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Using blood routine indicators 
to establish a machine learning 
model for predicting liver fibrosis 
in patients with Schistosoma 
japonicum
Yang Liu 1,2,3,5, Shudong Xie 1,2,3,5, Jie Zhou 4, Yu Cai 4, Pengpeng Zhang 1,2,3, Junhui Li 1,2,3 & 
Yingzi Ming 1,2,3*

This study intends to use the basic information and blood routine of schistosomiasis patients to 
establish a machine learning model for predicting liver fibrosis. We collected medical records of 
Schistosoma japonicum patients admitted to a hospital in China from June 2019 to June 2022. The 
method was to screen out the key variables and six different machine learning algorithms were used 
to establish prediction models. Finally, the optimal model was compared based on AUC, specificity, 
sensitivity and other indicators for further modeling. The interpretation of the model was shown by 
using the SHAP package. A total of 1049 patients’ medical records were collected, and 10 key variables 
were screened for modeling using lasso method, including red cell distribution width-standard 
deviation (RDW-SD), Mean corpuscular hemoglobin concentration (MCHC), Mean corpuscular volume 
(MCV), hematocrit (HCT), Red blood cells, Eosinophils, Monocytes, Lymphocytes, Neutrophils, Age. 
Among the 6 different machine learning algorithms, LightGBM performed the best, and its AUCs in 
the training set and validation set were 1 and 0.818, respectively. This study established a machine 
learning model for predicting liver fibrosis in patients with Schistosoma japonicum. The model could 
help improve the early diagnosis and provide early intervention for schistosomiasis patients with liver 
fibrosis.

Schistosomiasis japonicum is an infectious parasitic disease with serious consequences, widely distributed in tropi-
cal and subtropical regions of Asia, Africa and other continents1. According to WHO reports, schistosomiasis 
is still spreading and prevalent in 52 countries, affecting the health and quality of life of millions of people2. The 
cercariae of Schistosoma japonicum penetrate the human skin and enter the liver through the blood circulation, 
and then spawn in large numbers. Inflammatory granulomas form around schistosome eggs, and liver fibrosis 
develops gradually around this focus3. If patients are not treated in time, they are more likely to experience the 
serious consequences of cirrhosis when combined with other liver diseases. Early clinical diagnosis and treatment 
can increase the degree of improvement of liver fibrosis in schistosomiasis. In order to improve the quality of 
life and effectively reduce the risks of liver cirrhosis, peritoneal effusion, and liver cancer, early prediction and 
diagnosis of liver fibrosis has become an important problem to be solved in the field of diagnosis and treatment 
of liver fibrosis in schistosomiasis. At present, serological biomarkers and transient elastography are widely 
accepted clinically as the main basis for the diagnosis of early liver fibrosis4. But both have the same problem, 
that is, it is difficult to accurately diagnose liver fibrosis in stages. The stability of transient elastography meas-
urements is easily disturbed by sampling errors, differences in instrument use, and other factors, which have 
certain clinical limitations5.

Machine learning is an artificial intelligence method used to process large amounts of complex and multi-
type data, and it has achieved breakthroughs in the application of complex medical problems6. If the advantages 
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of machine learning methods in describing complex data structures can be used, the degree of development of 
liver fibrosis in schistosomiasis can be accurately predicted and diagnosed. It can provide valuable early evidence 
for clinical treatment, thereby improving the quality of life and prognosis of patients.

The purpose of this study is to determine the influencing factors of liver fibrosis in schistosomiasis, based 
on the data of blood routine examination, to establish a machine learning model for early prediction of liver 
fibrosis in schistosomiasis.

Results
Baseline information
This study included 1049 patients, and the baseline table of the total population is shown in Table 1. The median 
age was 62.0 years (range 51.0–71.0). In the whole population, 281 patients (26.79%) had significant liver fibrosis, 
and 768 patients (73.21%) had no significant liver fibrosis.

Variable screening
A total of 10 key factors were selected by the LassoCV method: ‘RDW-SD’, ‘MCHC’, ‘MCV’, ‘HCT’, ‘Red blood 
cells’, ‘Eosinophils’, ‘Monocytes’, ‘Lymphocytes’, ‘Neutrophils’, ‘Age’.

