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Anoikis‑related gene signatures 
in colorectal cancer: implications 
for cell differentiation, immune 
infiltration, and prognostic 
prediction
Taohui Ding 1,2,4, Zhao Shang 1,4, Hu Zhao 1,2, Renfeng Song 3, Jianyong Xiong 2, Chuan He 3, 
Dan Liu 1* & Bo Yi 2*

Colorectal cancer (CRC) is a malignant tumor originating from epithelial cells of the colon or rectum, 
and its invasion and metastasis could be regulated by anoikis. However, the key genes and pathways 
regulating anoikis in CRC are still unclear and require further research. The single cell transcriptome 
dataset GSE221575 of GEO database was downloaded and applied to cell subpopulation type 
identification, intercellular communication, pseudo time cell trajectory analysis, and receptor 
ligand expression analysis of CRC. Meanwhile, the RNA transcriptome dataset of TCGA, the 
GSE39582, GSE17536, and GSE17537 datasets of GEO were downloaded and merged into one bulk 
transcriptome dataset. The differentially expressed genes (DEGs) related to anoikis were extracted 
from these data sets, and key marker genes were obtained after feature selection. A clinical prognosis 
prediction model was constructed based on the marker genes and the predictive effect was analyzed. 
Subsequently, gene pathway analysis, immune infiltration analysis, immunosuppressive point 
analysis, drug sensitivity analysis, and immunotherapy efficacy based on the key marker genes were 
conducted for the model. In this study, we used single cell datasets to determine the anoikis activity 
of cells and analyzed the DEGs of cells based on the score to identify the genes involved in anoikis and 
extracted DEGs related to the disease from the transcriptome dataset. After dimensionality reduction 
selection, 7 marker genes were obtained, including TIMP1, VEGFA, MYC, MSLN, EPHA2, ABHD2, and 
CD24. The prognostic risk model scoring system built by these 7 genes, along with patient clinical 
data (age, tumor stage, grade), were incorporated to create a nomogram, which predicted the 1‑, 3‑, 
and 5‑years survival of CRC with accuracy of 0.818, 0.821, and 0.824. By using the scoring system, the 
CRC samples were divided into high/low anoikis‑related prognosis risk groups, there are significant 
differences in immune infiltration, distribution of immune checkpoints, sensitivity to chemotherapy 
drugs, and efficacy of immunotherapy between these two risk groups. Anoikis genes participate in the 
differentiation of colorectal cancer tumor cells, promote tumor development, and could predict the 
prognosis of colorectal cancer.
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DEGs  Differentially expressed genes
ARDEGs  Anoikis-related differentially expressed genes
UCRA   Univariate cox regression analysis
MCRA   Multivariate cox regression analysis
HRG  High risk group
LRG  Low risk group
TMB  Tumor mutational burden
ICG  Immune checkpoint genes
PR  Partial response
CR  Complete response
PD  Progressive disease
SD  Stable disease

Colorectal cancer (CRC) is the malignant tumor derived from colon or rectal epithelial cells, which is common 
in the digestive field. According to reports, in the year 2017, the total number of CRC cases in the United States 
was 13, 5430, with approximately 50, 260 deaths and a mortality rate of 37.1%1. Although the overall incidence 
rate of CRC has declined in recent years, the number of people under 50 years old has increased by 2%2. Predic-
tive analysis reveals that by the year 2030, the incidence rate of colon cancer aged 20–34 will increase by 90.0%, 
while that of rectal cancer will increase by 124.2%3. CRC has no characteristic symptoms in the early stage, 
while changes in stool characteristics and abdominal pain might occur in the middle or late  stages4. Surgery 
is the preferred treatment for CRC patients with distant metastasis, but it has a cure rate of only 20–30%, and 
approximately 50–75% of patients experience recurrence after radical  surgery5. In recent years, with the progress 
of surgical techniques, the emergence of new chemotherapy drugs, and the update of comprehensive treatment 
concepts, the survival rate and quality of life of CRC patients have been significantly  improved6. However, for 
many patients, due to neglecting early symptoms, they might have already experienced distant metastasis or even 
lost the opportunity for surgery at their first visit, leading to poor  prognosis6. Studies have shown that about 25% 
of patients experienced metastasis at their initial visit, while nearly half of patients ultimately experience liver 
metastasis, lung metastasis, bone metastasis or brain  metastasis7,8. Therefore, the prevention of cancer metastasis 
is crucial for improving the prognosis of the disease.

The infiltration and metastasis of CRC are major factors influencing  prognosis9. Currently, new molecules 
associated with rectal cancer metastasis have been discovered, including proliferation regulatory genes, apoptosis 
regulatory genes, adhesion molecules, growth factors, proteinases, and signaling transduction  factors10. In recent 
years, it has been reported that resistance to anoikis apoptosis is associated with cancer  metastasis11. Anoikis 
is a known form of programmed cell death caused by the loss or improper adhesion of cells to the extracellular 
matrix (ECM), playing a significant role in organism development and tissue  homeostasis12. However, biochemi-
cal and molecular changes in the cellular environment lead to resistance to anoikis apoptosis in some tumor 
cells, allowing them to survive through anoikis signaling pathways. These changes are important factors in tumor 
cell invasion, metastasis, chemotherapy resistance, and  recurrence13. Under normal circumstances, anoikis is 
activated when cells lose contact with the ECM, leading to programmed cell death to maintain homeostasis. 
However, some tumor cells survive due to their malignant potential to resist anoikis, allowing them to migrate to 
distant tissues through the circulatory system, leading to cancer cell invasion and  dissemination14. Researchers 
have identified important proteins and pathways related to anoikis resistance in colorectal cancer. For example, a 
study by Fan et al.12 demonstrated that myosin-related kinase B can promote distant metastasis of cancer through 
anti-anoikis pathways, which is associated with poor prognosis. Another study indicated that the loss of anoikis 
in tumor cells is also associated with tumor progression and  invasion15.

