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Applying oversampling 
before cross‑validation will lead 
to high bias in radiomics
Aydin Demircioğlu 

Class imbalance is often unavoidable for radiomic data collected from clinical routine. It can create 
problems during classifier training since the majority class could dominate the minority class. 
Consequently, resampling methods like oversampling or undersampling are applied to the data to 
class‑balance the data. However, the resampling must not be applied upfront to all data because 
it would lead to data leakage and, therefore, to erroneous results. This study aims to measure the 
extent of this bias. Five‑fold cross‑validation with 30 repeats was performed using a set of 15 radiomic 
datasets to train predictive models. The training involved two scenarios: first, the models were trained 
correctly by applying the resampling methods during the cross‑validation. Second, the models were 
trained incorrectly by performing the resampling on all the data before cross‑validation. The bias 
was defined empirically as the difference between the best‑performing models in both scenarios in 
terms of area under the receiver operating characteristic curve (AUC), sensitivity, specificity, balanced 
accuracy, and the Brier score. In addition, a simulation study was performed on a randomly generated 
dataset for verification. The results demonstrated that incorrectly applying the oversampling methods 
to all data resulted in a large positive bias (up to 0.34 in AUC, 0.33 in sensitivity, 0.31 in specificity, and 
0.37 in balanced accuracy). The bias depended on the data balance, and approximately an increase 
of 0.10 in the AUC was observed for each increase in imbalance. The models also showed a bias in 
calibration measured using the Brier score, which differed by up to −0.18 between the correctly and 
incorrectly trained models. The undersampling methods were not affected significantly by bias. These 
results emphasize that any resampling method should be applied correctly only to the training data to 
avoid data leakage and, subsequently, biased model performance and calibration.

Radiomics has recently emerged as a key method in analyzing radiological imaging  data1,2. It can be used for 
various tasks, including the quantification of  imaging3, the characterization of  tumors4, and for diagnosis and 
 prognosis5,6. Radiomics can be understood as the application of a machine learning pipeline to radiological data 
obtained from clinical  routine7,8. However, the radiological data may be class-imbalanced, meaning that one class 
is more prevalent in the data than others, due to small sample sizes or, occasionally, due to rare diseases. In such 
scenarios, the training of a classifier might be challenging since the majority class could potentially dominate 
the predictions, indicating that the classifier is biased towards the majority class.

To avoid this situation, resampling methods are often employed to class-balance the data. These methods can 
be divided primarily into three classes: (1) oversampling methods, which generate new samples for the minor-
ity class; (2) undersampling methods, which discard samples of the majority class; and (3) combined methods, 
which apply both techniques to obtain a balanced dataset.

However, these methods must be applied in a methodologically correct manner to avoid obtaining erroneous 
results and, consequently, false positive  results9. An issue that often arises in machine learning is data leakage, 
which occurs when the data on which the final model is tested has also been used during training. This breaks 
one of the golden rules of machine learning, which states that all modeling must be performed only on the 
training  data10,11. If the test data has already been seen during training, the model’s performance on the test data 
would be biased and could lead to false positive findings. Here, we define bias empirically as the difference in a 
metric between a model that has no apparent data leakage and a model that exhibits such leakage when both are 
evaluated on an independent data set.

The application of any resampling methods must also follow this rule: they must not be applied to all data 
upfront but only to the training data. To illustrate this issue, consider the synthetic data represented in Fig. 1. 
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Applying an oversampling method—in this case, the often-used Synthetic Minority Oversampling Technique 
(SMOTE)—to all data rather than solely to the training data can lead to a biased classifier that can predict small 
areas in the test set where the prediction is positive, although the training data did not contain related informa-
tion. In this example, an increase of + 0.16 is observed in the area under the receiver operating characteristic 
curve (AUC), which can be attributed purely to the data leakage since every other parameter was fixed.

Although data leakage should always be avoided, this type of misapplication of resampling methods has 
seemingly been performed in a few radiomics  studies12–14. Consequently, the question of the degree of bias arises, 
resulting in uncertainty regarding whether the results of such studies can be trusted.