Multi‑algorithm model comparison
Using 6 machine learning model algorithms for classification, among the 6 different machine learning algo-
rithms, LightGBM performed the best, and its AUCs in the training set and validation set were 1 and 0.818, 
respectively (Fig. 1A,B). At the same time, its cutoff value, accuracy, sensitivity, specificity, positive predictive 
value, negative predictive value, F1 score, and Kappa value are 0.876, 0.807, 0.709, 0.842, 0.842, 0.803, 0.769, 
and 0.394, respectively. The evaluation results of other machine learning algorithms are shown in Table 2 and 
Supplementary Table 1. The forest plot in Supplementary Fig. 1 shows the ROC results of each model, and the 
error bar in the figure is the SD of the ROC mean. The clinical decision curve in Supplementary Fig. 2 shows the 
LightGBM performs well and is more stable.

Best model
After comparing multiple models, it was found that LightGBM performed best, and we used LightGBM for 
modeling. The AUC in the training set was 0.995, the AUC in the validation set was 0.804, and the AUC in the 
test set was 0.8367 (Fig. 2A–C). At the same time, we can see that during cross-validation, when the sample size 
of the training set and the validation set reaches 400, the model reaches a stable state (Fig. 2D). Supplementary 
Tables 2–4 showed the metrics for model evaluation on the training set, validation set, and test set, respectively.

Model interpretability
The SHAP diagram in Fig. 3A showed how each variable in the validation set contributes to the prediction of 
infection. The redder each point means that the absolute value of the point is larger, and the bluer the point, the 
smaller the absolute value of the point. The ordinate is a negative absolute value The larger the value, the greater 
the possibility of the predicted result being negative, and the greater the absolute value of the positive number 
on the vertical axis, the greater the possibility of the predicted result being positive. For example, the larger the 
RDW-SD value, the greater the possibility of liver fibrosis in patients, and the lower the possibility of liver fibrosis 
in patients with higher lymphocyte and neutrophil counts. Figure 3B showed the importance ranking of each 
variable. We can see that RDW-SD, lymphocytes and neutrophils are more important variables. Figure 3C and 
Fig. 3D used two force diagrams to show how the variables of the two samples affect the results. As shown in 
Fig. 3C, the patient was predicted to be infected, but was actually infected. We can see that the longest red arrow 
is neutrophils (0.93), indicating that neutrophils are the most important for the patient’s infection. The outcome 
had the largest positive contribution, and the second largest positive contribution was red blood cells (3.69). 
There were no variables that had a negative contribution to the outcome. In Fig. 3D, the patient was predicted 
not to have an infection, but in fact no infection occurred. The three variables that had the most positive impact 
were the number of neutrophils (1.71), red blood cells (3.47), and age (77.0), the two variables that had the most 
negative impact on the outcome were RDW-SD (42.7) and MCV (98.3).

Discussion
After infecting the host, Schistosoma japonicum produces a large number of eggs and deposits them in tissues 
such as the liver. If timely and effective intervention is not performed, changes such as egg granuloma and liver 
fibrosis may further develop into hepatocellular carcinoma7. Studies have shown that liver fibrosis is not a single 
irreversible progression, and liver fibrosis may have the potential to regress8. Therefore, it has positive significance 
in the early diagnosis and treatment of liver fibrosis. At present, schistosomiasis has not attracted enough atten-
tion in major endemic countries, resulting in relatively lagging clinical and basic research on schistosomiasis, 
and there are few basic data research on schistosomiasis liver fibrosis9. This study predicts the risk of liver fibrosis 
by constructing a diagnostic model, which has important clinical significance for early and correct treatment 
and intervention.

This study uses a machine learning model to predict liver fibrosis in Schistosomiasis japonicum, helping clini-
cians to deeply understand the impact of key factors on liver fibrosis. It is helpful for early identification of liver 
fibrosis and distinguishing the severity of liver fibrosis, so as to timely detect patients with early liver fibrosis 
and improve the prognosis of them. In this study, the data of 1049 patients with Schistosomiasis japonicum were 
analyzed to establish a liver fibrosis prediction model using machine learning algorithms to help identify patients 
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at high risk of liver fibrosis. The model established in this study is well discriminative and exhibits satisfactory 
specificity and sensitivity.

