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Role of peritumoral tissue analysis 
in predicting characteristics 
of hepatocellular carcinoma using 
ultrasound‑based radiomics
Hongwei Qian 1,2,5, Yanhua Huang 3,5, Luohang Xu 4, Hong Fu 1,2 & Baochun Lu 1,2*

Predicting the biological characteristics of hepatocellular carcinoma (HCC) is essential for personalized 
treatment. This study explored the role of ultrasound‑based radiomics of peritumoral tissues for 
predicting HCC features, focusing on differentiation, cytokeratin 7 (CK7) and Ki67 expression, 
and p53 mutation status. A cohort of 153 patients with HCC underwent ultrasound examinations 
and radiomics features were extracted from peritumoral tissues. Subgroups were formed based 
on HCC characteristics. Predictive modeling was carried out using the XGBOOST algorithm in the 
differentiation subgroup, logistic regression in the CK7 and Ki67 expression subgroups, and support 
vector machine learning in the p53 mutation status subgroups. The predictive models demonstrated 
robust performance, with areas under the curves of 0.815 (0.683–0.948) in the differentiation 
subgroup, 0.922 (0.785–1) in the CK7 subgroup, 0.762 (0.618–0.906) in the Ki67 subgroup, and 0.849 
(0.667–1) in the p53 mutation status subgroup. Confusion matrices and waterfall plots highlighted the 
good performance of the models. Comprehensive evaluation was carried out using SHapley Additive 
exPlanations plots, which revealed notable contributions from wavelet filter features. This study 
highlights the potential of ultrasound‑based radiomics, specifically the importance of peritumoral 
tissue analysis, for predicting HCC characteristics. The results warrant further validation of peritumoral 
tissue radiomics in larger, multicenter studies. 

Abbreviations
HCC  Hepatocellular carcinoma
DICOM  Digital imaging and communications in medicine
ROI  Region of interest
ICC  Inter-/intra-class coefficients
LASSO  Least absolute shrinkage and selection operator
ROC  Receiver operating characteristic
AUC   Area under the curve
SHAP  SHapley Additive exPlanations
SVM  Support vector machine

Hepatocellular carcinoma  (HCC) continues to pose a substantial global health burden and is ranked as a leading 
cause of cancer-related mortality  worldwide1. Despite advancements in diagnostic and therapeutic strategies, the 
prognosis of liver cancer remains largely contingent on the disease stage and histopathological characteristics. 
Early and accurate identification of the relevant features is thus crucial for refining treatment approaches and 
enhancing patient  outcomes2.

Medical imaging has recently undergone remarkable technological advances, enabling the extraction of 
intricate quantitative data from radiological images. This evolution has given rise to the field of  radiomics3, 
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which involves high-throughput extraction, analysis, and interpretation of numerous quantitative image features 
encapsulating subtle patterns, textures, and spatial relationships that transcend conventional visual assessment. 
Radiomics demonstrates substantial potential for non-invasive prognostication, treatment response assessment, 
and early detection across various cancer  types4–6. Previous studies have demonstrated correlations of differen-
tiation, cytokeratin 7 (CK7), Ki67, and p53 with the invasiveness and prognosis of  HCC7–10. Utilizing radiom-
ics technology to predict these features preoperatively in patients with HCC would aid the provision of more 
personalized treatment.

Ultrasound image-based radiomics, as a subset of radiomics, plays a pivotal role in liver cancer research. 
This method combines medical imaging and computational science to extract quantitative features from ultra-
sound images, revealing subtle patterns and spatial relationships that are not easily visible to the human  eye9,11. 
Analyzing the wealth of information contained within ultrasound images has the potential to transform clinical 
decision-making and improve patient care in HCC  research12.

Peritumoral tissue, comprising the area surrounding the tumor, is vitally important in terms of liver cancer 
research. This domain, including adjacent normal tissue as well as regions potentially influenced by the tumor, 
plays a pivotal role in tumor development, invasion, treatment response, and  prognosis13,14. The intricate inter-
play between tumor cells and the peritumoral microenvironment underscores its relevance in understanding 
the mechanisms underpinning liver cancer progression. Analyzing the cellular and molecular changes within 
peritumoral tissues thus offers critical insights into tumor-host interactions, therapeutic effectiveness, and patient 
 outcomes15.