To estimate how large the bias could be if resampling techniques are applied incorrectly in the radiomics 
domain, several resampling methods are applied in this paper, including over- and undersampling, once correctly 

Figure 1.  Illustration of the bias when the resampling is misapplied. Left side: correct application, leading to 
an AUC of 0.71. Right side: incorrect application, leading to a biased AUC of 0.87. Note that the training data 
on the both sides contain no test samples; however, the on the right side the oversampling created samples very 
close to samples in the test set, which is the reason for the data leakage.
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and once incorrectly. Subsequently, the empirical bias, that is, the difference in terms of predictive performance 
and model calibration, is measured using the AUC and Brier score. In addition, the bias in sensitivity, specificity, 
and balanced accuracy is determined. Finally, a simulation study is conducted to analyze the bias on a randomly 
generated synthetical dataset.

Results
Observed bias in predictive performance
The incorrect application of the selected resampling methods led to a high bias in AUC for all methods except 
for the two undersampling methods (Fig. 2). Notably, the undersampling methods were less affected than the 
combined or oversampling methods (up to 0.042 in AUC for the undersampling methods vs. 0.343 for the lat-
ter). A highly significant association between the observed bias and the balance of the data was observed for all 
methods except the undersampling methods (Fig. 3). A similar pattern was observed for sensitivity (up to 0.33, 
Supplementary Materials S1), specificity (up to 0.37, Supplementary Materials S1), and balanced accuracy (up 
to 0.31, Supplementary Materials S1).

Observed bias in Brier score
Similarly, a bias was observed in the model calibration, measured using the Brier score (Fig. 4). The application 
of the oversampling and combined methods led to an improved Brier score, while the undersampling methods 
were affected by this bias only marginally. Notably, undersampling methods were less affected than the combined 
or oversampling methods, with a bias of up to −0.043 and −0.184, respectively. A highly significant association 
between the observed bias and the balance of the data was observed for all methods except the undersampling 
methods (Fig. 5).

Simulation study
In the simulation study, a clear difference between the results when SMOTE was applied correctly and incor-
rectly was observed, too (Fig. 6). Since all the data were sampled randomly, no classifier was expected to perform 
better than a random classifier. Indeed, the correct application produced classifiers that achieved an AUC of 
approximately 0.5. In stark contrast and largely independent of the overall sample size, the incorrect application 
of SMOTE led to models that performed much better than random and can, therefore, be identified as biased. A 
relatively linear association between the balance in the dataset and the bias was also observed, with an approxi-
mate increase of 0.10 in the AUC per increase in imbalance.

Discussion
Radiomic datasets contain some class imbalance, which is often unavoidable in data gathered from clinical 
routine. Resampling the data during training to achieve class balance can be important to obtain properly cali-
brated and well-performing models. However, to avoid data leakage the resampling must be performed only 
on the training data. In our study, we analyzed the degree of bias introduced if resampling was wrongly applied 
to all the data rather than only the training data, and observed a high bias in both predictive performance and 
model calibration.

Figure 2.  Bias in AUC of the best-performing models averaged over 30 repeats for each method and dataset. 
Undersampling methods are displayed in red, combined in green and oversampling methods in red.
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Our results reveal that the misapplication of resampling techniques leads to a very high bias, especially for 
oversampling and combined methods. The observed bias in performance reached up to 0.34 in AUC. A similar 
bias was also observed in sensitivity, specificity, and balanced accuracy. While the degree of this bias in predictive 
performance differed across the datasets used, its association with the balance of the data was evident: nearly 
balanced datasets led to smaller amounts of bias compared to datasets with greater imbalance. However, no 

Figure 3.  Association of the bias in AUC with the class-balance of each dataset. The grey area denotes the 95% 
confidence interval.
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significant bias was observed when applying the two undersampling methods, namely, random undersampling 
and Tomek links.

This behavior is not unexpected since, when resampling techniques are misapplied, every generated syntheti-
cal sample potentially carries some information on the test set. Consequently, the more imbalanced a dataset 
was, the more such samples were generated. This association was significant for all methods that generated 
samples synthetically. However, the otherwise high-performing methods based on polynomial-fit SMOTE using 
bus and star topology exhibited a high bias, even in the case of balanced  datasets15,16. It could be because both 
methods, in contrast to the other methods, always generate synthetical samples, regardless of the balance of the 
underlying dataset.

Similar results were observed for the calibration of the resulting models. Applying the balancing upfront led 
to a high bias in the Brier score (up to -0.14) for the oversampling and combined methods while no clear bias 
was observed for the undersampling methods. Again, the relationship depended very strongly on the balance 
of the dataset; imbalanced data, where many synthetical samples were generated, exhibited much higher bias.