Single-cell RNA sequencing data analysis provides an unprecedented opportunity to explore the cellular sub-
types and molecular characteristics of tumors, which could be an effective way to investigate the role of anoikis 
in CRC  tumors16. Therefore, in this study, we used scRNA-seq data from CRC to identify anoikis-related genes 
(ARGs) and analyze their functions in promoting tumor invasion and metastasis, as well as their predictive 
ability for disease prognosis.

Materials and methods
Bulk transcriptome data acquisition and pre‑processing
We obtained the RNA transcriptome data from The Cancer Genome Atlas (TCGA, https:// portal. gdc. cancer. 
gov/) and the Gene Expression Omnibus (GEO, https:// www. ncbi. nlm. nih. gov/ geo/). The whole genome-wide 
expression profiles of CRC data in Transcripts Per Kilobase per Million (TPKM) format, along with the clini-
cal annotations and simple nucleotide variation (SNV) data estimated by “VarScan2 Variant Aggregation and 
Masking” tool, were downloaded through the R package “TCGAbiolinks” (version 2.25.0)17 from TCGA. The 
TCGA-COAD dataset enrolls 521 samples, with tumor and healthy control samples (480/41), while the TCGA-
READ dataset enrolls a total of 177 samples, with tumor and healthy control samples (167/10) respectively. We 
also downloaded the datasets of GSE39582 (tumor samples = 566, control samples = 19), GSE17536 (tumor sam-
ples = 177) and GSE17537 (tumor samples = 55) from GEO through the R package “GEOquery”. All the datasets 
mentioned above were merged to obtain a bulk transcriptome dataset. Batch effects sourced from technical biases 
were corrected by using the “ComBat” function in the package “sva”18. To examine the effect after correction, 
the principle component analysis (PCA) was introduced. We have also downloaded the CRC immunotherapy 
cohort GSE53127 from the GEO database and obtained the bladder cancer immunotherapy cohort IMvigor210 
by using the IMvigor210CoreBiologies R package.

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
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Single‑cell sequencing data download and processing
The single-cell raw dataset from GSE221575 of GEO containing 5 CRC samples were obtained, which was then 
normalized and batch-effect eliminated by using the functions in the R package “Seurat”19. Cell types were identi-
fied if their expressed genes (n) met 300 < n < 5000 with a proportion of mitochondrial genes < 10%. Genes were 
retained only if they expressed in more than one type of cell. Next, PCA was conducted and the shared nearest 
neighbor (SNN) algorithm was realized by calling the “FindClusters” function, to obtain the clusters based on 
the components with their resolution > 0.8. Different expressed genes (DEGs) of each cluster were identified by 
the “FindAllMarkers” function.

The AUCell scores of the ARGs
The R package “AUCell” scores pathways for each cell and determines whether they are enriched by the gene set 
with a method of calculating their area under the curve (AUC)20. The initial anoikis genes (Supplement Table 1) 
were downloaded from Genecards database and ranked, which were then input to “AUCell_exploreThresholds” 
function for a threshold determination. Next, the t-distributed random neighbor embedding (t-SNE) was con-
ducted for mapping the AUC scores and the results were visualized by the “ggplot2” package of  R21.

Pseudo‑time analysis of cell trajectory
The analysis was processed by using the “Monocle 2”  package22, which is a reverse graph embedding algorithm 
using DDTree as a  tool23. It searches for highly dispersed and highly expressed specific genes by inferring the 
trajectory of anoikis activated cell subpopulations. To search for genes whose expression characteristics heavily 
depend on branching, we applied the branch expression analysis modeling (BEAM) method in the process of 
using “Monocle 2”24, and the results were displayed in a heat map.

Cell communications and ligand‑receptor expression analysis
Based on the CRC and control samples from the single-cell dataset, we initially applied the “CellChat”25 of the R 
package to identify common CellChat objects. Next, with “CellChatDB. Human” as the default preference data, 
we combined all CellChat objects by using the “mergeCellChat” function and called “netVisual_diffInteraction” 
to differentiate ligand receptor interactions between cells and visualize gene distribution.

GO and KEGG pathway enrichment analysis
We performed differential expression analysis (DEA) between CRC and control samples from both the single-cell 
dataset and the bulk transcriptome dataset, and then intersected the DEGs with the known anoikis gene set to 
obtain the key anoikis-related differentially expressed genes (ARDEGs). The Gene Ontology (GO)26 annotates 
all the functions enriched by the specific gene set. The Kyoto Encyclopedia of Genes and Genomes (KEGG)27 is a 
bioinformatics resource for mining significantly pathways enriched in the gene list. The R package “clusterProfiler 
(version 4.2.2)”28 was applied to perform GO and KEGG enrichment analysis (p value < 0.05) on the key ARDEGs.

Building and validation of a prognosis‑prediction model
To investigate the prognosis-predicting value of the ARDEGs, we further conducted Univariate Cox analysis 
with the ARDEGs as the arguments, and the overall survival (OS) as the dependent variable, to calculate hazard 
ration (HR) of each gene. The genes with the p-value < 0.05 were identified as prognosis-related and selected 
for further analysis. The tumor samples with clinical information were randomly divided into a training cohort 
(n = 976) and a verifying cohort (n = 419) with a ratio 7:3. The least absolute shrinkage and selection operator 
(LASSO) analysis was performed on the prognosis-related genes to further select the characteristic genes and 
to develop a prognostic model. We chose the “glmnet”  package29 to realize the process and derived a calculation 
formula of risk scores.

The samples in the training cohort were scored and divided into two risk groups by using the median risk 
score as the dividing line, which are the low prognosis risk group (LRG) and the high prognosis risk group 
(HRG). Kaplan–Meier (KM) was to plot survival curves, and the difference of the two curves was compared 
and tested with log-rank test. Receiver operating characteristic (ROC) curves were introduced to determine the 
efficacy of the model with an AUC value of > 0.6 indicating a better performance. For a validation, the validation 
cohort was also divided into LRG and HRG for the same operation.

