffic flow was recorded with
a time interval (15 min), day of the week, and a geometric curve (points of latitudes and longitudes). A total
number of 6317 raw flows are found. After imputation, they are projected onto 115596 links in the road network.

The road network is shown in Fig. 7. The latitudes and longitudes of traffic flows and alcohol-related crashes
are projected on the network, which is denoted by bold blue lines and red circles in Fig. 7. It can be seen that a
large proportion of road segments in Victoria do not have records of traffic flows or alcohol crashes, even for
urban areas in the upper right corner representing part of metropolitan Melbourne.

Benchmark methods

In Section "GA-based optimisation"”, we have proposed a GA-based optimisation approach to obtain the opti-
mised RBT schedule by the fitness function presented in Section "Fitness function". The method uses the
crash matrix and traffic flow matrix to optimise the RBT schedules. We use four types of RBT schedules for

benchmarking.
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Figure 7. Network of Victoria, Australia. Red circles denote the spatial distribution of alcohol crashes, and blue
lines show links with traffic sensors. Part of Melbourne is expanded in the upper right corner (Map data: https://
www.openstreetmap.org).

e RBT-optl: First, we obtain the cluster crash matrix (CA — CP) from the cluster that matches the date to be
scheduled. Using the flow matrix and the matching cluster crash matrix, we use the GA-based method to get
the optimised RBT schedules.

e RBT-opt2: We obtain the overall crash matrix C from the crash data. Then, we use the GA-based method on
the flow matrix and the overall crash matrix to get the optimised RBT schedules (RBT-opt2) for the consid-
ered period. This benchmark method is considered to evaluate the effect of clustering on the overall method.

e RBT-rand: Randomly sample locations from the road network and start/finish times to obtain the random
RBT schedules while satisfying (4a-4c). The times and the test site locations have the same probabilities of
being chosen.

e RBT-det: We follow the following steps to obtain the RBT-det schedule.

- Modify the crash matrix: Given day «, we first find the matching traffic flow matrix Fx) = [)A’, ¢+ (k)] with

f k) = maxﬁ + (). Then, based on F(x) and the overall crash matrix C, we obtain the modified crash
matrix C(K) = [Cit(k)], where ¢y (k) = Ciy(k) + ;f’*‘(('())

- Constraints on the RBT-det schedule: For simplification, we set the duration of a test site as 1 h and 15
min.

- Obtain the RBT-det schedule: We calculate and find the benchmark schedule
Sty = {g1 (i), . . ., gw(K), . ..} by (15), where the w-th test site is denoted as g, (k) = {fy» L,y» i)

$% (k) = max Z Zczw, (). (15)

[
w>1 >
(4a—4c), — tzty

Drink driving simulation

We use the road network in Fig. 7 to simulate drink driving. We assume that drink drivers drive from random
origins to random destinations along the shortest travel time paths and the departure times are generated from
the corresponding cluster (see Fig. 6). The traffic flow matrix in Section "Traffic flow imputation" is used to
determine the likelihood of drivers being tested. As soon as the RBT schedules are implemented, drink drivers
will be tested and positive results will be collected. We use start times and the assumed paths to determine the
locations of drink drivers at any given time. Assume that a drink driver starts driving at 7; from node i; to node
ir (link iy — i) with speed v; ;,. The path isi; — i — --- — i,. Intuitively, the time interval when the drink

driver is on link iy — iy is (11, 71 + ﬂ). In a general form, the time interval when the drink driver is on link

lY ll
l\,—>lu+1ls(l’1+z B +Z !
u=

V’u’u+1
Figure 8 111ustrates the spat1a1 dlStI‘lbuthl’lS of ground truth alcohol-related crashes (2256 crashes over the
5-year period), simulated traces of drink driving, and simulated alcohol-related crashes. In the simulation,
the average length per trip is 8.9 km. It can be seen that the simulated crashes in Fig. 8c have a similar spatial
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Figure 8. Comparison among spatial distributions. A point in (a), (b), and (c) respectively denotes one alcohol-
related crash, simulated drink driver, and one simulated alcohol-related crash over the period from July 1st,
2015 to June 30th, 2020. (a) Ground truth alcohol-related crashes; (b) Simulated drink driving traces; and (c)
Simulated alcohol-related crashes.

distribution to that of the ground truth alcohol-related crashes in Fig. 8a. Note that traces of drivers are shown
as dots in Fig. 8b.