While these are more empirical results that depend on various factors, such as the feature selection method 
and the classifier used, we also performed a simple simulation using data with random outcomes, on which no 
model can perform better than chance. Yet, as expected, the models that were trained incorrectly performed much 
better than the correctly trained models, achieving an AUC of up to 0.90 during testing. This result highlights 
our empirical findings based on the different datasets: each increase in imbalance yields an approximate increase 
of 0.1 in the AUC. Since the value of the AUC cannot be larger than 1.0, this effect eventually reaches saturation.

The misapplication of resampling methods and the consequent bias in the results of studies in which the data 
leakage occurred often cannot be observed directly. Moreover, it must be noted that many radiomics studies lack 
adequate descriptions of their methodology that may allow them to be fully  reproducible17. However, the misap-
plication of resampling techniques would be noticed if the model was tested on other data, but such independent 
or external testing is often neglected in many studies due to the increased efforts that may be  required17. If such 
misapplication occurred and was not noticed, it is reasonable that the results based on the test data are much 
lower than previously seen and  expected18. It is likely that such studies would blame an overfitting of the classifier 
or the low reproducibility and instability of the radiomic features for the inferior results.

Nonetheless, we estimate that the misapplication of resampling techniques is not widespread. To gauge this, 
we reviewed papers published in 2023 using the keywords ‘SMOTE’, ‘oversampling’, ‘undersampling’, ‘imbalance’ 
and ‘radiomics’ (see Supplementary Materials S1 and Supplementary Table S2). We identified five among a total 
of 34 papers (5/34, 15%) in which the reporting highly suggests that misapplication occurred. The reporting of 
the used methods was vague in another study, from which no conclusion could be drawn. Among the studies in 
which we assumed a misapplication or could not determine its occurence, only one shared their  data19; however, 
the data does not contain the relevant outcomes, rendering it useless for predictive modeling.

To illustrate the degree of bias, we consider a proof-of-concept study by Hinzpeter et al., who claim that bone 
metastases from prostate cancer can be detected in CT imaging using radiomics even though they cannot be seen 
by the naked  eye13. They state that their method achieved an AUC (incorrectly referred to as accuracy) of 0.85. 
Their analysis, however, describes that the oversampling method, Majority Weighted Minority Oversampling 
(MWMOTE), was applied before splitting the data into training and test sets. Since the balance of their data 
is roughly 2.3, assuming that a linear relationship exists between balance and bias, we estimate that this study 

Figure 4.  Bias in Brier score of the best-performing models averaged over 30 repeats for each method and 
dataset. Undersampling methods are displayed in red, combined in green, and oversampling methods in red.
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shows a bias of approximately 0.15–0.20 in the AUC. Thus, the true, unbiased AUC could be close to 0.65–0.70. 
This value questions their claim that bone metastases invisible to radiologists can be detected with high accuracy 
using radiomics.

Another interesting example is the study by Liu et al., which proposes a model to predict lung metastases in 
patients with thyroid  cancer20. Their data is extremely imbalanced since only 212 out of 9738 patients had lung 
metastases. They also incorrectly perform resampling before training but test the over- and undersampling meth-
ods. Accordingly, they report that the oversampling method performed better, with a difference of approximately 

Figure 5.  Association of the bias in Brier score with the class-balance of each dataset. The grey area denotes the 
95% confidence interval.
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0.14 in the AUC for the two methods (0.99 for oversampling and 0.85 for undersampling). Assuming that 
undersampling is relatively unbiased, this difference can be understood as a positive bias and indicates that the 
prediction of lung metastases is good but not excellent, as suggested in the study. Our rule of thumb—for each 
imbalance of the data, a bias of 0.10 can be expected—appears to be violated here; however, this is because the 
AUC of the model is already near perfect and cannot improve beyond 1.0.

A limited number of studies specifically consider this problem. A recent study by Vandewiele et al. considers 
the bias of oversampling methods in a single dataset, the Term-Preterm EHG Database, which is a collection of 
electrohysterogram recordings and has an imbalance of approximately 1:721. They report a bias in the range of 
3–10%, which is lower than what we observed in our study; however, it is important to keep in mind that their 
preprocessed dataset has fewer features (d = 50) than samples (N = 398) and is not directly comparable to a radi-
omics dataset. However, they conduct a simulation study using five-dimensional synthetically generated data 
with an imbalance of 1:10 and report a bias of + 0.45 in the AUC, which is higher than the results we achieved 
in our simulation study.