After screening out 10 key factors, the research uses 6 different machine learning algorithms to classify. 
Compared with other models, the LightGBM algorithm has better performance and higher stability, and the 
AUC of the optimal model is 0.8367. In the evaluation of the importance of model variables, the top three indi-
cators with positive contribution to the outcome of liver fibrosis are neutrophils, red blood cells, and age, while 

Table 1.   Baseline. TT thrombin time, INR international normalized ratio, PT prothrombin time, APTT 
activated partial thromboplastin time, LDL low-density lipoprotein, HDL high-density lipoprotein, AST 
aspartate aminotransferase, ALT alanine aminotransferase, RDW-CV red cell distribution width-coefficient 
of variation count, RDW-SD red cell distribution width-standard deviation, MCHC mean corpuscular 
hemoglobin concentration, MCH mean corpuscular hemoglobin, MCV mean corpuscular volume, HCT 
hematocrit, HB hemoglobin.

Variable, median (IQR) All (n = 1049) Non-fibrosis group (n = 768) Fibrosis group (n = 281) P-value

Age (years) 62 (51, 71) 59 (49, 69) 67 (58, 73)  < 0.001

Sex, n (%) 0.471

 Female 344 (32.80) 247 (32.16) 97 (34.52)

 Male 705 (67.81) 521 (67.84) 184 (65.48)

TT (s) 18.766 (17.901, 19.006) 18.756 (17.869, 18.766) 18.766 (18.100, 19.600)  < 0.001

Fibrinogen (g/L) 2.492 (2.399, 2.906) 2.535 (2.492, 2.964) 2.492 (2.070, 2.731)  < 0.001

Prothrombin activity (%) 133.57 (116.23, 144.50) 138.90 (120.81, 144.50) 117.46 (87.90, 142.03)  < 0.001

INR 1.057 (1.052, 1.057) 1.056 (1.053, 1.057) 1.057 (1.050, 1.160)  < 0.001

PT (s) 11.591 (11.529, 11.593) 11.589 (11.531, 11.591) 11.591 (11.500, 12.700)  < 0.001

APTT (s) 25.130 (22.710, 25.437) 24.300 (22.703,25.437) 25.437 (22.900, 28.100)  < 0.001

Glucose (mmol/L) 5.320 (4.940, 5.850) 5.340 (4.950, 5.820) 5.280 (4.920, 5.940) 0.992

LDL (mmol/L) 3.216 (2.590, 3.870) 3.310 (2.720, 3.950) 2.900 (2.240, 3.430)  < 0.001

HDL (mmol/L) 1.330 (1.120, 1.590) 1.320 (1.100, 1.560) 1.380 (1.150, 1.650) 0.005

Total cholesterol (mmol/L) 4.850 (4.220, 5.540) 4.951 (4.320, 5.670) 4.600 (3.961, 5.260)  < 0.001

Triglycerides (mmol/L) 1.180 (0.860, 1.690) 1.260 (0.930, 1.820) 0.970 (0.700, 1.340)  < 0.001

Uric acid (μmol/L), mean ± SD 349.532 ± 96.554 346.677 ± 89.926 357.417 ± 112.477 0.154

Creatinine (μmol/L), mean ± SD 70.923 ± 33.009 68.948 ± 23.433 76.359 ± 50.364 0.019

Urea nitrogen (mmol/L), mean ± SD 5.354 ± 4.229 5.185 ± 3.279 5.820 ± 6.099 0.100

Glutamyl transpeptidase (U/L) 29.000 (19.000, 53.000) 26.000 (18.000, 41.000) 52.000 (27.000, 103.000)  < 0.001

Alkaline phosphatase (U/L) 74.000 (60.000, 91.000) 70.000 (58.000, 84.000) 85.000 (69.000, 121.000)  < 0.001

Total bile acid (μmol/L) 3.000 (2.570, 6.200) 2.570 (2.400, 4.700) 6.000 (2.900, 13.900)  < 0.001