According to a survey released by", the total yearly driving distance is about 6.36 x 10'* kilometers, which is
1.74 x 108 km per day. Given that the average distance is 8.9km per trip, according to®, there are roughly 2 x 107
car trips per day. In addition, there were 2256 alcohol-related crashes over the five-year period, and there are
about 1.24 alcohol-related crashes on an average day.

RBT performance results

In this section, we use simulation experiments to demonstrate the performances of testing schedules. There are
2256 alcohol-related crashes in 1189 days from July 2015 to June 2020. Each day is a data point, and the points
are classified into 4 clusters, as shown in Fig. 6.

Given the introduced procedure, we are able to simulate a large number of drink drivers over a period of time
in a road network. We assume the vehicle speed is 50km/h, and we have T ~ {e4 — ep} for the start time 7 of drink
drivers. We use the temporal distribution from the cluster (A — D) that matches the given date to generate drink
driving. To accurately capture the traffic flow data variations in the simulation, we use F(Monday), - - -, F(Sunday)
in Section "Traffic flow imputation" to represent traffic flows on different days. We consider RBT schedules for
the time period from September 23rd, 2022 to September 29th, 2022, which includes a public holiday (23rd,
Friday), two weekends (24th and 25th, Saturday and Sunday), and four weekdays (from 26th to 29th, Monday
to Thursday). For each day during the considered time period, we find a cluster that matches the date type, as
shown in Table 1. Therefore, we have that 23rd, 24th, 26th € B, 25th, 29th € C, and 27th, 28th € D. We
obtain the cluster crash matrix from the matching cluster, which is joined by the traffic flow matrix to calculate
fitness values and determine the likelihood of drink driving being tested at the test sites. In the computation
of RBT-optl and RBT-opt2 schedules, the optimisation continues until the fitness values stop changing. The
coefficients for the fitness function are chosen as @ = 0.999994; B = 107>; y = —4 x 107°. The constraints
are Nmax = 58, tmin = 1 [hr], fmax = 3 [hr], and A = 58. The performances of optimised and benchmark RBT
schedules are listed in Table 2.

The RBT-det schedules are used as the baselines, and positive results, total tests, and observing drivers are
used to evaluate the performances of RBT-optl and RBT-opt2. Improvement is presented in percentages and
higher values represent more desirable performances. Note that we have added the percentage of trip traveled
for offenders in the table. The definition is given below.

Percentage of trip traveled

x 100%,

1 Z distance traveled by offender m before being captured at an RBT site
M — distance from origin to destination of offender m

where there are M offenders in total. The sooner an offender is caught, the less likely there will be an alcohol-
related road accident. Therefore, the lower the percentage is, the more effective the schedule is.

As observed in Table 2, on average, the random and deterministic RBTs capture 13 and 22 positive results
and 8402 and 6045 tests in total. In comparison, the optimised schedules (RBT-optl and RBT-opt2) are able to
capture 55 and 53 positive results and 9620 and 6469 overall tests during the considered period. The RBT-optl
and RBT-opt2 methods result in lower numbers of observing drivers compared to the RBT-det baseline schedules;
whereas RBT-rand schedules have averaged 10305 observing drivers, which is much higher. The percentages of
trips traveled are also shown in Table 2, and the numbers are around 50% of the trip length and they are highest
with the RBT-det schedules. This value measures what percentage of their trip an offender has traveled before
being tested by a test site. Intuitively, the aim is to detect an offender sooner en route as any offender is a moving
safety hazard. Note that the fitness function does not take the percentage travelled into account. Nevertheless,
the optimised schedules have lower percentages on average while capturing more positive results.
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Number of positive results Percentage of trip traveled (%)

RBT-det | RBT-optl | RBT-opt2 | RBT-rand | RBT-det | RBT-optl | RBT-opt2 | RBT-rand
23rd, Friday 39 70 10 15 57.4 51.1 75.7 40.8
24th, Saturday 13 29 28 15 61.8 51.7 459 26.8
25th, Sunday 7 61 40 17 54.6 43.3 42.5 49.5
26th, Monday 12 78 127 11 73.6 49.8 47.2 47
27th, Tuesday 16 31 46 6 59.6 58.7 52.4 59.6
28th, Wednesday 27 88 61 17 41.9 40.6 56.1 46
29th, Thursday 41 31 59 9 51.8 57.2 55.4 60.1
Average 22 55 53 13 57 50 54 47
% improvement Baseline | 150 140.9 -40.9 Baseline | 12.3 5.3 17.5

