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Evaluating nomogram models 
for predicting survival outcomes 
in gastric gastrointestinal stromal 
tumors with SEER database 
analysis
Liuliang Yong 1,2, Lanjun Li 3, Jun Wu 3, Pan Liang 2 & Jianbo Gao 2*

Gastrointestinal stromal tumors (GISTs) predominantly develop in the stomach. While nomogram 
offer tremendous therapeutic promise, there is yet no ideal nomogram comparison customized 
specifically for handling categorical data and model selection related gastric GISTs. (1) We selected 
5463 patients with gastric GISTs from the SEER Research Plus database spanning from 2000 to 2020; 
(2) We proposed an advanced missing data imputation algorithm specifically designed for categorical 
variables; (3) We constructed five Cox nomogram models, each employing distinct methods for 
the selection and modeling of categorical variables, including Cox (Two-Stage), Lasso-Cox, Ridge-
Cox, Elastic Net-Cox, and Cox With Lasso; (4) We conducted a comprehensive comparison of both 
overall survival (OS) and cancer-specific survival (CSS) tasks at six different time points; (5) To ensure 
robustness, we performed 50 randomized splits for each task, maintaining a 7:3 ratio between the 
training and test cohorts with no discernible statistical differences. Among the five models, the Cox 
(Two-Stage) nomogram contains the fewest features. Notably, at Near-term, Mid-term, and Long-
term intervals, the Cox (Two-Stage) model attains the highest Area Under the Curve (AUC), top-1 
ratio, and top-3 ratio in both OS and CSS tasks. For the prediction of survival in patients with gastric 
GISTs, the Cox (Two-Stage) nomogram stands as a simple, stable, and accurate predictive model 
with substantial promise for clinical application. To enhance the clinical utility and accessibility of 
our findings, we have deployed the nomogram model online, allowing healthcare professionals and 
researchers worldwide to access and utilize this predictive tool.
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Gastrointestinal stromal tumors (GISTs) are the most prevalent mesenchymal tumors of the gastrointestinal (GI) 
tract, accounting for approximately 0.1–3% of all GI  malignancies1. They can arise anywhere in the digestive 
tract, with the stomach being the most common site, comprising about 60–70% of all cases, followed by the small 
intestine. Less common sites include the esophagus, colon, rectum, and extragastrointestinal  regions2. Surgery 
is the most prevalent therapeutic technique. While the prognosis for most GISTs patients following surgery is 
excellent, tumor recurrence is a typical occurrence in GISTs  patients3. Regarding the postoperative survival 
progression of GISTs originating in the stomach and small intestine, some  studies4,5 reveal no difference, while a 
recent  study6 suggests a difference, therefore there is no conclusive consensus. Thus, postoperative determination 
of survival progression in patients with gastric GISTs remains clinically significant.

Due to the rarity of GISTs, big datasets such as the Surveillance, Epidemiology, and End Results (SEER) 
Program can serve as a global real-world cohort database for researching  GISTs7–11. Since data missingness is a 
typical occurrence in real-world data gathering, some  studies7,8,10,11 have categorized missing data as ’unknown’ 
as one of the values for multi-category variables in subsequent study. However, such a basic method requires that 
the missingness of the ’unknown’ is balanced across different categories, which is difficult to satisfy. On the other 
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hand, several  studies12 have adopted missing data imputation methods, however simple imputation can bring 
irreparable bias into the  research13. Furthermore, the SEER database largely comprises multi-categorical variables 
with missing values, while most existing imputation approaches lack flexibility for multi-categorical variables.

Cox nomogram is a clinically informative modeling and visualization tool. Cox nomogram can integrate both 
independent components and composite indices. However, due to the inclusion of composite indices (such as 
the AJCC stage), which may cover some independent clinical markers (such as mitotic rate), a certain level of 
collinearity may occur. Directly adding them may lead to model non-convergence and instability. The traditional 
design of the cox nomogram normally involves a two-stage process of single-factor and multi-factor selection 
before nomogram  construction7–11. However, with the widespread usage of Least Absolute Shrinkage and Selec-
tion Operator (LASSO) in clinical research as a feature selection and standalone model, Penalized Models have 
steadily developed as a unique clinical modeling strategy to replace the old two-stage  method14–17. In the area 
of survival prediction for gastric GISTs, whether the Penalized Cox Regression  Model18 can replace the usual 
two-stage modeling technique has not been compared in any study.

The unpredictability produced by the segmentation of train and test cohorts is an issue that is often disre-
garded and underestimated, however it can considerably contribute to the problem of irreproducible  trials19. 
Studies have demonstrated the direct influence of data tampering on statistical outcomes, therefore creating 
an increasing emphasis on issues surrounding ‘p-hacking’ within the area of medical  statistics20. While cross-
validation stands as an excellent approach, it’s worth mentioning that in most studies, cross-validation is often 
implemented exclusively during the model parameter estimation phase, resulting in a single evaluation of the 
test dataset. A one-time separation of data into train and test cohorts, in the absence of an external validation 
dataset, introduces an undesired level of randomness.

In summary, this study intends to increase the design of a simpler and more stable postoperative survival 
prediction nomogram for gastric GISTs, and the changes made include the following:

1. Innovatively proposed the MissCatBoosts missing data technique for multicategorical variables;
2. The data for both OS and CSS completed 50 iterations of train/test cohort, guaranteeing that no statistically 

significant differences existed for each variable;
3. We conducted a detailed comparison of five nomogram models for both OS and CSS tasks across six-time 

points.