Construction and verification of nomogram
The clinical information (age, gender and tumor stage) of patients was extracted as variables, along with the risk 
score to derive a regression model. We conducted the univariate/multivariate Cox regression analysis (UCRA/
MCRA) on these variates and built a nomogram. The prediction efficacy was evaluated by the time-dependent 
ROC curves.

GSEA
The Gene Set Enrichment Analysis (GSEA)30 determined if a gene set enriches in a specific pathway. We calcu-
lated the log2FC of the DEGs between LRG and HRG and ranked them, to be input into the “clusterProfiler” 

riskscore =

n∑

i=1

coefi × expi
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package for a 1,000 loop of calculations. The gene set “c2.cp.kegg.v7.5.1.symbols” from the Molecular Signatures 
Database (MSigDB)31 was collected as the reference.

GSVA
The gene set variation analysis (GSVA) estimates the pathway activity between two gene expression matrixs. We 
set “c2.cp.kegg.v7.5.1.symbols” as the preference and used the package “GSVA” to perform the  ananlysis32. A 
heat map was drawn to visualize the results.

Immune infiltration analysis
The single-sample Gene Set Enrichment Analysis (ssGSEA)33 calculates the individual enrichment score for each 
pair of samples and gene sets, which represents the degree that a specific gene set is upregulated or downregulated 
in the sample. Based on the 28 types of immune cells downloaded from the Tumor and Immune System Inter-
actions Database (TISIDB) (http:// cis. hku. hk/ TISIDB/ index. php)34 (Supplement Table 2), the relative enrich-
ment scores of immunocytes was quantified from each CRC sample’s gene expression profile. The immune cells 
infiltration level between the LRG and HRG were displayed with a box plot through the R package “ggplot2”.

Expression of immune checkpoint genes
Several small molecules consist of the immune checkpoints (Supplement Table12). We compared well-known 
immune checkpoint genes (ICGs) between the two risks groups for their expression level.

Assessment of the drug susceptibility
Based on Genomics of Drug Sensitivity in Cancer (GDSC) (https:// www. cance rrxge ne. org/)35, we obtained the 
drugs with their half-maximal inhibitory concentration (IC50). The R package “oncoPredict”36 was introduced 
to predict the sensitivity of the potential therapeutic drugs in the two risk groups.

Somatic mutation analysis
We usd the R package “maftools” to compare the mutation burden between the LRG and  HRG37 and retained 
genes with mutations > 40. The mutation frequency between the two risk groups was also compared by using 
Wilcoxon tests.

Tissue specimens
49 Fresh colon cancer tissue and adjacent normal tissue were collected from the Department of Abdominal Sur-
gery at Jiangxi Cancer Hospital. None of the patients received any treatment before surgery, and all patients signed 
informed consent forms provided by Jiangxi Cancer Hospital. The primary tumor area and the surgical margin 
tissue with normal morphology were immediately isolated from each patient by an experienced pathologist and 
stored in liquid nitrogen until use. This study was approved by the Jiangxi Cancer Hospital Hospital (2022KY293).

RNA extraction and RT‑qPCR
Target gene mRNA expression in tissues of colorectal cancer patients were examined relative to GAPDH.
Total RNA was extracted from Normal and cancerous tissues of the human colon by the RNAiso Plus (T9180, 
takara, Japan).And the concentration of total RNA was measured using Ultramicro protein nucleic acid ana-
lyzer (BioDropμlite + , BioDrop, England). RNA integrity was detected by agarose gel electrophoresis. RNA was 
reverse-transcribed to cDNA using a PrimeScript RT reverse transcription kit (Takara, Japan), Then qRT-PCR 
was carried out by using TB Green® Premix Ex Taq™II to evaluate the expression abundance of mRNA. Primers 
were designed and synthesized by Shanghai Shenggong Biology. GAPDH was used as the normalization control, 
and the 2-ΔΔCT. The primer sequences were as follows: VEGFA Forward Sequence 5′-3′: CTG GAG CGT GTA 
CGT TGG T and Reverse Sequence 5′-3′: TTT AAC TCA AGC TGC CTC GC; TIMP1Forward Sequence 5′-3′: CTT 
CTG CAA TTC CGA CCT CGT and Reverse Sequence 5′-3′:ACG CTG GTA TAA GGT GGT CTG; MYC Forward 
Sequence 5′-3′:TGG AAA ACC AGC CTC CCG  and Reverse Sequence 5′-3′: TTC TCC TCC TCG TCG CAG TA; 
ABHD2 Forward Sequence 5′-3′: AAT CAC ACG CAG GCA CAG AT and Reverse Sequence 5′-3′: AAT CAC ACG 
CAG GCA CAG AT; EPHA2 Forward Sequence 5′-3′: TGG CTC ACA CAC CCG TAT G and Reverse Sequence 5′-3′: 
GTC GCC AGA CAT CAC GTT G;MSLN Forward Sequence 5′-3′: TGG CCT TGG CAC AGA AGA AT and Reverse 
Sequence 5′-3′: GAA CGC ATC TGG GTT GAG GA; GAPDH Forward Sequence 5′-3′: CCT GGT ATG ACA ACG 
AAT TTG and Reverse Sequence 5′-3′: CAG TGA GGG TCT CTC TCT TCC. GAPDH served as an internal control.

Statistical methods
The Wilcoxon rank-sum test was used to test the difference of two groups of continuous variables. A two-sided 
p-value < 0.05 was treated significant for all comparing cases. All analyses were done in R software (version 4.1.2).

Ethics approval and consent to participate
The study was approved by the Ethics Review Committee of Nanchang Medical College, and informed 49 consent 
was obtained from all patients before the study.