AST (U/L) 24.000 (20.000, 31.000) 22.000 (18.000, 26.000) 33.000 (28.000, 45.000)  < 0.001

ALT (U/L) 24.000 (18.000, 32.000) 21.000 (16.000, 27.000) 32.000 (25.000, 43.000)  < 0.001

Globulin (g/L) 26.000 (23.800, 28.700) 25.600 (23.700, 28.000) 26.900 (24.400, 32.000)  < 0.001

Albumin (g/L) 44.000 (40.600, 46.100) 44.800 (41.500, 46.300) 41.800 (36.200, 45.700)  < 0.001

Indirect bilirubin (μmol/L) 9.300 (7.000, 12.500) 8.800 (6.700, 11.500) 11.500 (8.200, 14.100)  < 0.001

Platelet distribution width (%) 16.000 (15.872, 16.500) 15.900 (15.872, 16.300) 16.300 (15.872, 16.900)  < 0.001

Plateletcrit (ng/mL) 0.210 (0.166, 0.218) 0.210 (0.190, 0.230) 0.148 (0.110, 0.193)  < 0.001

Platelets (*109/L) 175.000 (137.000, 216.000) 197.000 (163.000, 227.000) 109.000 (79.000, 140.000)  < 0.001

RDW-CV (%) 13.300 (12.500, 13.802) 13.200 (12.400, 13.802) 13.600 (12.900, 14.311)  < 0.001

RDW-SD (%) 44.000 (42.170, 46.300) 43.600 (41.747, 45.533) 46.000 (43.300, 49.900)  < 0.001

MCHC (g/L) 328.000 (321.000, 334.000) 328.000 (321.000, 334.000) 327.000 (318.000, 334.000) 0.388

MCH (pg) 30.900 (29.800, 32.100) 30.800 (29.800, 31.800) 31.500 (29.900, 32.700)  < 0.001

MCV (fl) 94.500 (90.600, 98.200) 94.000 (90.600, 97.400) 96.000 (90.900, 99.600)  < 0.001

HCT (%) 41.933 (38.725, 44.600) 42.500 (39.900, 45.000) 39.000 (34.500, 43.100)  < 0.001

HB (g/L) 138.000 (125.000, 149.000) 140.000 (130.000, 150.000) 126.000 (111.000, 142.000)  < 0.001

Red blood cells (*1012/L) 4.480 (4.070, 4.840) 4.580 (4.240, 4.920) 4.110 (3.560, 4.590)  < 0.001

Basophils (*109/L) 0.010 (0.010, 0.020) 0.010 (0.010, 0.020) 0.010 (0.010, 0.020)  < 0.001

Eosinophils (*109/L) 0.130 (0.080, 0.210) 0.140 (0.090, 0.220) 0.120 (0.070, 0.180)  < 0.001

Monocytes (*109/L) 0.320 (0.250, 0.400) 0.330 (0.260, 0.400) 0.270 (0.210, 0.370)  < 0.001

Lymphocytes (*109/L) 1.650 (1.240, 2.070) 1.730 (1.380, 2.110) 1.250 (0.850, 1.790)  < 0.001

Neutrophils (*109/L) 3.120 (2.430, 3.960) 3.300 (2.680, 4.190) 2.430 (1.850, 3.260)  < 0.001

White blood cell (*109/L) 5.400 (4.400, 6.430) 5.610 (4.850, 6.690) 4.290 (3.340, 5.470)  < 0.001
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the indicators with the largest negative contributions are RDW-SD and MCV. Except for the patient’s age, other 
indicators are related to blood routine.