Materials and methods
The recent ASCI text data version of the Surveillance, Epidemiology, and End Results (SEER) Program of the 
National Cancer Institute in the USA was the source of the present population-based analysis with permission to 
obtain research data from the latest SEER database (Approved account: 19047-Nov2021). Primary cancer location 
and histological features were coded according to criteria in the third version of the International Classification of 
Diseases for Oncology (ICD-O-3). This study was in light of the public usage of deidentified data from the SEER 
database and did not involve interaction with human individuals or the use of personal identifying information. 
Therefore, there is no need to require formal informed permission from the SEER recorded cases in the study.

Data source and population selection
Imatinib mesylate was approved by the Food and Drug Administration (FDA) for the treatment of GISTs in the 
year 2002 after clinical trials demonstrated that its use postoperatively in intermediate- to high-risk patients 
prolonged cancer-specific survival (CSS) as well as overall survival (OS)21, so “Incidence-SEER Research Data,17 
Registries, Nov 2022 Sub[2000-2020]” was selected by SEER*Stat 8.4.2 (https:// seer. cancer. gov/) and GISTs 
patients were identified by codes “8936/3” for ICD-O-3 histology types with 14,745 patients.

The exclusion criteria include: (I) patients with site recode other than stomach; (II) patients with age recode 
less than 20; (III) patients with race recode unknown; (IV) patients without first malignant; (V) patients with 
tumor size unknown or 0; (VI) patients with surgency not performed or unknown; (VII) patients with dead 
cause unknown; (VIII) patients with survival months less than 3 months (Fig. 1).

For each patient, study characteristics were acquired including age at diagnosis, race, sex, marital status, tumor 
size, tumor grade, tumor site, AJCC stage, mitotic rate, surgical management, chemotherapy, survival months, 
and cause of death. Age at diagnosis was viewed as a numeric variable.

Missing data
Missing values for multi-categorical variables were handled by MissCatBoosts multiple imputations (Fig. 1). To 
begin, we make an initial guess for the missing variables using mean imputation or another imputation approach. 
Then, arrange the variables according to the amount of missing values starting with the lowest amount. For 
each variable, the missing values are imputed by first training a CatBoost model with response and predictors; 
and then, predicting the missing values by applying the learned CatBoost model. The imputation technique is 
performed until a stopping requirement is fulfilled. At finally, the final imputed matrix was created by the aggre-
gation of different imputations. The pseudo algorithm (Table S1) presents a representation of the MissCatBoosts 
approach.

Statistical analysis
Statistical studies were conducted using Python 3.9.13, Numpy 1.24.3, Statsmodels 0.13.5, and R software (version 
4.2.2). Based on the National Comprehensive Cancer Network (NCCN) guidelines Version 2.2023, we changed 
quantitative factors, such as tumor size, mitotic rate, and regional nodes inspected into categorical data. The 

https://seer.cancer.gov/
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tumor size was separated as ≤ 2, 2–5, 5–10, and ≥ 10 cm. The mitotic rate was separated as ≤ 5/5 and > 5/5  mm2 
HPF. The regional nodes investigated were split as 0, 1–4, and > 4. We employed the Kaplan–Meier survival curve 
to examine the groups in OS and CSS, and the differences were assessed by applying the Log-rank test. Categori-
cal variables are subjected to one-hot encoding and then dummy variable handling before being entered into 
the model. We apply the Phi coefficient to measure the association across categorical data, and visually show it 
through a heatmap. For nomogram creation and validation, patients in the SEER database were randomly sorted 
into train and test cohorts according to a ratio of 7: 3. Numeric variables were shown as median and interquartile 
range (IQR) in train and test cohorts and were evaluated using Kruskal–Wallis test. Categorical variables were 
shown as frequencies and proportions in train and test cohorts and were evaluated using the Chi Squared test. 
Items identified as statistically significant in the univariate Cox regression analysis were applied to multivariate 
analysis utilizing a train cohort. Multivariate Cox regression analysis was used to individually examine the asso-
ciation of all factors with OS by computing hazard ratios and 95% CIs. Significant items (p < 0.05) were selected as 
the independent predictors. The train-test cohort splitting and significance test of the CSS referred to the OS task.

After that, the Cox (Two-Stage) model chose a train cohort to do the univariate and multivariate cox regres-
sion analysis as the feature selection stage and the final one for the nomogram construction stage. Lasso-Cox, 
Ridge-Cox, and Elastic Net-Cox are all one-stage panelized cox proportional hazards models, where feature selec-
tion and the final nomogram model construction are done simultaneously during the building process. During 
the building of the one-stage model, the optimal parameter estimation was achieved using five-fold cross-vali-
dation. Cox With Lasso model is also a two-stage Cox model, where the features picked by the Lasso-Cox model 
are incorporated into the Cox model and the nomogram is created at the same time (Fig. 2). Time-dependent 
receiver operating characteristic (ROC) was implemented as an estimate of the cumulative/dynamic area under 
the curve (AUC) for a given collection of time points. Six-time points are included: 6 months, 1 year, 3 years, 
5 years, 7 years, and 10 years. At each time point, the AUC rankings for the first and top three are determined.