Results
The flow chart
The workflow chart of this study was depicted in Fig. 1.

http://cis.hku.hk/TISIDB/index.php
https://www.cancerrxgene.org/
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Single‑cell sequencing analysis
We initially analyzed the cell subtypes of CRC in the GSE221575 dataset and obtained a total of 19,711 cells from 
cells identification (Fig. 2A). Next, we obtained 24 clusters after executing the clustering algorithm (Fig. 2B). 
Based on the genetic characteristics of each cluster, a total of 10 cell types were found and showed (Fig. 2C). The 
proportions of cell types in each sample are shown in Fig. 2D. The specific genes for each cell type were visualized 
by dot plot (Fig. 2E). We found that the proportion of T cells in the colon cancer group or the liver-metastasis 
group is significantly lower than that in the control group, whereas the proportions of Mesenchymal cell in the 
colon cancer and Enterocyte in the liver-metastasis were higher than that in the other two groups respectively.

Identification of gene activity of anoikis
We defined the cell population with AUC value greater than 0.2 as the cell population with high anoikis activity, 
and the cell population with AUC value less than 0.2 as the cell population with low anoikis activity. In addition, 
as shown in the Fig. 3A,B, epithelial cells, fibroblasts, and stromal cells have higher anoikis activity.

CRC single cell RNA sequencing dataset
GSE221575 Quality control

Cell communications
Cell type annotation
      (10 Celltypes) Clustering Dimensionality reduction

Normalization

AUCell calculates
Anoikis on/off DEGs scRNA CRC/Control DEGs Anoikis genes

CRC RNA sequencing dataset

TCGA-READTCGA-COAD GSE39582 GSE17536 GSE17537

Prognostic models

GO/KEGG

ROC

Nomogram

Genes of intersection

cox_lasso

GSEA/GSVA SSGSEA

TMB Drug-sensitivity

RNA CRC/Control DEGs

K-M curvesCox-regression

Immune checkpoint analysis

High/Low risk group

Immunotherapy Prediction

Nomogram

Figure 1.  The workflow of the study.
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Pseudo‑time trajectories analysis
To elucidate the role of anoikis genes in the progression of colorectal cancer (CRC), we constructed a 
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transcriptional trajectory to identify the underlying gene expression programs driving CRC progression. The 
transcriptional states in the trajectory revealed the process of differentiation. Epithelial cells are the main malig-
nant cell source in CRC. We initially analyzed the epithelial cells, and after extracting and re-clustering them, we 
performed differential gene expression analysis on seven subgroups of cells. We found that cells in groups 0, 1, 2, 
3, and 4 exhibited similar gene expression patterns, while they differed from cells in groups 5 and 6 (Fig. 3C,E). 
Therefore, we divided the epithelial cells into three cell groups: AKAP12 epithelial cells, CD52 epithelial cells, 
and RUN6-6P epithelial cells (Fig. 3D). Subsequently, we conducted pseudotime analysis on the epithelial cells. 
From the graph, it can be observed that CD52 epithelial cells and RUN6-6P epithelial cells are located at the initial 
part of the trajectory, while AKAP12 epithelial cells are located at the terminal part (Fig. 3F–H). Furthermore, we 
discovered that the anoikis activity gradually increased as the epithelial cells differentiated (Fig. 3G). Therefore, 
we believe that anoikis may be involved in the differentiation of tumor cells.
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Furthermore, to explore the role of anoikis genes in the differentiation of mesenchymal cells, fibroblasts, and 
stromal cells, we performed pseudotime analysis on them. The results showed that as pseudotime advanced, 
the anoikis activity of stromal cells also gradually increased (Supplement Fig. 1A,B). Additionally, mesenchy-
mal cells were located at the initial part of the trajectory, while fibroblasts and stromal cells were located at the 
terminal part (Supplement Fig. 1C–F), indicating that the differentiation of mesenchymal cells into fibroblasts 
and stromal cells is accompanied by an increase in anoikis activity. In order to elucidate the molecular basis of 
stromal cell differentiation, we explored the gene functions that determine the fate of CRC stromal cells. Genes 
highly expressed before branching mainly enriched in biological processes such as CXCR chemokine receptor 
binding and chemokine activity. Genes enriched in Golgi lumen, bicellular tight junction and tight junction 
pathways were highly expressed in cell fate 2, while genes enriched in collagen-containing extracellular matrix, 
cytosolic ribosome, focal adhesion, and cell-substrate junction-related pathways were highly expressed in cell 
fate 1 (Supplement Fig. 1G). In conclusion, we believe that anoikis genes significantly contribute to the processes 
of epithelial cell differentiation in CRC, as well as the differentiation of mesenchymal cells into fibroblasts and 
stromal cells.

Cellular communication patterns in CRC microenvironment
Due to the association between anoikis and tumor invasion and metastasis, we analyzed the overall differences 
in anoikis activity between tumor samples from non-metastatic patients and samples from primary tumors and 
metastases in patients. We found that the anoikis activity in the two samples from metastatic CRC (colorectal 
cancer) patients was higher than that in non-metastatic CRC patients (Fig. 4A). Therefore, we divided the 
patients into a high anoikis activity group and a low anoikis activity group and used the "Cellchat" R package 
to uncover the differences in communication and interactions between the two groups. The high anoikis activ-
ity group showed a higher overall number of interactions compared to CRC non-metastatic patients (Fig. 4B). 
Additionally, in the high anoikis activity group, we observed a significant increase in both outward and inward 
interactions between epithelial cells and macrophages (Fig. 4C). Furthermore, we compared the signaling pat-
terns between the high anoikis activity group and the low anoikis activity group. We found that the high anoikis 
activity group exhibited stronger signals in signaling patterns represented by genes such as SPP1, EGF, RESISTIN, 
PERIOSTIN, and VEG compared to the low anoikis activity group (Fig. 4D). Moreover, we also discovered a 
significant enhancement in signaling patterns represented by genes MK, MIF, CXCL, EGF, and IL1 in epithelial 
cells within the high anoikis activity group (Fig. 4E). Next, we found that, compared to the low anoikis activity 
group, the most significant changes in the number of ligand-receptor pairs occurred between stromal cells and 
epithelial cells, as well as between stromal cells and macrophages in the high anoikis activity group (Fig. 4F). 
Additionally, we found that in the high anoikis activity group, the signaling pathways represented by the PTN 
and MDK genes between stromal cells and epithelial cells were significantly enhanced, as well as the signaling 
pathways represented by the C3, ANXA1, and MIF genes between stromal cells and macrophages (Fig. 4F). These 
results suggest that anoikis genes may significantly influence the Cellular communication within the tumor.