Overall, the key variables included in the model may play an important role in the early diagnosis of Schis-
tosoma japonicum liver fibrosis. Previous reports point out that there is an inseparable relationship between 
blood routine indicators and liver fibrosis10, and the results of this study also support this association. The 
neutrophil-to-lymphocyte ratio (NLR) is widely used to assess inflammatory diseases. The study found that 
for patients with nonalcoholic fatty liver disease (NAFLD), NLR was significantly correlated with liver fibrosis 
stage and nonalcoholic fatty liver disease activity score (NAS); For chronic hepatitis B (CHB) patients, NLR was 
negatively correlated with liver fibrosis stage11–14. Therefore, NLR may be associated with the stage of liver fibrosis. 
Kekilli et al. also demonstrated that the ratio of neutrophils to lymphocytes reflects the severity of advanced liver 
fibrosis15. RDW is a parameter reflecting the heterogeneity of red blood cell volume, which is often used to diag-
nose different types of anemia, and is closely related to the body’s inflammation and nutritional status. Elevated 
RDW often indicates shortened lifespan and increased destruction of red blood cells. Michalak et al. believe that 
RDW and its derivatives may be related to the deterioration of liver function16. Studies have shown that RDW 
is closely related to liver fibrosis in diseases such as NAFLD and CHB17–19. RDW can be expressed as RDW-CV 
and RDW-SD. RDW-SD is determined by the width of the red blood cell volume distribution curve above 20% 
above baseline. Studies have shown20 that RDW-SD is closely related to significant liver fibrosis (F2–F4) in CHB 
and can be used as an effective predictor for significant liver fibrosis in CHB. Liu et al.21–23 also found that only 
RDW-SD had a statistically significant difference between different stages of liver fibrosis in AIH (P = 0.046). 
In univariate Logistic regression analysis, RDW-SD was a risk factor for advanced liver fibrosis (F3–F4) in AIH. 
MCV is a parameter that reflects the volume of red blood cells, and changes in MCV suggest that the patient’s 
hemoglobin synthesis is impaired. Liu et al.21 further found that MCV had statistically significant differences 
among different stages of liver fibrosis in AIH and was positively correlated with the severity of liver fibrosis. 
The combination of MCV and RDW can comprehensively reflect the discrete state of peripheral red blood cell 
volume. So far, the mechanism between RDW, MCV and liver fibrosis is unclear, and may include the following 
points: (1). Inflammatory cytokines may inhibit the maturation of red blood cells and accelerate the entry of 

Figure 1.   Multi-model comparison diagram. (A) Figure A shows the AUC of multiple models in the training 
set. Each color represents a machine learning algorithm. (B) Figure B shows the AUC of multiple models in the 
validation set.

Table 2.   Multi-model classification—validation set results.

Model AUC  (SD) Cut-off (SD) Accuracy (SD) Sensitivity (SD) Specificity (SD)

Positive 
predictive value 
(SD)

Negative 
predictive value 
(SD) F1 score (SD) Kappa (SD)

XGBoost 0.808 (0.022) 0.863 (0.011) 0.817 (0.020) 0.680 (0.045) 0.865 (0.018) 0.836 (0.064) 0.814 (0.015) 0.748 (0.044) 0.437 (0.071)

Logistic 0.747 (0.041) 0.328 (0.031) 0.767 (0.027) 0.609 (0.075) 0.832 (0.043) 0.574 (0.055) 0.844 (0.018) 0.586 (0.036) 0.410 (0.048)

LightGBM 0.818 (0.022) 0.876 (0.009) 0.807 (0.022) 0.709 (0.070) 0.842 (0.017) 0.842 (0.071) 0.803 (0.017) 0.769 (0.064) 0.394 (0.081)

RandomForest 0.797 (0.022) 0.450 (0.032) 0.805 (0.018) 0.683 (0.057) 0.827 (0.030) 0.680 (0.050) 0.838 (0.009) 0.681 (0.052) 0.463 (0.040)

SVM 0.732 (0.047) 0.273 (0.014) 0.713 (0.036) 0.620 (0.077) 0.792 (0.049) 0.475 (0.050) 0.833 (0.021) 0.537 (0.060) 0.321 (0.071)

KNN 0.690 (0.030) 0.400 (0.000) 0.776 (0.013) 0.474 (0.135) 0.840 (0.081) 0.662 (0.046) 0.795 (0.010) 0.542 (0.103) 0.324 (0.044)
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newer and larger reticulocytes into the peripheral circulation, resulting in increased RDW; (2). Patients with 
liver disease often have decreased intestinal absorption function, resulting in folic acid, vitamin B12 and other 
deficiencies, resulting in varying degrees of megaloblastic anemia and heterogeneous changes in red blood cell 
volume; (3). Hepatic fibrosis often causes splenomegaly and hyperfunction, which accelerates red blood cell 
destruction and shortens the lifespan of red blood cells, which may promote the release of immature red blood 
cells and eventually lead to increased RDW17,24,25. These studies provide a theoretical basis for the correlation 
between blood routine indicators and liver fibrosis, but the magnitude of the correlation and the degree of liver 
function deterioration have not been clearly quantified, nor have they provided a predictable space for early 
liver fibrosis. Machine learning can make up for this deficiency. This study also find that age is also a key vari-
able associated with liver fibrosis in Schistosomiasis japonicum, and the model predicts that the older the age, 
the greater the possibility of liver fibrosis. The significance of the machine learning method for this study lies in 
the establishment of a clinical prediction and identification model through simple blood routine indicators and 
patient age to give suggestions for the diagnosis of complex liver fibrosis.