Institutional review board statement
All data are publicly available, and no IRB was required.

Figure 1.  Flowchart of the screening and preprocessing procedure for patients with gastric GISTs.
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Informed consent statement
Patient consent was waived due to this article using data from the SEER database, which is publicly available 
deidentified patient data from the National Cancer Institute (NCI), USA.

Results
In the SEER database, 5463 GISTs patients were enlisted in this study. Whether in the OS or CSS tasks, the 
variables are arranged in increasing order of missing rates as follows: Tumor size, Marital status at diagnosis, 
Tumor location, AJCC Stage, Mitotic rate, and Tumor grade (Fig. S1-2). So, following this sorting order, the 
results produced after utilizing the MissCatBoosts algorithm for imputing missing data, conducting statistical 
analysis, modeling, and evaluation are as follows:

Demographic traits
All categorical variables for OS are depicted in Kaplan–Meier survival curves in Fig. 3. According to the Log-
rank test, all factors exhibit p-values less than 0.05. Notably, age has been categorized using a threshold of 
65, as displayed in Fig. S3. It is interesting that Tumor Grade and Mitotic Rate demonstrate a high degree of 
similarity, which may have an impact on feature selection and modeling. Similar patterns are also detected in 
the Kaplan–Meier curves for CSS, as illustrated in Fig. S4. However, it is crucial to highlight that the Log-Rank 
test is often viewed as a very forgiving non-parametric test with poorer sensitivity. Typically, stringent multiple 
comparison corrections are not required when conducting multiple comparisons with this test. This may improve 
the likelihood of preserving the null hypothesis. Therefore, both Kaplan–Meier survival curves and the Log-Rank 
test are applied exclusively for analyzing trends and making early comparisons in survival data.

Demographics and trends are reported in Table 1. The median age and interquartile range for age were 64 
[54, 73]. When grouped by gender, 48.5% (n = 2650) were female, and 51.5% (n = 2813) were male, maintaining 
an overall gender ratio close to 1:1. Regarding ethnicity, 62.4% (n = 3409) were White, 22.6% (n = 1234) were 
Black, and 15.0% (n = 820) were classed as Others (including American Indians/Alaska Natives and Asian/
Pacific Islanders).

To ease subsequent model creation and successful model assessment, the 5463 patients were randomly 
separated into train and test cohorts in a 7:3 ratio, assuring consistent proportions for each category with no 
statistical differences. Age, handled as a numerical variable, had a median and interquartile range of 63 [54, 
73] in the Train cohort and 64 [55, 72] in the Test cohort, with a matching Kolmogorov–Smirnov test p-value 
of 0.554. All other variables were categorical, and the chi-squared test was applied. For instance, in the Tumor 
Size category, the proportions in the Whole Population were as follows: ≤ 2 cm—12.8% (n = 697), in the Train 
cohort—12.8% (n = 491), and in the Test cohort—12.6% (n = 206), with a p-value of 0.817. The proportions 
for the 2–5 cm category were: Whole Population—32.6% (n = 1782), Train cohort—32.6% (n = 1782), and Test 
cohort—32.6% (n = 1247), with a p-value of 1.000. Similarly, the 5–10 cm and ≥ 10 cm categories revealed similar 
proportions and no significant variations in the train and test cohorts. The demographic parameters and train-
test cohort split for OS patients followed the same process, as stated in Table S2.

It is crucial to highlight that even when the prerequisites of preserving consistency with the general 
distribution and assuring no statistical disparities in the train and test cohorts divisions are met, there may 

Figure 2.  Flowchart for constructing five types of nomograms: (a) conducting univariate and multivariate 
feature selection using equation 1, followed by nomogram parameter determination using equation 1; (b) 
simultaneous feature selection and nomogram parameter determination based on equation 2; (c) simultaneous 
feature selection and nomogram parameter determination based on equation 2; (d) simultaneous feature 
selection and nomogram parameter determination based on equation 2; (e) perform feature selection based on 
equation 2, followed by nomogram parameter determination using equation 1.
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still be intrinsic randomness affecting subsequent modeling and evaluation. Therefore, this study completed 50 
rounds of data splitting for both OS and CSS patient groups, with each iteration satisfying the aforementioned 
consistency and no statistical difference requirements.

Construction of nomogram models
The construction of the Nomogram model primarily involves two-stage which are feature selection and model 
building conducted separately, and a single-stage approach where feature selection and the final model construc-
tion occur simultaneously. In the two-stage Cox Nomogram, we first perform both univariate and multivariate 
feature selection (Tables 2,  S3). In the univariate selection stage, all categories of ’Regional nodes examined’ 

Figure 3.  Kaplan–Meier curves stratified by patient characteristics in OS and the Log-rank tests for all subplots 
were p < 0.05: (a) Age, (b) Sex, (c) Race, (d) Marital status at diagnosis, (e) Tumor location, (f) Tumor grade, (g) 
Tumor size, (h) AJCC Stage, (i) Mitotic rate, (j) Surgery, (k) Regional nodes examined, (l) Chemotherapy.
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exhibited no statistically significant differences in OS. In the multivariate selection stage, elements showing 
statistical significance in the univariate stage are included.