We reiterate that the results of our study are not surprising. Using the test data in any way during training is a 
form of data leakage and will lead to a bias in the majority of cases. Even though the application of undersampling 
methods appears to produce relatively unbiased results, applying them upfront to all data is still incorrect and 
should be avoided. The misapplication of the resampling methods is only one source of data leakage, which can 
occur on several levels and yield a large positive  bias9,22–25. For example, while Kawahara et al. apply resampling 
techniques correctly, they divide the train and test sets only after applying the least absolute shrinkage and selec-
tion operator (LASSO)26. Therefore, their results could potentially be  biased22.

It should be noted that our study has certain limitations. We only considered data with binary outcomes. 
However, it is reasonable to expect that similar biases will also occur for other types of outcomes since the 
underlying problem, data leakage, will also be present in such scenarios. Although our results indicate that the 
misapplication of oversampling methods leads to bias, this bias may still depend strongly on the dataset. We 
also only consider five-fold cross-validation. Nevertheless, we expect similar results to hold for other validation 
schemes as well, as long as data leakage occurs. We cannot exclude other forms of bias or data leakage in the 
datasets or the methods we have employed. For example, we normalize all data upfront, which results in another 
form of data leakage. However, a recent study suggests that this method is relatively  unbiased27. Moreover, it 
would affect all methods similarly. Furthermore, although various resampling methods  exist15, only a few that 
are widely used in the radiomics domain are considered in this study. We cannot conclude that other oversam-
pling methods are also biased or that undersampling methods are inherently unbiased. The same is true for the 
metrics used to measure bias: while we employ often-used metrics, we are confident that similar biases exist 
even if other metrics are used, such as the F1 score, area under the precision-recall curve (AUPRC), and similar. 
Finally, some resampling algorithms have hyperparameters that need to be tuned; for example, in the case of 
SMOTE, the relevant hyperparameter is a simple k value that determines the number of neighbors to consider. 
More complex methods like MWMOTE may have several hyperparameters that require tuning. While we do 
not consider the broader implications of these hyperparameters, except in a simple case, tuning them using all 
the data, as often happens in case of misapplication of resampling techniques, is likely to increase the bias. Thus, 
our results can be considered a lower bound on the expected bias in any scenario.

Conclusion
Incorrectly applying resampling methods to all data can lead to high bias in terms of model performance and 
model calibration in radiomics.

Figure 6.  Results of the simulation study. Different sample sizes were used to determine its effect on the 
observed bias. 95% confidence intervals are drawn shaded.
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Methods
Ethical statement
In this study, we gathered several publicly available datasets; the corresponding approvals from the ethical review 
boards have been granted. Ethical approval for this study was waived by the local Ethics Committee (Ethik-Kom-
mission, Medizinische Fakultät der Universität Duisburg-Essen, Germany). All methods and procedures were 
performed following the relevant guidelines and regulations. This is a retrospective study using only previously 
published and publicly accessible datasets. Approval was granted due to its retrospective nature.

Datasets
Fifteen publicly available radiomic datasets in tabular form were collected unsystematically (Table 1). All datasets 
were preprocessed as follows: non-radiomic features, such as clinical or genetic features, were removed. Missing 
values were imputed with column means. All data were normalized using the z-score method. If a train/test split 
was available, it was discarded by merging all data splits. Furthermore, if the outcome was not binary, e.g., in the 
case of survival, it was dichotomized.

Resampling methods
All three types of resampling methods were considered (Table 2). They included four oversampling methods 
(random oversampling, SMOTE, polynomial-fit SMOTE, and MWMOTE), two undersampling methods (ran-
dom undersampling, Tomek links), and one combined method (SMOTE + Tomek links). These methods were 
selected empirically because they are either employed in radiomics often or performed very well in previous 
 studies15. The default values of the hyperparameters of these methods were retained, except for SMOTE and 
SMOTE + Tomek links, for which k was varied between 3, 5, and 7, and for polynomial-fit SMOTE, where the 
topology was varied between star, bus and polynomial.