The current study aimed to investigate the potential of ultrasound radiomics based on peritumoral tissues 
to predict the intricate pathological features of HCC. By analyzing concealed information within ultrasound 
images coupled with advanced computational algorithms, we constructed preoperative models for predicting 
pathological features in patients with HCC, including differentiation, CK7 and Ki67 expression, and p53 muta-
tion. Integrating ultrasound-based radiomics with peritumoral tissue analysis has the potential for enhancing 
preoperative assessment accuracy, guiding personalized treatment strategies, and ultimately improving clinical 
decision-making in liver cancer management.

Materials and methods
Study population
This study was carried out in compliance with the Declaration of Helsinki. Written informed consent was 
obtained from the patients and/or their legal guardian (s). The study was approved by the Ethics Committee of 
Shaoxing People’s Hospital, and all procedures were carried out in accordance with the relevant guidelines and 
regulations. We conducted a retrospective analysis of patients with HCC who underwent surgical treatment at 
our hospital from September 2019 to November 2023. Inclusion and exclusion criteria were established to ensure 
the selection of appropriate patients. The inclusion criteria were: (1) age ≥ 18 years; (2) pathologically confirmed 
HCC; (3) ultrasound examination performed within 2 weeks prior to surgery; and (4) patient and family consent 
to participate in this study. The exclusion criteria were: (1) history of targeted, immunotherapeutic, or other 
anti-tumor treatments before surgery (n = 7); (2) concurrent other malignancies or a history of malignant tumors 
(n = 9); (3) suboptimal image quality (n = 5); and (4) incomplete clinical data (n = 29).

The patients were categorized into four subgroups based on distinct pathological features: a differentiation 
subgroup (n = 130), CK7 subgroup (n = 80), Ki67 subgroup (n = 145), and p53 subgroup (n = 89). Patients in each 
subgroup were classified as positive or negative (high or low), and then split into a training set and a test set in 
a 7:3 ratio. Clinical information including age, sex, and serum markers were also collected.

A flowchart illustrating the patient selection process is presented in Fig. 1.

Ultrasound procedure
All ultrasound examinations were conducted by proficient radiologists following a standardized protocol, to 
ensure uniformity and accuracy of the imaging data. The patients were scanned in a supine or lateral position 
with both arms raised, to adequately expose the projection area of the liver region in the field of view. The 
transducer was placed on the skin surface with an appropriate coupling gel to enhance sound wave transmission 
and minimize interference. Following routine two-dimensional (2D) ultrasound scans to identify the lesions, 
the images were adjusted to obtain the optimal display of the lesion. Multiple images were acquired for each 
patient to capture diverse views of the peritumoral tissues. The resulting images were saved in Digital Imaging 
and Communications in Medicine (DICOM) format for subsequent analysis. The images containing the largest 
cross-sections of the tumors were selected for subsequent analysis.

The specific ultrasound machines utilized in this study are detailed in the Supplementary Material.

Histology and immunohistochemistry
Following surgical resection, tumor specimens were collected and processed for histopathological examina-
tion. Tissue sections were prepared from formalin-fixed, paraffin-embedded tumor samples. Hematoxylin and 
eosin staining was performed to assess tissue morphology and tumor differentiation. Immunohistochemistry 
was carried out to determine the status of CK7, Ki67, and p53. All pathological assessments of specimens were 
conducted by experienced pathologists.

Region of interest delineation
The region of interest (ROI) was delineated independently by two different ultrasound physicians who were 
unaware of the clinical data, using ITK-SNAP software (Version 3.8.0, https:// www. itksn ap. org)16 (Fig. 2). The 
two physicians manually outlined the intratumoral ROI along the edges of the lesions. The contour of the 

https://www.itksnap.org
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surrounding tissues was located 2 cm away from the  tumor9,17. The peritumoral ROI was initially generated using 
Python scripts employing the SimpleITK and SciPy packages to automate the contour dilation from the tumor 
border, with subsequent manual adjustments in ITK-SNAP to refine the delineation accuracy. If the peritumoral 
area extended beyond the liver tissue boundary, the liver capsule served as the demarcation point. Ultrasound 
images of the same patient taken 1 week later were again used for ROI delineation to assess inter-observer and 
intra-observer consistency. The consistency of the ROI drawn twice by the same physician was evaluated by 
intra-class correlation coefficients, and consistency between the two physicians was assessed by inter-class cor-
relation coefficients.