In the analysis of the OS, a total of 10 elements were included. The hazard ratios (HR) [95% confidence 
intervals] and corresponding p-values for each element are presented as follows: Age at diagnosis with an 
HR of 1.04 [1.04–1.05], p < 0.005; Male with an HR of 1.40 [1.23–1.60], p < 0.005; Black with an HR of 1.43 
[1.24–1.65], p < 0.005; Single with an HR of 1.33 [1.17–1.52], p < 0.005; Poorly differentiated/undifferentiated 
with an HR of 1.34 [1.13–1.59], p < 0.005; 5-10 cm with an HR of 1.68 [1.26–2.24], p < 0.005; ≥ 10cm with an HR 
of 1.97 [1.43–2.70], p < 0.005; AJCC_III with an HR of 1.40 [1.03–1.90], p = 0.03; AJCC_IV with an HR of 1.81 
[1.42–2.32], p < 0.005; No_Surgery with an HR of 2.24 [1.87–2.69], p < 0.005 (Table 2). In the context of CSS, a 
total of 11 elements were included in the analysis. The results of this analysis are presented in Table S3, which 

Table 1.  Demographics and train-test cohort split of 5463 patients with gastric GISTs from the Surveillance, 
Epidemiology, and End Results (SEER) database for the years 2000 to 2020. *Kolmogorov–Smirnov test for 
numeric variables and chi-squared test for numeric variables.

Variable Whole population Train cohort Test cohort p-value*

Total patients 5463 (100%) 3824 (70%) 1639 (30%)

Age_at_diagnosis 64.0 [54, 73] 63 [54, 73] 64 [55, 72] 0.554

Sex

 Male 2650 (48.5%) 1843(48.2%) 807(49.2%) 0.499

 Female 2813 (51.5%) 1981(51.8%) 832(50.8%) 0.499

Race

 White 3409 (62.4%) 2395(62.6%) 1014(61.9%) 0.615

 Black 1234 (22.6%) 853(22.3%) 381(23.2%) 0.468

 Others 820 (15.0%) 576(15.1%) 244(14.9%) 0.900

Marital_status_at_diagnosis

 Married 3321 (60.8%) 2320 (60.7%) 1011 (61.1%) 0.802

 Single 2142 (39.2%) 1504 (39.3%) 638 (38.9%) 0.802

Tumor_location

 Antrum or Pylorus 622 (11.4%) 435 (11.4%) 187 (11.4%) 1.000

 Body 2971 (54.4%) 2058 (53.8%) 913 (55.7%) 0.210

 Cardia or Fundus 1870 (34.2%) 1331 (34.8%) 539 (32.9%) 0.180

Tumor_grade

 Well/moderately differentiated 3939 (72.1%) 2757 (72.1%) 1182 (72.1%) 1.000

 Poorly differentiated/undifferentiated 1524 (27.9%) 1067 (27.9%) 457 (27.9%) 1.000

Tumor_size

 ≤ 2 cm 697 (12.8%) 491 (12.8%) 206 (12.6%) 0.817

 2–5 cm 1782 (32.6%) 1247 (32.6%) 535 (32.6%) 1.000

 5–10 cm 1677 (30.7%) 1181 (30.9%) 496 (30.3%) 0.671

 ≥ 10 cm 1307 (23.9%) 905 (23.7%) 402 (24.4%) 0.516

AJCC stage

 I 3031 (55.5%) 2132 (55.8%) 899 (54.9%) 0.558

 II 734 (13.4%) 501 (13.1%) 233 (14.2%) 0.287

 III 676 (12.4%) 487 (12.7%) 189 (11.5%) 0.233

 IV 1022 (18.7%) 704 (18.4%) 318 (19.4%) 0.410

Mitotic_rate

 ≤ 5/5  mm2 HPF 4081 (74.7%) 2853 (74.6%) 1228 (74.9%) 0.832

 > 5/5  mm2 HPF 1382 (25.3%) 971 (25.4%) 411 (25.1%) 0.832

Surgery

 Local excision 608 (11.1%) 409 (10.7%) 199 (12.1%) 0.131

 Radical_excision 4010 (73.4%) 2836 (74.2%) 1174 (71.6%) 0.056

 No_Surgery 845 (15.5%) 579 (15.1%) 266 (16.2%) 0.328

Regional_nodes_examined

 0 4177 (76.5%) 2916 (76.3%) 1261 (76.9%) 0.610

 1–4 675 (12.4%) 477 (12.5%) 198 (12.1%) 0.719

 > 4 611 (11.2%) 431 (11.3%) 180 (11.0%) 0.792

Chemotherapy

 Yes 2175 (39.8%) 1497 (39.1%) 678 (41.4%) 0.132

 No/Unknown 3288 (60.2%) 2327 (60.9%) 961 (58.6%) 0.132
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includes the corresponding hazard ratios (HR) along with their respective 95% confidence intervals (CI) and 
p-values. The HR and CI for each element are as follows: Age_at_diagnosis HR = 1.03 [1.02–1.05], p < 0.005; 
Male HR = 1.60 [1.17–2.18], p < 0.005; Black HR = 1.70 [1.22–2.36], p < 0.005; Single HR = 1.41 [1.03–1.95], 
p = 0.03; Poorly differentiated/undifferentiated HR = 1.56 [1.09–2.23], p = 0.02; 5–10 cm HR = 2.47 [1.58–3.86], 
p < 0.005; ≥ 10 cm HR = 2.84 [1.72–4.69], p < 0.005; AJCC_III HR = 2.45 [1.26–4.77], p = 0.01; AJCC_IV HR = 2.16 
[1.22–3.83], p = 0.01; No_Surgery HR = 4.92 [2.27–10.66], p < 0.005; Regional_nodes_examined > 4 HR = 1.59 
[1.06–2.38], p = 0.02 (Table S3).