Number of tests Number of observing drivers

RBT-det | RBT-optl | RBT-opt2 | RBT-rand | RBT-det | RBT-optl | RBT-opt2 | RBT-rand
23rd, Friday 6626 10543 5912 7507 4347 1659 980 8250
24th, Saturday 4252 8890 5420 8442 680 3381 1821 10597
25th, Sunday 5970 9021 8210 8019 2897 3454 5147 7964
26th, Monday 6489 9895 6826 7665 3396 3127 3185 8332
27th, Tuesday 6181 10233 6798 9719 6391 6255 1867 13963
28th, Wednesday 6160 10152 6928 7738 6703 4154 2705 9529
29th, Thursday 6636 8609 5192 9722 5779 2129 1167 13499
Average 6045 9620 6469 8402 4313 3451 2410 10305
% improvement Baseline | 59.1 7 39 Baseline | —20 —-44.1 138.9

Table 2. Performance of the RBT schedules. The units for the number of positive results, tests, and observing
drivers are drivers. Note that RBT-optl and RBT-opt2 denote the optimised schedules using the cluster crash
matrices and the overall crash matrix. RBT-det denotes the deterministic schedules, and RBT-rand denotes
the random schedules. The improvement is calculated using RBT-det as the baseline. The negative values of
improvement (in %) denote worse performance compared to the baseline method.

The temporal and spatial distributions of the four benchmark RBT sites during the considered period are
shown in Figs. 9 and 10. The start/finish times of RBT-opt1 schedules in Fig. 9a are less concentrated than those
in Fig. 9b, as they are centred around 9am and 9pm. The times of RBT-det and RBT-rand are less concentrated
in Fig. 9¢,d. RBT-det schedules overlap with peaks of traffic flow and crashes and the RBT-rand schedules are
roughly evenly distributed. The locations of RBT-opt1, RBT-opt2, RBT-det, and RBT-rand test sites in Fig. 10 are
represented by O, [, x, and +, respectively. In comparison with RBT-rand, the locations of RBT-opt1, RBT-opt2,
and RBT-det concentrate to improve their performances. The test sites have different locations and rosters due to
the different initial schedules in GA optimisation. The locations of RBT-det are concentrated around locations
with either heavy traffic flow or many alcohol-related crashes.

The values of the fitness function, total tests, and observing drivers for the considered period (23rd-29th) are
given in Fig. 11a—f. The values are from the schedules with the maximal fitness values of each iteration. It can
be seen in Fig. 11a,d that the maximal fitness values are non-decreasing. The curves of the number of all tests
eventually gradually stabilize in Fig. 11b,e, and ultimately, there are more overall tests, compared with those at
the start of the optimisation. It can be seen in Fig. 11b,e,c,f that there are more significant fluctuations on the
curves of observing drivers than those of the total tests. This is because their coeflicients are smaller and the
curves are more vulnerable to variations.

The choice of weights in the fitness function (13) is a critical aspect of the optimization process, as it directly
impacts the relative importance assigned to each of the three metrics in the fitness function: positive tests, total
RBT conducted, and observing drivers (passersby). We acknowledge that the selection of weights can influence
the optimization results.

Different values of o, 8, and y would normally lead to different optimal RBT schedules. It is possible to con-
duct more tests, achieve positive results, or increase the number of observing drivers by altering the values of ,
B, and y. We have observed similar performance with minor parameter changes, but the details are not listed in
the manuscript for the sake of brevity. Having said that, these parameters can provide levers for the policy maker
and practitioner to steer the performance of the method towards their institutional aspirations. Note that with
the current settings of the parameters, the optimal scheduling method can significantly increase the number of
positive tests and also RBTs conducted with a minor decrease in the number of observing drivers.

Limitations and future work
There are a number of limitations to this research.

e Tt is expected that the temporal and spatial coverage of traffic flow data is limited. To estimate the flows,
a simple imputation method is used in Section "Traffic flow imputation". However, this method does not
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Temporal distribution of RBT-opt1 schedules
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Figure 9. Temporal Distribution of the RBT schedules: (a) RBT-opt1; (b) RBT-opt2; (c) RBT-det; and (d) RBT-
rand.
guarantee the computed traffic flow matrices are accurate. For example, the traffic flow along primary roads
could be much higher than on secondary roads. Local traffic flows would fluctuate with different frequencies
periodically. Such complexity requires in-depth modeling and estimation of traffic flows that take various
factors into account. To utilize the proposed imputation approach in a wider range of situations, weight
matrices can be introduced that take the fluctuations and correlations into account. Moreover, there are other
methods to obtain more accurate estimation by integrating household travel surveys and sophisticated O-D
estimation methods. These can be regarded as a future research direction.
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Figure 11. Fitness values, overall tests, and observing drivers for RBT-opt1 (a—c) and RBT-opt2 (d-f)
schedules.
e The limited resource for RBT schedules is modeled by (4a)-(4c). There are four key parameters, Nmax, tmin»