Enrichment analysis of ARDEGs in CRC 
A total of 2052 DEGs were identified between the anoikis active and inactive cells, with 1767 genes up-regulated 
and 285 genes down-regulated (Supplement Table 3). The top 10 up-regulated genes (ANXA 2, S100A11, EMP 1, 
TM4SF1, UCA 1, KLK 10, PERP, CXCL 1, A, CEACAM6, KRT 18) and the top 10 down-regulated genes (IGKC, 
IGHA 2, IGHA 1, IGLC 2, JCHAIN, CD52, RGS 1, CCL 5, ENAM, IGLC 3) were shown by heat map (Fig. 5A). 
We also performed DEA between CRC samples and healthy controls for the single-cell dataset and the bulk 
transcriptome datasets separately. A total of 1654 DEGs were identified in the single-cell dataset with 747 genes 
up-regulated and 907 genes downregulated (Supplement Table 4). The top 10 up-regulated genes (MT-CO3, 
CXCL 3, S100A11, HSPH 1, CEACAM6, CXCL 1, CXCL 1, CXCL 8, UCA 1, COL3A1, COL1A1) and the top 
10 down-regulated genes (BTG 1, CCL5, CD69, RPL13P12, CD52, TRBC2, AC016739.1, GZMA, AC099560.2, 
RNU 6-6P) were shown by heatmap (Fig. 5B). A total of 17,661 DEGs were identified in the bulk transcriptome 
dataset (Supplement Table 5). All the entry criteria of the DEGs were adjusted p-value < 0.05 and | Log2 fold 
change |> 0.25. A total of 53 key ARDEGs were obtained after intersecting the three sets of DEGs and a Venn 
plot was shown (Fig. 5C).

The GO analysis showed that these genes are enriched in cell − substrate adhesion, positive chemotaxis, 
cell − matrix adhesion (BP), focal adhesion, cell − substrate junction, collagen − containing extracellular matrix 
(CC), extracellular matrix binding, protein phosphatase binding, laminin binding (MF) (Fig. 5D, Supplement 
Table 6).

The KEGG analysis showed that these genes are enriched in pathways as small cell lung cancer, Proteo-
glycans in cancer, PI3K − Akt signaling pathway, Focal adhesion, Human cytomegalovirus infection, Kaposi 
sarcoma − associated herpesvirus infection, Bladder cancer, Colorectal cancer, Human papillomavirus infection 
(Fig. 5E, Supplement Table 7).

In addition, we calculated the z-scores of each item of GO and KEGG with their logFC ranked and plot a circle 
graph (Fig. 5F). The key ARDEGs were mainly enriched in cell − substrate junction, focal adhesion, Proteoglycans 
in cancer and PI3K − Akt signaling pathway.

Construction and validation of a prognostic risk model
We performed UCRA to identify the signature genes in the 53 key genes. A total of 9 genes were identified with 
p < 0.05, indicating association with prognosis (Supplement Table 8). LASSO regression analysis on the training 
set with the initial seed = 92 chose 7 signature genes out of the 9 genes (Fig. 6A,B, Supplement Table 9), along with 
a prognostic risk model built by these genes and their covariates. The 7 signature genes were TIMP1, VEGFA, 
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MYC, MSLN, EPHA2, ABHD2, and CD24. A risk scoring system was also derived for the division of LRG/HRG. 
KM survival curves comparing the two groups in training cohort (Fig. 6C), and also in the validation cohort 
(Fig. 6D). The results showed a significant worse prognosis in the HRG compared to that in the LRG for both the 
cohorts. The ROC curves showed AUC values of 1-,3-,5-years survival as 0.637, 0.628, and 0.630 in the training 
cohort (Fig. 6E), while 0.736, 0.685, and 0.675 in the validation cohort (Fig. 6F).

GSEA and GSVA
Based on the high expression of seven marker genes in cells with high anoikis activity in the single-cell dataset 
(Supplement Table 3), as well as the high expression of these genes in tumor tissues in the bulk transcriptome 
data(Supplement Table 5), the GSVA method was employed to determine the anoikis score for each patient. The 
analysis revealed that the anoikis score was markedly elevated in the high-risk group compared to the low-risk 
group, as illustrated in Fig. 7A. Building upon this observation, we conducted a differential gene expression 
analysis based on risk stratification within the bulk transcriptome data to investigate the underlying mechanisms 
behind these gene expression differences. Subsequently, we performed GSEA analysis on the bulk transcriptome 
dataset and selected the most significantly enriched signaling pathways based on their normalized enrichment 
score (NES) (Supplement Table 10). We identified ecm receptor interaction (NES = 2.5966, adjusted P = 0.0128, 
FDR = 0.0074, Fig. 7B), focal adhesion (NES = 2.4247, adjusted P = 0.0128, FDR = 0.0074, Fig. 7C), leishmania 
infection (NES = 2.1958, adjusted P = 0.0128, FDR = 0.0074, Fig. 7D), propanoate metabolism (NES = -2.1353, 
adjusted P = 0.0129, FDR = 0.0074, Fig. 7E), retinol metabolism (NES = -2.1447, adjusted P = 0.0129, FDR = 0.0074, 
Fig. 7F) were significantly enriched in Colorectal cancer.

In addition, we also conducted GSVA analysis, and obtained 5 pathways with the most significant difference 
between the two risk groups and a heatmap was plotted (Supplement Table 11, Fig. 7G).

Immune infiltration analysis
We further surveyed the infiltration levels of 28 immune cell types among the two risk groups using the ssGSEA 
method and found Activated B cell, Activated CD4 T cell, and Activated CD8 T cell showed significant differences 
among the two risk groups (p value < 0.05, Fig. 8A). The correlation analysis of the immune cells showed that the 
majority of them were positively correlated with each other, whereas some were negatively correlated with each 
other, such as Myeloid derived suppressor cell and Effector memeory CD4 T cell (Fig. 8B).