The Lasso-Cox model of OS identified 17 non-zero coefficient features in the one-stage Cox Nomogram. The 
optimal lambda value, determined through five-fold cross-validation, was found to be 0.002759628275668862 
(Fig. S5). The Ridge-Cox model of OS identified 26 non-zero coefficient features, and the optimal lambda 

Table 2.  Univariate and multivariate Cox regression analyses of OS from the constructed nomogram. *HR: 
hazard ratio; CI: confidence interval, AJCC stage: American Joint Committee on Cancer stage; HPF: high-
power microscopic fields.

Variable

Univariate analysis Multivariate analysis

HR* 95% CI* p value HR* 95% CI* p value

Age_at_diagnosis 1.04 1.04–1.05  < 0.005 1.04 1.04–1.05  < 0.005

Sex

 Female Reference – – – – –

 Male 1.26 1.12–1.43  < 0.005 1.40 1.23–1.60  < 0.005

Race

 White Reference – – – – –

 Black 1.40 1.22–1.61  < 0.005 1.43 1.24–1.65  < 0.005

 Others 0.91 0.76–1.10 0.33 - - -

Marital_status_at_diagnosis

 Married Reference – – – – –

 Single 1.46 1.29–1.65  < 0.005 1.33 1.17–1.52  < 0.005

Tumor_location

 Antrum or Pylorus Reference – – – – –

 Body 1.28 1.03–1.58 0.02 1.11 0.90–1.39 0.33

 Cardia or Fundus 1.57 1.26–1.95  < 0.005 1.17 0.93–1.46 0.17

Tumor_grade

 Well/moderately differentiated Reference – – – – –

 Poorly differentiated/undifferentiated 2.09 1.84–2.36  < 0.005 1.34 1.13–1.59  < 0.005

Tumor_size

 ≤ 2 cm Reference – – – – –

 2–5 cm 1.46 1.10–1.93 0.01 1.28 0.96–1.70 0.09

 5–10 cm 2.04 1.55–2.68  < 0.005 1.68 1.26–2.24  < 0.005

 ≥ 10 cm 3.11 2.37–4.09  < 0.005 1.97 1.43–2.70  < 0.005

AJCC* stage

 I Reference – – – – –

 II 1.34 1.10–1.64  < 0.005 1.17 0.90–1.51 0.24

 III 1.86 1.55–2.23  < 0.005 1.40 1.03–1.90 0.03

  IV 3.47 3.00–4.01  < 0.005 1.81 1.42–2.32  < 0.005

Mitotic_rate

 ≤ 5/5  mm2 HPF* Reference – – – – –

 > 5/5  mm2 HPF* 1.69 1.49–1.92  < 0.005 0.89 0.71–1.11 0.31

Surgery

 Local excision Reference – – – – –

 Radical_excision 1.15 0.93–1.43 0.20 – – –

 No_Surgery 4.18 3.31–5.28  < 0.005 2.24 1.87–2.69  < 0.005

Regional_nodes_examined

 0 Reference – – – – –

 1–4 0.93 0.77–1.11 0.43 – – –

 > 4 1.09 0.90–1.30 0.38 – – –

Chemotherapy

 Yes 1.57 1.39–1.77  < 0.005 0.95 0.82–1.10 0.52

 No/Unknown Reference – – – – –
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value determined by five-fold cross-validation was found to be 0.014727306097177213. The Elastic Net-
Cox model of OS identified 21 features with non-zero coefficients. The optimal lambda value, determined 
using five-fold cross-validation, was found to be 0.00634580382929533 with a gamma value of 0.5 (refer to 
Fig. S6). The Lasso-Cox model of CSS identified 21 non-zero coefficient features, with a best lambda value of 
0.000723002378351044 determined using five-fold cross-validation. The Ridge-Cox model of CSS identified 31 
non-zero coefficient features, and the optimal lambda value, determined using five-fold cross-validation, was 
found to be 0.0008913511247589448. The Elastic Net-Cox model of CSS identified 26 features with non-zero 
coefficients. The optimal lambda value, determined using five-fold cross-validation (Fig. S7), was found to be 
0.0006711759532059377 with a gamma value of 0.5 (Fig. S7).

We created an additional two-stage Cox Nomogram model, specifically the Cox model with Lasso, utilizing 
either the 17 non-zero coefficient features from the Lasso-Cox model of OS or the 21 non-zero coefficient 
features from the Lasso-Cox model of CSS. The models underwent retraining using the train cohort as the basis 
for developing the OS and CSS Nomogram models (Fig. 2).

Time-dependent evaluation
The sensitivity and specificity of diagnostic tests are influenced by the dynamic and evolving nature of a patient’s 
disease status. As a result, the ROC curve is extended to incorporate continuous outcomes.