Feature extraction and dimension reduction
Before feature extraction, the images underwent a meticulous standardization process to ensure uniformity 
and consistency across the dataset. This involved several key steps, including resampling the images to achieve 
a consistent spatial resolution of 3 × 3 × 3  mm3, normalizing intensity values to 32 Gy levels using a scale of 255, 
and effectively eliminating machine-specific artifacts or noise.

Feature extraction was carried out using the PyRadiomics open-source imaging toolkit, encompassing first-
order features, 3D and 2D shape features, and texture features. The texture features included gray level co-occur-
rence matrix features, gray level size zone matrix features, gray level run length matrix features, neighboring gray 
tone difference matrix features, and gray level dependence matrix features. Subsequent image-filtering methods 
were applied to the original images for secondary feature extraction. The image-filtering methods comprised 
Laplacian of Gaussian (based on SimpleITK functionality), wavelet (utilizing the PyWavelets package), square, 
square root, logarithm, exponential, gradient, local binary pattern (2D), and local binary pattern (3D). Consid-
ering the significant disparity in magnitude among different features, Z-score normalization was applied to the 
extracted feature data to ensure comparability.

Figure 1.  Flowchart of included and excluded patients.

Figure 2.  Example of region of interest delineation on ultrasound imaging using ITK-SNAP software. (A) 
The original ultrasound image of the liver lesion. (B) The same ultrasound image with ROI outlined in red, 
demarcating the area around the lesion for subsequent radiomic analysis. ROI, region of interest.
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Data dimensionality reduction is the first step in constructing radiomics models. This study employed various 
methods to identify the most stable and relevant features for reducing the data dimension. Inter- and intra-class 
coefficients (ICC) were calculated and an ICC > 0.8 was considered indicative of good consistency. Spearman’s 
correlation coefficient was then employed to assess the correlations among features, and features with correla-
tion coefficients > 0.80 were systematically excluded from subsequent analyses to ensure the retention of only 
minimally correlated features. The final radiomics features incorporated into the model construction were then 
selected by t-tests and the least absolute shrinkage and selection operator (LASSO) method.

Radiomics model construction
We constructed predictive models using a variety of modeling techniques and enhanced the predictive perfor-
mance of the models using a combination of RandomizedSearchCV and GridSearchCV to optimize the model 
parameters. We initially used RandomizedSearchCV to identify the approximate range of optimal parameters 
for the model, and subsequently applied GridSearchCV within this range to further refine and obtain the best 
parameters.

After feature dimensionality reduction, we utilized various modeling techniques including support vector 
machine (SVM), random forest, K nearest neighbor, logistic regression, decision tree, artificial neural network, 
AdaBoostClassifier, GradientBoostingClassifier, and XGBOOST. We conducted modeling through fivefold cross-
validation and performed receiver operating characteristic (ROC) curve analysis, and calculated the correspond-
ing area under the curve (AUC). The model with the highest AUC in the test group was selected as the predictive 
model, and further validation was carried out.

Statistical analysis
The radiomics procedures and the statistical analyses were all conducted using Python (Version 3.11). Depending 
on the normality of their distribution, continuous variables were either presented as mean ± standard deviation 
or median and range. The significance of continuous variables was evaluated by t-tests or Mann–Whitney U 
tests, depending on the distribution of the information. Categorical variables were evaluated by χ2 or Fisher’s 
tests. A significance threshold of p < 0.05 was adhered to in all analyses.

The radiomics workflow chart is shown in Fig. 3.

Ethics approval and consent to participate
The study was approved by the Ethics Committee of Shaoxing People’s Hospital, and all procedures were carried 
out in accordance with the relevant guidelines and regulations. This study was carried out in compliance with the 
Declaration of Helsinki. Written informed consent was obtained from the patients and/or their legal guardian (s).

Figure 3.  Radiomics workflow showcasing the process from tumor segmentation to model evaluation, as 
applied to the differentiation model.
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Results
Characteristics of the study population
A total of 153 patients (121 males and 32 females) were included in this study and their clinical data are presented 
in Table 1. Patients within each subgroup were divided randomly into training and test groups at a ratio of 7:3 
(detailed clinical information provided in Supplementary Table S1). Subgroup sizes varied because of incomplete 
datasets for some patients.

There was a significant difference in age between the high-Ki67 and low-Ki67 expression groups (66.48 ± 10.13 
vs. 62.89 ± 10.96 years, p = 0.044), but no significant disparities in age within the corresponding training and test 
groups (p > 0.05). Furthermore, there were no significant differences in any clinical parameters across the overall 
dataset, training group, or test group.