The correlations between 7 key genes and the immune cells were also calculated (Supplement Fig. 2A–I). 
We found gene MYC is significantly associated with CD56bright natural killer cell (R = 0.3905, And p < 0.001) 
and Memory B cell (R = 0.4238, p < 0.001) (Supplement Fig. 2A,B); gene TIMP1 is significantly associated with 
Effector memeory CD8 T cell (R = 0.3823, p < 0.001), Macrophage (R = 0.4273, p < 0.001), Mast cell (R = 0.3233, 
p < 0.001), Monocyte (R = − 0.3921, p < 0.001), Myeloid derived suppressor cell (R = 0.4864, p < 0.001), Natural 
killer cell (R = 0.3399, p < 0.001) and Regulatory T cell (R = 0.4865, p < 0.001) (Supplement Fig. 2C–I).

Construction and verification of nomogram
The UCRA/MCRA were performed on the risk score variate, along with the clinical characteristics of age, stage, 
and grade, to determine if these variates could be the prognosis factors. The results showed that risk score could 
act as an independent factor for prognosis (Fig. 9A,B). The results of the UCRA were used to build the nomo-
gram (Fig. 9C). The ROC curve showed good AUC values of 1-, 3-, and 5-years survival, 0.818, 0.821, and 0.824, 
respectively (Fig. 9D).

TMB and drug susceptibility analysis
We evaluated specific gene mutations in CRC and visualized the top 20 driving genes. AOC has the highest muta-
tion frequency in the two risk groups, followed by TP53 (Fig. 10A,B). Then, we analyzed the tumor mutation 
burden (TMB) of somatic mutations associated with CRC, which showed that in HRG was significantly higher 
than LRG (p < 0.05) (Fig. 10C).

We analyzed whether the risk score could react to the chemosensitivity of CRC patients. The result showed 
patients in the LRG were sensitive to Oxaliplatin_1089 (Fig. 10D), 5-Fluorouracil_1073 (Fig. 10E), bupal-
isib_1873 (Fig. 10F), rapamycin_1084 (Fig. 10G), sabutoclax_1849 (Fig. 10H), Mg-132_1862 (Fig. 10I), dihy-
drorotenone_1827 (Fig. 10J), Dactinomycin_1811 (Fig. 10K) and CDK9_5576_ 1708 (Fig. 10L), indicating that 
chemotherapy was a promising option for the low-risk score group.

Immune checkpoint analysis
We investigated the ICG expression between LRG and HRG. CD28, CD74, and PDCD1 show no significant dif-
ferences between the two groups. CD24 is expressed at higher levels in the low-risk group, while CTLA4, LAG3, 
and TIGIT are expressed at higher levels in the high-risk group (Fig. 11A, Supplement Table 13). In addition, 
we studied the correlation between key genes and immune checkpoints, and found TIMP1 was positively cor-
related with TIGIT, LAG3, CTLA4 and CD28, whereas negatively correlated with CD24. Both VEGFA and MYC 
were positively correlated with CD47 and CD24, with MYC negatively correlated with TIGIT, LAG3 and CD28. 
MSLN was positively correlated with CD47. EPHA2 was positively correlated with PDCD1, LAG3 and CTLA4, 
whereas negatively with CD24. ABHD2 was positively correlated with CD47. CD24 was negatively correlated 
with TIGIT, PDCD1, LAG3, CTLA4, and CD28 (Fig. 11B).
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Immunotherapy prediction
Based on our analysis of the immune microenvironment, we have discovered a strong correlation between risk 
models and the immune microenvironment. In order to further predict the effectiveness of immunotherapy, we 
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Figure 6.  LASSO analysis. (A) Change trajectory of LASSO regression. (B) Confidential interval of each 
lambda. (C) The survival curve of the two risk groups in the training cohort and (D) in the validation cohort. 
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acquired data from two cohorts: the colorectal cancer immunotherapy cohort and the bladder cancer immuno-
therapy cohort. In the colorectal cancer immunotherapy cohort, we observed a significant difference in survival 
time between the high-risk and low-risk groups (p = 0.00026) (Fig. 11C), with patients in the high-risk group 
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experiencing notably shorter survival times. Moreover, we found that patients who exhibited a complete or 
partial response (CR/PR) had significantly lower risk scores compared to those who had no response or experi-
enced disease progression (p < 0.01) (Fig. 11D). Interestingly, among low-risk patients, the proportion of those 
with a complete or partial response (CR/PR) (1.00) was much higher than among high-risk patients (0.43) after 
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immunotherapy (Fig. 11E). To validate our findings, we conducted further analysis using the bladder cancer 
immunotherapy cohort. Our observations revealed that high-risk patients with bladder cancer had significantly 
shorter survival times compared to low-risk patients (p = 0.00012) (Fig. 11F). In early-stage bladder cancer 
patients, the high-risk group exhibited significantly lower survival times than the low-risk group (p = 0.00062) 
(Fig. 11I); however, in late-stage bladder cancer patients, there was no significant difference in survival time 
between the high-risk and low-risk groups (p = 0.099) (Fig. 11J). Additionally, we found that patients with a 
complete or partial response (CR/PR) had lower risk scores, while patients with no response or disease pro-
gression had higher risk scores (p < 0.05) (Fig. 11G). Notably, among low-risk patients, the proportion of those 
with a complete or partial response (CR/PR) was 0.40, whereas in the high-risk group, this proportion was 0.19 
(Fig. 11H). The results from the bladder cancer cohort supported our findings, further strengthening our discov-
eries. These findings suggest a connection between risk models and the efficacy of immunotherapy, highlighting 
the potential of immunotherapy to reduce risk and improve patient survival time.
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Expression of ABHD2, TIMP1, MYC, CD24, EPHA, MSLN, and VEGFA in colorectal cancer 
tissues
To validate our data analysis results, we extracted total RNA from patient colon cancer tissue and corresponding 
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normal colon epithelial tissue and measured the mRNA expression levels of TIMP1, VEGFA, MYC, MSLN, 
EPHA2, ABHD2, and CD24 (Supplement Table 14). Through qRT-PCR testing, we observed that in colon can-
cer tissue, the mRNA expression levels of VEGFA (p < 0.05), TIMP1 (p < 0.0001), MYC (p < 0.0001), and EPHA2 
(p < 0.05) were higher than in normal tissue (Fig. 11K–M,P). However, the expression of MSLN and ABHD2 did 
not show significant differences (Fig. 11N,Q). Additionally, we also found that the expression level of CD24 was 
lower in tumor tissue (p < 0.05) (Fig. 11O).