Table 3 provides a detailed analysis of five OS Cox nomograms across six distinct time intervals. Among the 
50 experiments conducted, it was found that the Cox (Two-Stage) model demonstrated superior performance 
in terms of mean AUC [25–75%], top1 ratio, and top3 ratio across various time intervals. Specifically, at the 
Half a Year mark, the AUC was 0.809 [0.781–0.836], the Top1 ratio was 35 out of 50, and the Top3 ratio was 50 
out of 50. Similarly, at the One Year mark, the AUC was 0.793 [0.774–0.813], the Top1 ratio was 46 out of 50, 
and the Top3 ratio was 50 out of 50. The trend continued with the Three Years mark, where the AUC was 0.776 
[0.760–0.787], the Top1 ratio was 34 out of 50, and the Top3 ratio was 45 out of 50. Moving on to the Five Years 
mark, the AUC was 0.778 [0.764–0.789], the Top1 ratio was 33 out of 50, and the Top3 ratio was 42 out of 50. 
At the Seven Years mark, the AUC was 0.771 [0.761–0.782], the Top1 ratio was 30 out of 50, and the Top3 ratio 
was 47 out of 50. Finally, at the Ten Years mark, the AUC was 0.775 [0.766–0.783], the Top1 ratio was 26 out of 
50, and the Top3 ratio was 38 out of 50. Figure 4a, b presents a graphical depiction of the performance exhibited 
by the five models on the test set across various random partitions. It is worth mentioning that the Cox (Two-
Stage) model utilizes a smaller set of features, specifically 10, in comparison to comparable single-stage models 
such as Lasso-Cox with 17 features, Ridge-Cox with 26 features, and Elastic Net-Cox with 21 features. The Cox 
With Lasso model, which follows a two-stage approach, employs the 17 features extracted from the single-stage 
Lasso-Cox model to train the Cox model. This two-stage model demonstrates a performance that is only sur-
passed by the Cox (Two-Stage) model.

Table S4 provides a complete comparison of five CSS Cox nomograms at six distinct time intervals. The Cox 
(Two-Stage) model exhibited superior performance across multiple time intervals in a total of 50 experiments. 
Specifically, it demonstrated the highest mean AUC [25–75%], top1 ratio, and top3 ratio at various time intervals. 
For instance, at the one-year mark, the Cox (Two-Stage) model achieved an AUC of 0.831 [0.797–0.861], a top1 
ratio of 21 out of 50, and a top3 ratio of 26 out of 50. Similarly, at the three-year mark, it attained an AUC of 0.837 
[0.823–0.851], a top1 ratio of 45 out of 50, and a top3 ratio of 49 out of 50. The model’s performance remained 

Table 3.  Comprehensive comparative summary table of 5 OS cox nomograms at six-time points. Significant 
values are in [bold].

Models AUC[25%-75%] Top1 Top3 AUC[25%-75%] Top1 Top3

Near-term Half a Year One Year

Cox(Two-Stage) 0.809 [0.781–0.836] 35/50 50/50 0.793 [0.774–0.813] 46/50 50/50

Lasso-Cox 0.806 [0.777–0.834] 2/50 48/50 0.788 [0.768–0.805] 0/50 48/50

Ridge-Cox 0.802 [0.771–0.832] 0/50 0/50 0.786 [0.766–0.804] 0/50 4/50

Elastic Net-Cox 0.805 [0.776–0.833] 0/50 15/50 0.787 [0.768–0.805] 0/50 19/50

Cox With Lasso 0.807 [0.778–0.837] 13/50 37/50 0.788 [0.770–0.805] 4/50 29/50

Mid-term Three Years Five Years

Cox(Two-Stage) 0.776 [0.760–0.787] 34/50 43/50 0.778 [0.764–0.789] 33/50 42/50

Lasso-Cox 0.774 [0.759–0.785] 2/50 45/50 0.777 [0.762–0.786] 4/50 39/50

Ridge-Cox 0.773 [0.758–0.784] 2/50 10/50 0.776 [0.761–0.785] 1/50 23/50

Elastic Net-Cox 0.774 [0.759–0.784] 2/50 18/50 0.776 [0.761–0.785] 1/50 13/50

Cox With Lasso 0.775 [0.760–0.785] 10/50 34/50 0.777 [0.763–0.788] 11/50 33/50

Long-term Seven Years Ten Years

Cox(Two-Stage) 0.771 [0.761–0.782] 30/50 47/50 0.775 [0.766–0.783] 26/50 38/50

Lasso-Cox 0.769 [0.760–0.779] 5/50 39/50 0.774 [0.763–0.780] 2/50 35/50

Ridge-Cox 0.769 [0.759–0.780] 6/50 20/50 0.774 [0.763–0.782] 5/50 27/50

Elastic Net-Cox 0.769 [0.759–0.779] 2/50 18/50 0.774 [0.763–0.781] 13/50 33/50

Cox With Lasso 0.769 [0.758–0.780] 7/50 26/50 0.773 [0.763–0.781] 4/50 17/50
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consistently high at the five-year, seven-year, and ten-year intervals, with AUC values of 0.836 [0.827–0.846], 
0.824 [0.810–0.841], and 0.814 [0.798–0.828], respectively. Additionally, the top1 and top3 ratios remained 
consistently high at these intervals, with the model achieving ratios of 50 out of 50 and 50 out of 50, respectively. 
Figure 4c, d visually illustrate the performance of the five models on the test dataset across various random parti-
tions. It is worth mentioning that the Cox (Two-Stage) model has a total of 11 features, which is notably lower 
compared to the other single-stage models, namely Lasso-Cox with 21 features, Ridge-Cox with 31 features, and 
Elastic Net-Cox with 26 features. The Cox With Lasso model, which is a two-stage model, utilizes 21 features 
from the single-stage Lasso-Cox model for training the Cox model. This approach ensures that the performance 
of Cox With Lasso is at least as good as that of Lasso-Cox in general.