Model training
Models were trained using the standard radiomics pipeline, consisting of a feature selection method and a 
 classifier28,29. For the selection of relevant features, four commonly used feature selection methods were  used30: 
analysis of variance (ANOVA), Bhattacharyya scores, extra trees (ET), and the least absolute shrinkage and selec-
tion operator (LASSO). Using these methods, each feature is scored according to its estimated relevance; however, 
it is a priori unclear how many features should be used. Therefore, this number was considered a hyperparameter, 

Table 1.  Datasets used in this study. N denotes the sample size, d the dimension (number of features). 
N+ denotes the number of samples with positive outcome, N− those with negative outcome. Balance is 
computed as the sample size of the majority class divided by the sample size of the minority class.

Dataset N d N+ N− Balance Modality Tumor type DOI

Arita2018 168 685 111 57 1.95 MRI Brain https:// doi. org/ 10. 1038/ s41598- 018- 
30273-4

Carvalho2018 262 118 154 108 1.43 FDG + PET NSCLC https:// doi. org/ 10. 1371/ journ al. pone. 
01928 59

Hosny2018A 293 985 159 134 1.19 CT NSCLC https:// doi. org/ 10. 1371/ journ al. pmed. 
10027 11

Hosny2018B 211 1005 60 151 2.52 CT NSCLC https:// doi. org/ 10. 1371/ journ al. pmed. 
10027 11

Hosny2018C 183 1005 133 50 2.66 CT NSCLC https:// doi. org/ 10. 1371/ journ al. pmed. 
10027 11

Ramella2018 91 243 50 41 1.22 PET + CT NSCLC https:// doi. org/ 10. 1371/ journ al. pone. 
02074 55

Saha2018 922 530 327 595 1.82 DCE-MRI Breast https:// doi. org/ 10. 1038/ s41416- 018- 
0185-8

Lu2019 213 658 91 122 1.34 CT Ovarian cancer https:// doi. org/ 10. 1038/ s41467- 019- 
08718-9

Sasaki2019 138 588 68 70 1.03 MRI Brain https:// doi. org/ 10. 1038/ s41598- 019- 
50849-y

Toivonen2019 100 7106 80 20 4 MRI Prostate cancer https:// doi. org/ 10. 1371/ journ al. pone. 
02177 02

Keek2020 273 1323 119 154 1.29 CT HNSCC https:// doi. org/ 10. 1371/ journ al. pone. 
02326 39

Li2020 51 397 32 19 1.68 MRI Glioma https:// doi. org/ 10. 1371/ journ al. pone. 
02277 03

Park2020 768 941 183 585 3.2 US Thyroid cancer https:// doi. org/ 10. 1371/ journ al. pone. 
02273 15

Song2020 260 265 127 133 1.05 MRI Prostate cancer https:// doi. org/ 10. 1371/ journ al. pone. 
02375 87

Veeraraghavan2020 150 201 47 103 2.19 DCE-MRI Breast https:// doi. org/ 10. 1038/ s41598- 020- 
72475-9

https://doi.org/10.1038/s41598-018-30273-4
https://doi.org/10.1038/s41598-018-30273-4
https://doi.org/10.1371/journal.pone.0192859
https://doi.org/10.1371/journal.pone.0192859
https://doi.org/10.1371/journal.pmed.1002711
https://doi.org/10.1371/journal.pmed.1002711
https://doi.org/10.1371/journal.pmed.1002711
https://doi.org/10.1371/journal.pmed.1002711
https://doi.org/10.1371/journal.pmed.1002711
https://doi.org/10.1371/journal.pmed.1002711
https://doi.org/10.1371/journal.pone.0207455
https://doi.org/10.1371/journal.pone.0207455
https://doi.org/10.1038/s41416-018-0185-8
https://doi.org/10.1038/s41416-018-0185-8
https://doi.org/10.1038/s41467-019-08718-9
https://doi.org/10.1038/s41467-019-08718-9
https://doi.org/10.1038/s41598-019-50849-y
https://doi.org/10.1038/s41598-019-50849-y
https://doi.org/10.1371/journal.pone.0217702
https://doi.org/10.1371/journal.pone.0217702
https://doi.org/10.1371/journal.pone.0232639
https://doi.org/10.1371/journal.pone.0232639
https://doi.org/10.1371/journal.pone.0227703
https://doi.org/10.1371/journal.pone.0227703
https://doi.org/10.1371/journal.pone.0227315
https://doi.org/10.1371/journal.pone.0227315
https://doi.org/10.1371/journal.pone.0237587
https://doi.org/10.1371/journal.pone.0237587
https://doi.org/10.1038/s41598-020-72475-9
https://doi.org/10.1038/s41598-020-72475-9
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and different numbers of highest-scoring features were selected (N = 1, 2, 4, … 32, 64). A classifier was then 
trained based on these features. Four widely used classifiers were  employed31: logistic regression (LR), Naive 
Bayes, random forest (RF), and kernelized support vector machines (RBF-SVM). The hyperparameters for these 
methods were tested using a grid-like scheme (Table 3).