This study built a machine learning model and evaluated the model by taking advantage of abundant data. 
Compared with the models mentioned in the published literature, this study only needs blood routine, age and 
gender to predict, providing clinicians with a more easy-to-operate and understandable diagnostic method.

But this study also has certain limitations. This study is a single-center retrospective study and some of the 
results discussed are also for an individual patient, which may not be able to avoid inherent selection bias and 
information bias. The next step of the study needs to conduct multi-center prospective research for external 
verification to further improve and promote this machine learning model. The variables of the current model 
only include the patient’s clinical information and test results. In order to optimize the performance of the 

Figure 2.   AUC of the LightGBM model. (A) AUC of the LightGBM model in the train set. (B) AUC of the 
LightGBM model in the validation set. (C) AUC of the LightGBM model in the test set. (D) Figure shows that 
the AUC of the LightGBM model changes according to the training sample size. The abscissa represents the 
sample number, and the ordinate represents the ROC value.
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identification model, the model can also include biomarkers from microbiome and metabolomics. However, 
at present, only using clinical variables can also reduce the burden on patients to a certain extent, and it has a 
certain degree of convenience in clinical application. Finally, the insufficient interpretability of SHAP values 
warrants the development of more understandable models in the future. In the future, we will further develop 
an automatic clinical scoring system based on nomograms or machine learning based on research data in order 
to provide clinicians with more practical and easy-to-understand tools.

Methods
Study population
The study population consisted of patients diagnosed with Schistosoma japonicum in Yueyang, Hunan Province, 
China. This city has historically been a high schistosomiasis epidemic area. Because it was located near Dongting 
Lake in the middle and lower reaches of the Yangtze River, where the Intermediate host Oncomelania hupensis 
breeds in large numbers.

Schistosoma japonicum infection was diagnosed according to the definition of Zhou et al.26. Including the 
following diagnostic criteria: life history in schistosomiasis-endemic areas, contact with infected water, specific 
schistosoma serology testing, color ultrasound, excreta (feces, urine) microscopic examination. Schistosomiasis 
infection was considered when schistosome ova were visualized in stool, urine or when the Schistosoma serol-
ogy was positive.

Liver fibrosis was determined by ultrasound according to the World Health Organization diagnostic criteria 
for Schistosoma japonicum infection27,28. An experienced ultrasound expert divided the patients into two groups 
according to the ultrasound results: fibrosis group (with mesh-like changes and uneven hepatic echotexture); 
no-fibrosis group (without mesh-like changes, smooth and uniform hepatic echotexture). The diagnosis was 
double-checked by another experienced schistosomiasis specialist.

Data collection
A retrospective medical record review was conducted from June 2019 to June 2022 at Xiangyue Hospital, Yuey-
ang City, Hunan Province of China. All patients underwent blood tests and ultrasound evaluation at admission. 
All variables were extracted from the hospital’s electronic medical record system. The data include: patient 