Best model presentation
Based on the comparison data shown above, it can be observed that the Cox (Two-Stage) model demonstrates 
a notable degree of simplicity and effectiveness in predicting both OS and CSS. Furthermore, the Cox With 
Lasso approach presents an additional and potentially advantageous alternative option. The clinical validity of 
the Cox with Two-Stage nomograms for OS and CSS has been documented (refer to Fig. 5). In addition, Fig. S8 
presents the prospective models derived from the Penalized Cox Model, specifically the Cox with LASSO Features 
nomograms for OS and CSS.

Discussion
Despite the high probability of recurrence subsequent to surgery, surgical excision remains the predominant 
therapeutic approach for primary  GISTs3. The extended viability of GISTs sometimes leads to patient mortality 
resulting from factors unrelated to GISTs. Consequently, prognostic estimates of OS may not adequately reflect 

Figure 4.  The receiver operating characteristic curves of the nomograms for half-, 1-, 3-, 5-, 7-, 10-year in 
the test cohort. (a, b) Different random partitions in OS, which ensure there are no statistically significant 
differences in the distributions between the train and test cohorts; (c, d) different random partitions in CSS, 
which ensure there are no statistically significant differences in the distributions between the train and test 
cohorts.
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the long-term survival rates of GISTs. Hence, this study aimed to assess and compare the overall performance 
of five Cox nomogram models for OS and CSS at six distinct time intervals. The objective was to determine the 
most straightforward and reliable nomogram model for predicting survival in patients with gastric GISTs. In 
order to mitigate the potential confounding effects caused by comparing different nomograms between the train 
and test cohorts, we implemented cross-validation during the model development process. We performed 50 
distinct train and test cohort splits for both OS and CSS. This approach ensured that all variables exhibited no 
statistically significant differences within each split, as indicated in Tables 1 and S2. Our study incorporated a 
comprehensive and extensive sample size, derived from the newest SEER database, which included 17 registries 
and encompassed a varied range of ethnic communities. This was particularly significant due to the infrequency 
of gastric GISTs.

The nomogram is a statistical instrument that has resemblance to clinical rating scales, while it distinguishes 
itself from such scales in terms of its derivation. Clinical nomograms are commonly developed from Cox 
regression or logistic regression models, allowing for the conversion of any Cox regression model into a clinical 
nomogram. The focus of this work is to five discrete nomograms that correlate to unique Cox regression models. 
Previous research has indicated that nomograms are increasingly being seen as prospective substitutes for the 
National Institute of Health (NIH) criteria, SEER staging, and TNM staging systems. These nomograms have the 

Figure 5.  Nomogram for predicting half-year, one-year, three-year, five-year, seven-year, and ten-year 
in patients with gastric GISTs: (a) Cox with two-stage for OS nomogram; (b) Cox with two-stage for CSS 
nomogram.
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capacity to potentially establish a novel clinical  standard7,8,10,12. However, the existing literature oversimplifies 
the treatment of missing data classified as ’unknown’ in the development of nomograms. Several  research7,8,10,11 
consider the classification of ’unknown’ as a distinct category. The validity of this assumption is frequently 
disregarded, as it is contingent upon the proportions of categories inside the ’unknown’ group being similar 
to the overall proportions. However, this condition is rarely satisfied and poses difficulties in its verification. 
In the majority of instances, the introduction of randomness from ’unknown’ sources poses obstacles to the 
repeatability and generalizability of models. This study was motivated by the presence of multiclass variables 
in SEER databases. In order to address this issue, the researchers drew inspiration from a Multiple Imputation 
 technique22 and proposed a novel algorithm called MissCatBoosts. The methodology employed in this study 
involves the utilization of  CatBoost23, a well-established technology renowned for its ability to effectively handle 
categorical variables, as the foundational learner. The program employs a methodology that estimates missing 
values by taking into account variables with different levels of missingness. It then combines these estimates 
using an ensemble learning approach. Validation in real-world data sets is crucial for algorithmic performance 
assessment. In this study, we introduced artificial missing values into a prominent medical dataset from the 
University of California, Irvine (UCI) repository. We then benchmarked our MissCatboosts algorithm against 
three other leading methods. The results indicate superior performance of MissCatboosts for both binary and 
multiclass variables, as detailed in Table S5.

Nomograms frequently involve the presence of multicategory variables, which can be either ordinal or 
interval in nature. The influence on results frequently exhibits variability as categories increase or decrease. 
Nevertheless, previous research on nomograms for prognosticating survival in patients with GISTs has treated 
multicategory factors, including primary site, grade, and mitotic rate, as if they were numerical variables. This 
methodology enforces a consistent impact on results across many categories. For instance, in the case of the 
primary site variable, the influence on outcomes remains consistent during the passage from the stomach to 
the small intestine, from the small intestine to the rectum, from the rectum to the colon, and from the colon to 
additional sites. In a similar vein, the uniform treatment of the impact on outcomes is observed for the grade 
variable during the transitions from grade I to II, grade II to III, grade III to IV, and grade IV to ’unknown.’ 
However, it is important to note that the impact on survival outcomes for the mitotic rate variable is unlikely 
to be consistent when transitioning from < 5 to 5–10, 5–10 to > 10, and > 10 to ’unknown’ in clinical decision-
making10. Hence, the multicategory variables in this study, such as Tumor Size, consistently demonstrate the 
true influence of various categories on survival outcomes in both OS and CSS nomograms. When the size of a 
tumor transitions from being less than or equal to 5 cm to being within the range of 5-10 cm, the effect on OS 
outcomes is more significant compared to CSS outcomes. In relation to the AJCC Stage variable, the influence on 
CSS outcomes is more pronounced compared to OS while progressing from AJCC Stage I-II to III. Conversely, 
the scenario is flipped when migrating from AJCC Stage III to IV.