Feature selection
We extracted a total of 1414 radiomics features from both the original and filtered ultrasound images. After intra- 
and inter-group analyses, all features demonstrated inter-class correlation coefficients > 0.80, and 1379 of 1414 
features had intra-class correlation coefficients above this threshold. Features with high Spearman’s correlation 
coefficients (> 0.75) were subsequently excluded to minimize redundancy. Further refinements by t-tests and 
LASSO regression resulted in four radiomics features in the differentiation group, three radiomics features in 
the CK7 group, two radiomics features in the Ki67 group, and six radiomics features in the p53 group (Table 2).

Model construction
We employed a diverse array of modeling techniques, including SVM, random forest, K nearest neighbor, 
logistic regression, decision tree, artificial neural network, AdaBoostClassifier, GradientBoostingClassifier, and 
XGBOOST.

A two-stage approach involving RandomizedSearchCV and GridSearchCV was utilized to select the best 
hyperparameters. The detailed results are shown in the Supplementary Material.

In the differentiation subgroup, the XGBOOST algorithm achieved the highest AUC of 0.815 (0.683–0.948), 
while the logistic regression algorithm attained the maximum AUCs of 0.922 (0.785–1) in the CK7 subgroup 
and 0.762 (0.618–0.906) in the Ki67 subgroup, and the SVM algorithm obtained the maximum AUC of 0.849 
(0.667–1) in the p53 subgroup. ROC curves for the four subgroups are illustrated in Fig. 4. The detailed perfor-
mance metrics of the models are presented in Table 3.

To provide a comprehensive assessment of model performance, we included confusion matrices for each 
model (Fig. 5). Low differentiation and high Ki67 expression were defined as positive and high differentiation 
and low Ki67 expression were defined as negative. In the waterfall plots, bars above the threshold line indicated a 
positive prediction and bars below the threshold indicated a negative prediction. Additionally, red bars represent 
actual positive-status cases and green bars represent actual negative-status cases (Fig. 6).

SHapley Additive exPlanations (SHAP) plots are a tool for interpreting the predictions of machine learning 
models based on the Shapley value principle from cooperative game theory. SHAP plots are used to reveal the 
contribution of each feature to the model output, enhancing interpretability of machine learning models. To 
clarify the roles of the different radiomics features in the models, SHAP plots were generated for each model and 
the results indicated that the wavelet filter had the greatest contribution in most models (Fig. 7).

Discussion
In this study, we analyzed ultrasound-based radiomics features of peritumoral tissues to predict various biological 
characteristics of HCC. To the best of our knowledge, this is the first comprehensive study to evaluate the relation-
ship between ultrasound-based radiomics features of peritumoral tissues and the biological properties of HCC. 
The results demonstrate that ultrasound-based radiomics focusing on peritumoral tissues can accurately predict 
the biological characteristics of HCC. This provides a novel perspective compared with traditional intratumoral 
radiomics approaches, which have been the main focus of previous radiomics studies of  HCC18, suggesting that 
radiomics analysis of peritumoral tissues may prove equally crucial in future studies.

Constructing predictive models for the biological characteristics of HCC using radiomics technology has 
recently emerged as a research focus, with noteworthy  success19,20; however, prior radiomics studies were pre-
dominantly centered on the tumor itself, with limited exploration of peritumoral tissues. In addition, such studies 
often considered peritumoral tissues as supplementary analyses to tumor-focused investigations, resulting in a 
lack of in-depth radiomics analyses focused exclusively on peritumoral  tissues17,21. Nevertheless, peritumoral 
tissues play a pivotal role in the development and invasion of liver  cancer22. The exploration of radiomics analysis 
of peritumoral tissues and the development of predictive models thus represent an intriguing and promising 
avenue of research.

In the current study, we successfully constructed four models for the biological characteristics of HCC, 
encompassing the important indicators differentiation, CK7, Ki67, and p53. Each of these indicators has pro-
found biological significance, providing crucial insights into the comprehensive understanding of the molecular 
characteristics of HCC. The differentiation indicator reflects the degree of differentiation of tumor cells. Accurate 
prediction of this indicator contributes to an understanding of the differentiation status of liver cancer cells, thus 
providing robust support for the design of treatment strategies. Compared with highly differentiated tumors, 
poorly differentiated tumors typically exhibit faster growth rates and relatively poorer treatment  responses23. 
The cytokeratin CK7 is an important immunohistochemical marker in liver cancer research. The expression 
pattern of CK7 helps to determine the origin of the tumor cells, determine the likelihood of intrahepatic lymph 
node metastasis, and assess the prognosis of patients with  HCC24. Expression of the proliferation marker Ki67 
correlates directly with the proliferative activity of tumor  cells25. Elevated expression of Ki67 may imply a more 
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Table 2.  Final selected features and coefficient values.