Figure 3.   Interpretability of the model. (A) SHAP diagram. Each point represents a sample. The redder the 
color of the point, the larger the value of the variable, and the bluer the red, the smaller the value of the variable. 
The larger the ordinate of the point, the more likely the outcome is to be positive. (B) Importance ranking of 
key variables. The abscissa is the absolute value of the SHAP value, and the ordinate is the key variable. (C) The 
samples with a positive outcome. Red indicates a positive contribution to a positive outcome, and blue indicates 
a negative contribution to a positive outcome. The length of the bar indicates the size of the contribution. The 
longer the bar, the greater the contribution to the outcome. (D) The samples with negative outcome.
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demographic characteristics, blood routine indicators and other variables. KNN filling method is used to fill in 
the missing data. The principle is to identify k samples that are spatially similar or close in the data set through 
distance measurement, and then use these k samples to estimate the value of the missing data point. The percent-
age of missing data points is presented in Supplementary Table 5. The LassoCV method was used to screen out 
key variables. Data entry was performed by a full-time research physician or medical student. This study was 
conducted and approved by the Ethics Committee of the third Xiangya Hospital of Central South University (No: 
21149) and has been carried out in accordance with the Code of Ethics of the World Medical Association (Decla-
ration of Helsinki) for experiments. All methods were performed in accordance with the relevant guidelines and 
regulations. The need of informed consent was waived by the Ethics Committee of the third Xiangya Hospital of 
Central South University due to retrospective nature of the study. The privacy of all participants is fully protected.

Feature selection
Patients were divided into hepatic fibrosis and non-hepatic fibrosis groups according to their color Doppler 
ultrasound results. Patients with hepatitis B virus (hepatitis B surface antigen seropositive), hepatitis C virus 
(HCV antibody seropositive), human immunodeficiency virus (HIV antibody seropositive), alcoholic and non-
alcoholic fatty liver disease (ultrasound scanning and alcohol consumption above 30°g daily), decompensated 
liver disease or liver cancer (ultrasound and liver function tests), and organ transplantation (self-reported) were 
excluded. The key variables are selected by LassoCV method for subsequent modeling.

Study design
First, the classification task was completed using 6 machine learning algorithms, including: ‘XGB Classifier’, 
‘Logistic Regression’, ‘LightGBM Classifier’, ‘Random Forest Classifier’, ‘Support Vector Classification’, ‘K Neigh-
bors Classifier’. Fivefold cross-validation method was used for validation. Each model was evaluated using AUC, 
clinical decision curve plot, accuracy, sensitivity, specificity, positive predictive value, negative predictive value, 
and F1 score. The ROC diagram and the forest diagram show the ROC results of each model for the prediction 
of “hepatic fibrosis”.

After selecting the best algorithm through multi-algorithm model comparison, the best algorithm was used to 
model again. Different from multi-model comparison, when using the best-performing algorithm for modeling, 
we randomly select 15% of the total samples as the test set, and the remaining samples are used as the training 
set for fivefold cross-validation.

Model interpretation
The SHAP package in python can interpret the output of machine learning models, considering all features as 
“contributors”. For each prediction sample, the model will generate a prediction value, and its biggest advantage 
is that it can reflect the influence of the characteristics in each sample and show the positive and negative effects. 
This study used the SHAP package to interpret the model. SHAP value plots were used to show the contribution 
of each variable in the model. Model variable importance plots were used to show the importance ranking of 
each variable. Force diagrams were used to illustrate how each variable affects the predicted outcome for each 
sample with two examples.

Statistical method
The python used in this study is version 3.7. The statsmodels 0.11.1 package in Python was used to count whether 
each variable was different between two groups of people. The analysis method was selected according to the 
distribution of samples, homogeneity of variance, and sample size. Chi-square test was used for categorical vari-
ables. Student’s t-test or Mann–Whitney U-test was used for quantitative variables.

In this study, LassoCV was used to screen key variables, and factors with a coefficient of 0 were automatically 
eliminated (sklearn 0.22.1 package in Python). Lasso obtains a more refined model by constructing a penalty 
function, so that it compresses some regression coefficients, that is, forces the sum of the absolute values of 
the coefficients to be less than a certain fixed value; at the same time, sets some regression coefficients to zero. 
Therefore, the advantage of subset shrinkage is preserved, and it is a biased estimate for dealing with data with 
multicollinearity. In the multi-model and best-model modeling process, the xgboost 1.2.1 package of Python is 
used for XGBoost algorithm modeling, the lightgbm 3.2.1 package of Python is used for LightGBM algorithm 
modeling, and the sklearn 0.22.1 package of Python was used to build other models. The shap 0.39.0 package in 
python was used to demonstrate the interpretability of the model.

Ethical standards
Ethics approval was obtained from the Ethics Committee of the third Xiangya Hospital of Central South 
University.

Data availability
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