The prognostic significance of the Mitotic rate has been widely acknowledged in recent clinical guidelines, 
such as those provided by the National Comprehensive Cancer Network (NCCN), French Intergroup Clinical 
Practice guidelines, the European Society for Medical Oncology (ESMO), and the European Reference Network 
on Rare Adult Cancers (EURACAN)24–26. Nevertheless, previous research has indicated that the Mitotic rate 
did not display any significant variations in survival outcomes when undergoing multifactor feature selection. 
The observed disparity is incongruous with the clinical guidelines indicated  earlier7,8,10,11. The veracity is found 
within the survival Cox nomograms, which incorporate the independent clinical factor Mitotic rate and the 
comprehensive index AJCC stage as simultaneous variables in the nomogram. There is a certain degree of 
association between the AJCC stage and the Mitotic rate, as indicated by Fig. S9. In the context of multifactor 
feature selection, it is seen that both AJCC stage and the Mitotic rate exert a significant influence on survival 
outcomes. Consequently, these two factors are prioritized and included in the final selection process. It is 
noteworthy that three single-stage Cox nomogram models for CSS, including Lasso-Cox, Ridge-Cox, and 
Elastic Net-Cox, have retained both Mitotic rate and AJCC stage variables, indicating a possible advantage. 
Nevertheless, it is important to note that all three models have a shared limitation, which is the application of 
uniform penalties to all variables inside the model (Fig. 2)27,28. As a result of this constraint, the one-stage Cox 
nomogram maintains the inclusion of Mitotic rate and AJCC stage for CSS, hence exhibiting a more pronounced 
distinction in comparison to both the two-stage Cox nomogram and OS (refer to Tables 3, S4, and Fig. 4).

In this study, the performance of the two-stage Cox model with Lasso feature selection, also known as 
’Cox With Lasso’, was shown to be comparable to that of the classic two-stage Cox model, ’Cox (Two-Stage).’ 
The observed difference in performance between the two models was rather minor. The construction of Cox 
nomograms (Fig. S8) continues to be a clinically promising strategy. Despite the study’s limited inclusion of 
clinical variables, it remains an effective approach for feature selection, particularly in clinical scenarios involving 
high-dimensional characteristics like  genomes29,30,  proteomics31,32, and  radiomics14–17.

This study is subject to many constraints. Firstly, it is important to note that this study is retrospective in 
nature, despite being derived from the biggest multicenter database for gastric GISTs that is currently accessible. 
This retrospective design may potentially bring inherent biases that should be taken into consideration when 
interpreting the findings. In order to corroborate the results, it is necessary to obtain a comprehensive dataset 
from multiple clinical centers in a prospective manner. Furthermore, it is important to note that the data utilized 
in this investigation did not encompass information predating the year 2000. Moreover, the SEER data employed 
in this analysis did not offer insights into the administration of imatinib mesylate or other targeted therapy to 
patients with gastric GISTs. In addition, it should be noted that prognosis can also be influenced by other factors 
such as tumor rupture, bleeding, and certain gene mutation types. However, it is important to mention that these 
factors were not incorporated into the nomograms due to their unavailability in the database. Research that 
leverages the SEER database provides valuable clinical insights; nevertheless, it is imperative to acknowledge 
its intrinsic limitations. While this investigation has employed methodologies to mitigate particular concerns, 
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challenges such as potential biases and data incompleteness persist as underlying issues. Furthermore, future 
explorations could benefit from more nuanced approaches, including stratified analyses of variables such as 
marital status.

In addition to the analytical validation of our nomogram models, we have made these predictive tools 
accessible to a global audience by deploying them online. The nomogram models for prognostic prediction in 
gastric gastrointestinal stromal tumors (GISTs) are now available through a user-friendly interface at the following 
URL: https:// gists- llyong. strea mlit. app. This web application allows clinicians and researchers worldwide to 
input patient-specific data and receive immediate prognostic predictions, thereby facilitating informed decision-
making in the management of gastric GISTs.

Conclusions
When developing nomograms to predict OS and CSS in patients with gastric GISTs, it is important to 
appropriately handle multicategory variables and minimize the randomness caused by dividing the data into 
training and testing cohorts. In this regard, a two-stage Cox nomogram demonstrates superior performance 
compared to a single-stage penalty-based Cox nomogram. Nevertheless, the utilization of the two-stage Cox 
nomogram, which incorporates LASSO feature selection, continues to exhibit substantial promise. This finding 
serves as a catalyst for additional investigation into the development of multimodal survival prediction models 
for gastric GISTs.

Data availability
All data are publicly available.
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