Group Filter Feature class Feature Coefficient

Differentiation

original shape SurfaceVolumeRatio 0.015969901

wavelet-LHH glszm LargeAreaEmphasis -0.06009957

wavelet-HLL glszm ZoneEntropy -0.038229075

wavelet-HHL glcm Correlation 0.019739638

CK7

wavelet-LHL firstorder Skewness 0.11451479

wavelet-HLH glszm GrayLevelNonUniformityNormalized 0.041666225

logarithm glszm SmallAreaLowGrayLevelEmphasis -0.109409704

KI67
wavelet-LLL glszm SmallAreaHighGrayLevelEmphasis 0.062018693

logarithm glrlm ShortRunLowGrayLevelEmphasis -0.064031164

P53

original ngtdm Busyness -0.061904644

wavelet-LHH glszm SizeZoneNonUniformityNormalized 0.171238122

wavelet-HLL firstorder Skewness 0.114558781

wavelet-HHH glszm HighGrayLevelZoneEmphasis 0.149226288

wavelet-LLL gldm DependenceNonUniformityNormalized 0.024752477

wavelet-LLL gldm DependenceVariance -0.002089695

Figure 4.  Receiver operating characteristic curve (ROC) analysis of modeling methods in four groups. The 
XGBOOST algorithm exhibited superior diagnostic performance with an AUC of 0.815 (0.683–0.948) in 
the differentiation group (A). The logistic regression algorithm demonstrated the most effective diagnostic 
performance in the CK7 group [AUC 0.922 (0.785–1)] (B) and Ki67 group [AUC 0.762 (0.618–0.906)] (C). 
The support vector machine algorithm presented the highest diagnostic performance with an AUC of 0.849 
(0.667–1) in the p53 group (D).



8

Vol:.(1234567890)

Scientific Reports |        (2024) 14:11538  | https://doi.org/10.1038/s41598-024-62457-6

www.nature.com/scientificreports/

invasive tumor, thus allowing for a more accurate prediction of patient prognosis and treatment response. Finally, 
the tumor suppressor protein p53 plays a critical role in various cancers, and influences the development, immune 
response, and treatment outcomes of liver  cancer26,27. The integration of these indicators forms a comprehensive 
predictive model, offering in-depth insights into the molecular biology of liver cancer. This not only improves 
the accuracy of distinguishing between subtypes of liver cancer, but also provides a reliable foundation for the 
development of personalized treatment strategies.

The peritumoral area is more than just a transitional zone between tumor tissues and normal liver tissues; it 
also significantly impacts the tumor’s growth, invasion, metastasis, and resistance to  treatment14,28. Analyzing 
peritumoral tissues using radiomics technology is a promising research direction, and despite limited research 
in this field, some studies have achieved notable success. Yu et al.29 developed a radiomics model based on 
Gd-EOB-DTPA-enhanced magnetic resonance imaging for preoperative prediction of vesicle-encapsulated 
tumor clusters and patient prognosis in patients with HCC, and showed that both intratumoral and peritumoral 

Table 3.  Performance of the differentiation, CK7, Ki67, and p53 models. TP true positive, FP false positive, FN 
false negative, TN true negative, AUC  area under the curve, TPR true positive rate, TNR true negative rate.

Differentiation CK7 KI67 P53

TP 18 8 18 8

FP 2 3 8 8

FN 5 0 3 0

TN 14 13 15 11

AUC 0.815217391 0.921875 0.761904762 0.848684211

TPR 0.782608696 1 0.857142857 1

TNR 0.875 0.8125 0.652173913 0.578947368

Precision 0.9 0.727272727 0.692307692 0.5

Recall 0.782608696 1 0.857142857 1

Accuracy 0.820512821 0.875 0.75 0.703703704

F1 score 0.837209302 0.842105263 0.765957447 0.666666667

Figure 5.  Confusion matrices of the predictive model constructed using the best modeling method in each test 
set. (A) Differentiation group, (B) CK7 group, (C) Ki67 group, (D) p53 group. Low differentiation and high Ki67 
expression were defined as positive and high differentiation and low Ki67 expression were defined as negative.
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Figure 6.  Waterfall plot displaying model performance in the differentiation group (A), CK7 group (B), Ki67 
group (C), and p53 group (D). Bars above the threshold line indicate a positive prediction and bars below the 
threshold indicate a negative prediction. Red bars represent actual positive-status cases and green bars represent 
actual negative-status cases.