The training was performed using a fivefold stratified cross-validation (CV) with 30 repeats. Two different 
strategies were used (Fig. 7). First, the resampling was performed correctly during the CV, i.e., after splitting 
the data into train and test folds. In this scheme, the resampling was only applied to the training data, and the 
test data was not affected by the resampling. Second, the resampling was performed incorrectly before the CV. 
In this scenario, all the data were resampled before splitting. Therefore, the test data during the CV was affected 
by the resampling.

Table 2.  List of resampling methods and parameters.

Method Parameters Type

Random undersampling – Undersampling

Tomek links – Undersampling

Random oversampling – Oversampling

SMOTE k = 3, 5, 7 Oversampling

Polynomial-fit SMOTE Topology = bus, star, poly Oversampling

MWMOTE – Oversampling

SMOTE + Tomek links k = 3, 5, 7 Combined

Table 3.  List of resampling methods and parameters.

Method Parameters

Feature selection

LASSO C = 1.0

Extra trees –

ANOVA –

Bhattacharyya –

Classifiers

Logistic regression C =  2–10,  2–9, …,  29,  210

Naive Bayes –

RBF-SVM C =  2–10,  2–9, …,  29,  210 , γ = auto

Random forest N = 250

k-NN k = 1, 3, 5, 7, 9

Figure 7.  Flowchart of the two methodologies. On the left, the resampling is applied correctly within the cross-
validation folds, on the right it is applied incorrectly before the cross-validation.
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The best-performing model in each repeat in terms of the macro-averaged area under the receiver operator 
characteristic curve (AUC) was determined in both strategies. This model was then used to compute the bias.

Observed bias in predictive performance
Since the primary focus in radiomics is obtaining accurate predictions, the difference in the AUC of the best-
performing models for each scenario was computed. The AUC values across the repeats were then averaged. A 
scatter plot depicting the balance against the mean bias for each dataset was generated to determine whether the 
observed bias depends on the number of synthetically created points.

Similarly, the biases in the sensitivity, specificity, and the balanced accuracy were computed as secondary 
metrics.

Observed bias in Brier score
Calibration bias was measured using the mean difference in the Brier score between the best-performing models 
across repeats. Similarly, a scatter plot was used to depict the association between the balance and the observed 
mean bias in the Brier score.

Simulation study
A simple simulation study was performed to estimate the bias. Two-dimensional synthetic data was sampled 
uniformly from the range [−1, 1] with a pre-specified balance B (in %) and N negative samples. First, N samples 
were drawn randomly and assigned a negative label. Then, N*B/100 samples were drawn and assigned a positive 
label. Then, the data was processed, once correctly and once incorrectly, using SMOTE with the default neigh-
borhood size (k = 5), where a repeated 80–20% train-test split with 100 repeats was used instead of a repeated 
CV. An SVM with an RBF kernel was used as a classifier. Large values for the parameters C and gamma were 
chosen (C = 50, gamma = 500) to increase the complexity of the classifier, which in turn determines whether the 
classifier can fit the data with high accuracy. The difference in AUC between both approaches was then plotted 
against the balance of the data.

Software
All modeling was performed using Python 3.9 and the scikit-learn package. Our code repository can be found 
on GitHub (https:// github. com/ aydin demir cioglu/ Resam pling Bias) and was archived on Zenodo (https:// doi. 
org/ 10. 5281/ zenodo. 10890 212).

Ethic approval and consent to participate
This is a retrospective study using only previously published and publicly accessible datasets. Written informed 
consent was waived by the local Ethics Committee (Ethik-Kommission, Medizinische Fakultät der Universität 
Duisburg-Essen, Germany). Approval was granted due to its retrospective nature. All methods and procedures 
were performed following the relevant guidelines and regulations.

Data availability
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