Discussion
In this study, we used single-cell transcriptome data for analysis to determine the role of anoikis-related genes 
in regulating tumor cell development. We also identified marker genes and established prognostic prediction 
models to determine their value in tumor prognosis prediction. First, we analyzed the data of 5 CRC samples of 
single-cell sequencing dataset and identified 10 different cell types. The Anoikis gene set downloaded from the 
GeneCards database was used to calculate Anoikis activity using the AUCell algorithm. We identified 746 cells 
with Anoikis activity and found that the overall anoikis activity was higher in cells from metastatic patient sam-
ples compared to non-metastatic patients. This suggests that anoikis plays a role in regulating the occurrence and 
development of these tumor cells. Additionally, we established pseudo-temporal differentiation trajectories for 
epithelial cells, fibroblasts, and stromal cells and found that anoikis genes were mainly enriched in the late stages 
of cell differentiation and had different impacts on cell fate. In the pseudo-temporal analysis of mesenchymal 
cells, fibroblasts, and stromal cells, accompanied by an increase in anoikis activity, we observed that the gene set 
regulating cell fate transitioned from CXCR chemokine receptor binding and chemokine activity to structures 
and pathways related to the extracellular matrix (ECM). This indicates that anoikis genes play important roles 
in the differentiation of epithelial cells and stromal cells, as well as tumor progression. When cells escape from 
the ECM, these genes initiate or inhibit the anoikis program, thereby impacting the survival or death of escaping 
 cells38. Therefore, these genes involved in regulating activity become key genes associated with tumor metastasis 
and  prognosis39.

In order to determine the most important genes regulating anoikis activity, we compared the gene-expression 
difference between active and inactive cells to obtain the DEGs. We also obtained DEGs between CRC and con-
trol samples in both the single cell dataset and the bulk transcriptome dataset. After intersecting these genes, 
we selected ARGs from them, and obtained a total of 53 ARDEGs. These genes are not only related to anoikis, 
but also participate in the differentiation of CRC cells due to their differential expression, promoting the occur-
rence of CRC.

We tried to annotate the functions and pathways of these genes and found that they are enriched in cell sub-
strate adhesion, cell matrix adhesion, protein phosphatase binding, collagen-containing extracellular matrix, 
PI3K-Akt signaling pathway, cancer proteoglycan and other functions and pathways. These pathways are all 
related to the adhesion of cells to the ECM, which ensures the normal activity of cells. However, once these 
adhesion related genes are suppressed in CRC tissues and anoikis activated cells, tumor cells may escape the 
ECM and become anoikis resistant, leading to tumor invasion and metastasis.

We attempted to identify prognostic related genes from the 53 ARDEGs. Through UCRA and LASSO, we 
identified 7 characteristic genes TIMP1, VEGFA, MYC, MSLN, EPHA2, ABHD2, and CD24. In addition, we 
further verified that VEGFA, TIMP1, MYC, and EPHA2 were significantly highly expressed in tumor tissues. 
TIMP1 encodes an inhibitor protein related to Matrix metalloproteinase (MMPs), participating in the degrada-
tion of extracellular matrix, promoting the proliferation of tumor cells, and has the function of anti-anoikis40. 
In the study by Yang et al.41, TIMP1, as a characteristic gene of CRC, could predicts prognosis of the cancer, 
which is consistent with the result of this study. VEGFA encodes a growth factor within the VEGF family, which 
is a glycosylated protein specifically present in endothelial cells. It promotes cell growth and differentiation 
and inhibits  apoptosis42. MYC encodes a nuclear phosphoprotein with the function of transcription factor and 
participates in cell cycle regulation. Its abnormal expression and gene mutation have been confirmed to be 
related to lymphoma, leukemia and other diseases. Wu QN et al.  study43 showed that MYC participates in the 
MYC-MNX1-AS1-YB1 axis, which promotes the proliferation of colorectal cancer cells. MSLN overexpression 
promotes cell migration and invasion through the activation and expression of matrix metalloproteinases, spe-
cifically MMP-7 and MMP-944,45. Furthermore, the high-affinity interaction between MSLN and CA125 leads to 
heterotypic cell adhesion, thereby promoting metastasis of ovarian cancer cell  lines46. EPHA2 has been demon-
strated to regulate multiple cellular processes in embryonic development, angiogenesis, and tumor occurrence 
through EphA2-ephrin A1 signaling transduction, including proliferation, survival, migration, morphology, cell 
repulsion, and  adhesion47. ABHD2 is a novel androgen-regulated gene that can enhance prostate cancer growth 
and chemotherapy  resistance48. CD24, a cell surface molecule linked to glycosylphosphatidylinositol, is consid-
ered an adhesion molecule that facilitates binding with P-selectin and is a characteristic of cancer metastasis.