tmax> and A. On one hand, limited police force and budget may lead to finite values for Nax and A (fmin and
tmax are less likely to vary over time), and higher values could easily help deliver a larger deterrence. On the
other hand, further investigation is required to determine the point of diminishing return for increasing
Nmax and A. Furthermore, there is significant randomness in traffic flow and unobservability in drink driv-
ing. Considering probabilistic attributes in (4b) and (4c) and devising advanced optimization methods with
stochastic constraints are a future research direction to methodologically account for the intrinsic unobserv-
ability of the system.

Victorian drink driving records are not available in this study. We used alcohol-related crashes instead as a
proxy. However, they are not an ideal and complete substitute for drink driving records. The inherent insuf-
ficiency stems from sparse events that prevent any statistical inference. Integrating historical police checks
(past RBT results) could to some extent alleviate this issue. Bayesian inference methods might be useful.
The study utilizes data on alcohol-related crashes from the state of Victoria, Australia, but acknowledges limi-
tations in Victoria’s reporting methodology. A crash might be categorised as involving alcohol if ‘suspected’
by the police, without direct Blood Alcohol Content (BAC) measurement, potentially leading to inaccuracies.
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While this does not significantly impact our findings, it is crucial to highlight it to avoid any misinterpretation
of data and results.

® In Section "RBT performance results", random origins and destinations are used to simulate drink driving,
and offenders are assumed to travel at 50km/h from the origins to the destinations. However, offenders may
be more likely to appear in certain areas, and normally, the travel speeds are heavily influenced by the traffic
conditions. By improving the assignment of origins and destinations (offender mapping), and adjusting the
travel speeds according to the traffic conditions, we can obtain a more accurate picture of the underlying
dynamics of drink driving. This is a research priority.

® RBT scheduling is a day-to-day process. Offenders might get accustomed to RBT test locations if they appear
repetitively. In other words, RBT scheduling should consider inherent latent stochasticity in a day-to-day
framework. This paper does not consider this and future research should address it.

Future research should investigate more accurate methods to estimate traffic flows and evaluate the accuracy
in a convincing manner. Moreover, RBT scheduling can and perhaps should be considered jointly with drug
testing to maximise general deterrence. Alcohol- and drug-related crashes can be used to obtain temporal and
spatial distributions of the offense. Historical RBT results will help discover more insights into the behavioural
patterns of the offenders. Coordinating with police force resource allocation can help evaluate the priorities
and we will investigate how to use learning-based methods to resolve conflicts among different interests. It is
crucial that testing schedules are compatible with existing task schedules. The RBT scheduling problem can be
formulated as a (non-weighted) multi-objective optimisation problem. Future research should scrutinise this
direction based on widely adopted Pareto front optimal solutions. More mathematically rigorous optimisation
methods will help improve the quality of the solution. Finally, a more comprehensive procedure addressing all
the above shortcomings is expected in the case of real-world implementation of optimisation of RBT schedules.

Summary

This paper has studied the schedule optimisation problem for random breath tests (RBTs) at a large-scale net-
work level to deliver general deterrence on drink driving. We present definitions of testing schedules, which are
denoted by location, and start and finish times of testing. The limited police resources are described by inequali-
ties, which include individual and total testing durations and the maximum number of test sites. The distribu-
tion of drink driving on any given date is obtained from the best match by clustering the historical crash data.
We present a GA-based method to optimise roadside random breath test schedules. Real data of partial traffic
flow measurements and alcohol-related crashes are used in the simulation tests for assessing the performance
of testing schedules. The fitness values are calculated by the weighted sum of the RBT tests and the observing
drivers. In the simulation runs, the optimised, deterministic, and random schedules are compared in terms of
the numbers of RBT tests and observing drivers. The optimised schedules demonstrate significant improvements
in detecting drink drivers, the number of overall tests, and the number of observing drivers, thus increasing the
general deterrence.
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The datasets generated and analysed during the study are available from the corresponding author upon reason-
able request.
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