Figure 7.  SHAP plots illustrating the impact and contribution of each radiomics feature to the model in the 
differentiation group (A), CK7 group (B), Ki67 group (C), and p53 group (D).
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radiomics models could effectively predict vesicle-encapsulated tumor clusters and patient prognosis preopera-
tively. Notably, radiomics models focused on the peritumoral region might have higher predictive value than 
intratumoral models. In the current study, radiomics models based on peritumoral tissues also demonstrated 
favorable diagnostic performance, particularly in predicting CK7 expression, with an AUC of 0.922. These 
findings robustly demonstrate the significant potential of radiomics models based on peritumoral tissues for 
predicting the biological characteristics of HCC, particularly the accurate prediction of CK7 expression.

We analyzed the impacts of different radiomics features on the four models and found that wavelet filter 
features had the highest contribution to the model within the differentiation, CK7, and p53 subgroups. This 
finding highlights the essential role of wavelet analysis in predicting pathological outcomes, in accord with 
previous research  findings30. Wavelet filters, commonly employed in image processing, segment images into 
distinct frequency components, allowing the analysis of image details across various frequencies. This approach 
facilitates the exploration of spatial heterogeneity within the ROI at multiple scales. The heightened contribution 
of wavelet features in radiomics suggests the crucial role of frequency domain information from peritumoral tis-
sues in predicting model outcomes within these subgroups 31. This may indicate a significant correlation between 
specific frequency domain features in peritumoral tissues and the differentiation degree, CK7 expression, and 
p53 mutation status in HCC. These findings acknowledge the use of wavelet features for predicting pathologi-
cal characteristics in HCC, underscoring the potential of multiscale analysis in radiomics research. This also 
highlights the critical importance of the meticulous analysis of various features to elucidate their roles in the 
diagnosis and prediction of liver cancer.

The current study found no significant differences across various clinical parameters. This consistency might 
be influenced by the characteristics of the study population and could reflect the limited utility of these clinical 
parameters for predicting specific biological features of  HCC32. Despite the absence of significant differences 
however, we emphasize the importance of conducting more in-depth analyses of these clinical parameters in 
future research, to gain a comprehensive understanding of their potential implications for the development and 
treatment response in HCC.

This study had several limitations that need to be addressed in future research. First, it was a single-center 
study with a relatively small sample size, particularly in the CK7 and p53 subgroups, which had sample sizes < 90. 
Further larger-scale, multicenter studies are therefore required to validate and generalize our findings. Second, the 
ultrasound data were obtained from different ultrasound devices and the potential impact of equipment-related 
variations cannot be completely ruled out. Although we standardized the images, there may still have been some 
residual effects on the model. Third, because grayscale ultrasound is a 2D imaging modality, we only included 
the plane with the largest tumor cross-section in the study, which may have resulted in the loss of tumor infor-
mation compared with 3D imaging. Fourth, the inherent variability in ultrasound presets and body positioning 
during imaging could introduce inconsistencies in image quality and interpretation, although such variability 
may be seen as an aspect of the adaptability and robustness of our models in real-world clinical settings. Finally, 
although our models based on peritumoral radiomics features demonstrated promising diagnostic efficacy, we 
did not conduct a direct comparison with intratumoral-based radiomics models. The inclusion of intratumoral 
analysis could offer a comprehensive understanding of the radiomics landscape in HCC and potentially validate 
the superiority of peritumoral analysis in certain contexts.

Conclusion
We constructed multiple predictive models based on peritumoral ultrasound radiomics to forecast various bio-
logical indicators of HCC, with excellent diagnostic performance. The findings indicate a correlation between 
peritumoral tissues and certain biological characteristics of HCC. It is therefore essential to include peritumoral 
tissues in future radiomics research of HCC.

Data availability
All data generated or analyzed during this study are included in this published article. Further inquiries can be 
directed to the corresponding author on reasonable request.
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