We constructed a prognosis prediction model based on these 7 characteristic genes, which has good predic-
tive ability. We used this model to perform prognostic risk scoring on all CRC samples and divided them into 
LRG and HRGs. In the analysis of GSEA and GSVA of the groups, enrichment pathways such as ECM receptor 
ligand, focal adhesion, pyruvic acid metabolism, and peroxisome pathway were found. The interaction and 
adhesion pathway of ECM receptor ligands are key pathways for tumor cells to escape their original survival 
environment and initiate re colonization. Pyruvic acid and peroxisome also participate in the anti-anoikis of 
tumor cells. Giannoni et al.49 found a strong correlation between the oxidative environment inside the envelope 
of cancer cells and the induction of anti-anoikis. Compared with normal cells, the glucose metabolism of tumor 
cells has undergone fundamental changes. The pyruvic acid salt produced by glycolysis is converted into lactic 
acid instead of entering the mitochondrial oxidation pathway, thus avoiding the excess reactive oxygen species 
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(ROS) produced by cells and changing the oxidative environment in cells. After detachment from the matrix, 
these tumor cells could reduce glucose oxidation and utilize their survival advantages to resist anoikis.

To further analyze the prognostic predictive value of this model, we included the clinical characteristics of 
patients, and together with the prognostic risk score, we constructed a nomogram for predicting patient survival. 
ROC analysis showed that the nomogram has high predictive value for patients, with AUC exceeding 0.8 for 
1 year, 3 years, and 5 years.

In the analysis of immune infiltration between the risk groups, we found that activated B cells, CD4 T cells, 
and CD8 T cells were more expressed in the HRG, while dendritic cells and NK cells was less. B cells could pro-
mote the formation of immunosuppressive cells by releasing immunosuppressive cytokines, and also participate 
in the process of presenting tumor antigens to CD4 T and CD8 T cells, directly attacking tumor cells through 
Granzyme B, and are important anti-tumor  cells50. T cells are specific tumor killer cells that can secrete TNF- α 
Suppress the growth of tumor  cells51. The immune cell infiltration of these cells might lead to poor prognosis in 
high-risk patients. We also found the 7 characteristic genes were corelated with the immune infiltration, such 
as MYC is associated with the expression of NK cells and B cells, while TIMP1 is significantly associated with 
the expression of CD 8 T cells, macrophages, Mast cell, Monocyte, Natural killer cell and regulatory T cells. We 
speculated that MYC and TIMP1 are involved in the occurrence and development of CRC by regulating the 
infiltration of these immune cells, and these two genes might also become targets for immunotherapy.

Based on the correlation between characteristic genes and immune infiltration, we attempt to infer the 
sensitivity of immunotherapy in patients at different risk groups. We investigated the expression of ICGs in the 
two groups and found that most ICGs highly expressed in the HRG, Furthermore, we further utilized immune 
therapy cohorts for colorectal cancer and bladder cancer to predict treatment outcomes. We found that high-
risk patients had shorter survival times in both cohorts. Additionally, we observed that patients who achieved 
complete response (CR) and partial response (PR) through immune therapy had lower risk scores. Moreover, 
the proportion of patients who achieved complete response (CR) and partial response (PR) among low-risk 
patients receiving immune therapy was much higher much higher than among high-risk patients. Colorectal 
cancer (CRC) has an extremely complex tumor microenvironment (TME). The effectiveness of immunotherapy 
is influenced by various factors. Immune suppressive cells in the TME, such as regulatory T cells (Tregs), mye-
loid-derived suppressor cells (MDSCs), and tumor-associated macrophages (TAMs), can inhibit the activity of 
T cells by secreting immune-suppressive factors or directly interacting with effector T cells, thereby reducing 
the effectiveness of  immunotherapy52. Additionally, the extracellular matrix (ECM) and vascular structure in 
the TME also impact the infiltration and function of immune cells. Tumor cells remodel the ECM and vascular 
system to create an environment that supports tumor growth and metastasis, while potentially limiting effective 
infiltration and anti-tumor activity of immune  cells52. In our study, we observed a higher infiltration of activated 
CD8 + T cells and NK cells in the low-risk group. Therefore, the effectiveness of immunotherapy in colorectal 
cancer patients may be more influenced by the presence of tumor-infiltrating immune cells with cytotoxic activ-
ity against the tumor. These results suggest that patients with a low-risk score may benefit more from treatment 
with ICG inhibitors. The results of drug sensitivity prediction analysis showed that patients in the LRG might 
be more sensitive to the treatment of oxaliplatin, 5-fluorouracil, Bupaleb, Rapamycin, Sabutoclax, MG-132 and 
other chemotherapy drugs, suggesting that chemotherapy is a better choice for patients with low-risk scores.

In the study by Xiao et al.53, the LASSO regression method was also used to identify 25 ARGs related to 
CRC prognosis, which is completely different from the 7 genes obtained in this study. In their study, 540 CRC 
sample from TCGA were selected, whereas in this study, we selected dataset from both TCGA and GEO. We 
also included the single cell sequencing data and bulk size of RNA seq data, thus the conclusions of this study 
are more reliable.

But there are also some limitations in this study. First, we identified specific gene signature from the gene 
database wihout confirming their predictive significance for prognosis in large-scale prospective clinical studies; 
Second, some of the conclusions in our study were still based on inference and there was no clear interaction 
pathway to support them, such as the regulatory relationship between MYC and immune cell expression; Third, 
we have developed a highly accurate prognostic prediction model, but the application value of this model still 
needs to be proven in practical use.

Conclusions
In this study, based on single cell sequencing data and bulk transcriptome dataset of public databases we found 
that the anoikis-related genes play an important role in the development and metastasis of CRC tumor cells. We 
obtained 7 marker genes related to the prognosis of CRC and constructed a prognosis prediction model, which 
has high accuracy in predicting prognosis. Based on this model, the tumor samples could be divided into different 
risk groups, with different sensitivities to chemotherapy drugs and immune checkpoint inhibitors. This study is 
expected to provide new insights into the precision diagnosis and treatment of CRC.

Data availability
The datasets used in this study are available in TCGA (https:// portal. gdc. cancer. gov/), GEO (https:// www. ncbi. 
nlm. nih. gov/ geo/), and TIDE databases (http:// tide. dfci. harva rd. edu/). IMvigor210 database was downloaded 
by the IMvigor210CoreBiologies R package (http:// resea rch- pub. gene. com/ IMvig or210 CoreB iolog ies/ packa 
geVer sions/). The datas generated and analysed during the current study are available from the the article and 
supplementary information.
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