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Elucidating the underlying 
components of metacognitive 
systematic bias in the human 
dorsolateral prefrontal cortex 
and inferior parietal cortex
Peiyao Cong , Yiting Long , Xiaojing Zhang , Yanlin Guo  & Yingjie Jiang *

Metacognitive systematic bias impairs human learning efficiency, which is characterized by the 
inconsistency between predicted and actual memory performance. However, the underlying 
mechanism of metacognitive systematic bias remains unclear in existing studies. In this study, 
we utilized judgments of learning task in human participants to compare the neural mechanism 
difference in metacognitive systematic bias. Participants encoded words in fMRI sessions that would 
be tested later. Immediately after encoding each item, participants predicted how likely they would 
remember it. Multivariate analyses on fMRI data demonstrated that working memory and uncertainty 
decisions are represented in patterns of neural activity in metacognitive systematic bias. The 
available information participants used led to overestimated bias and underestimated bias. Effective 
connectivity analyses further indicate that information about the metacognitive systematic bias is 
represented in the dorsolateral prefrontal cortex and inferior parietal cortex. Different neural patterns 
were found underlying overestimated bias and underestimated bias. Specifically, connectivity 
regions with the dorsolateral prefrontal cortex, anterior cingulate cortex, and supramarginal gyrus 
form overestimated bias, while less regional connectivity forms underestimated bias. These findings 
provide a mechanistic account for the construction of metacognitive systematic bias.
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A fundamental issue in human memory research is the relationship between objective (memory) and subjective 
(metacognitive monitoring) dimensions of memory. The relationship between objective and subjective memory 
processes can be studied during learning (memory encoding at study) or retrieval (recall or recognition at 
test). Subjective or metacognitive monitoring during learning is of particular interest because these processes 
can enhance learning effectiveness by guiding the allocation of resources at a time when information remains 
available for learning. As a typical example of metacognitive monitoring, judgments of Learning (JOLs) are 
individuals’ assessments of the likelihood that currently learned items will be successfully retrieved on subsequent 
tests, usually occurring after learning and before  testing1,2. A common occurrence in judgments of Learning 
(JOLs) is that individuals tend to overestimate their ability to recall information learned during the learning 
phase, yet fail to recall it during a subsequent memory test. This overestimation bias is a significant issue. 
Conversely, there are instances where individuals underestimate their recall ability, yet perform successfully 
during the memory test. This is known as the underestimate bias. Numerous behavioral studies have observed 
this inconsistency between predicted and actual memory  performance3–7. However, the underlying neural 
mechanisms remain unclear. This study aims to address this gap by exploring the neural basis of systematic 
biases in metacognitive monitoring. It emphasizes the inconsistency between memory predictions and actual 
performance, encompassing both overestimating and underestimating biases. The dual-memory monitoring 
hypothesis posits that making judgments of learning requires information from both working and episodic 
 memories8. Alternatively, the memory strength hypothesis suggests that judgments of learning are based on the 
strength of working  memory9,10. The monitoring dual-memories hypothesis and memory strength hypothesis 
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offer partial explanations for systematic biases in metacognitive monitoring. The information stored in working 
memory is unstable, leading participants to make biased memory predictions based on inaccurate information, 
thus creating a metacognitive systematic bias. Understanding this metacognitive systematic bias is crucial, as 
the neural representations of working memory can provide neural evidence for previous theoretical hypotheses.

Neural mechanism research has focused on the underlying neural substrates of metacognitive monitoring, 
exploring associated brain regions such as the ventromedial prefrontal cortex (vmPFC), dorsomedial prefrontal 
cortex (dmPFC), and anterior cingulate cortex (ACC)11–13. Although researchers have identified the localization 
of metacognitive monitoring, there is a lack of neural evidence for metacognitive systematic bias. Previous fMRI 
studies have found that each participant exhibits both underestimated bias and overestimated bias through 
the relationship between estimate memory performance (JOLs) and actual memory performance. Specifically, 
high JOLs magnitudes that fail to predict recall represent overestimated biases, while low JOLs magnitudes that 
accurately predict recall represent underestimated  biases14. This classification helps to investigate the neural 
substrates underlying predicted memory outcomes (JOLs) compared to actual memory outcomes (memory 
itself). This study utilized the fMRI technique, combining univariate analysis methods with multivariate pattern 
analysis, to observe the neural patterns of systematic bias and clarify the mechanisms of overestimated bias or 
underestimated bias.

From the perspective of episodic memory, studies have primarily focused on behavioral mechanisms of 
systematic bias, specifically, overestimating or underestimating episodic memory outcomes in tasks such as 
color generation, emotion experience, and future events  prediction15–18. Metacognitive monitoring is a crucial 
factor influencing episodic memory, playing a pivotal role in understanding the neural mechanisms underlying 
systematic bias. This knowledge is crucial in enhancing our understanding of efficient learning.

In this study, we employed a classic paradigm of metacognitive monitoring, in which participants encoded 
word pairs and provided judgments of learning (JOLs). The JOLs paradigm we used featured cue words on the 
left and a question mark “?” on the right. This setup is believed to prompt retrieval attempts among individuals, 
as observed in previous behavioral studies on immediate judgments of  learning6,19,20. Since immediate judgments 
of learning occur immediately after encoding, essentially involving immediate retrieval attempts, the relevant 
information remains in working memory. Previous theories highlight that immediate judgments of learning 
may incorporate working memory  information9,21. Therefore, it can be inferred that individuals utilize working 
memory information to formulate their JOLs. Furthermore, the immediate judgments of learning paradigm 
is similar to working memory paradigms, as both involve judgments made shortly after encoding. Although 
the neural mechanisms underlying immediate JOLs are not the primary focus of this study, they still need 
further exploration and investigation. Word pairs have been a frequent choice for metacognitive systematic 
bias  research3,6,22,23, often including  nouns22,24. By selecting word pairs as learning materials, we were able to 
delve into the neural basis of metacognitive systematic bias. Our research objectives were threefold. First, we 
aimed to identify the brain regions associated with metacognitive systematic bias. To achieve this, we used 
univariate analysis to compare neural activation patterns between overestimated and underestimated biases 
during the JOLs task. Second, we sought to decode the brain regions that encode metacognitive systematic 
bias. To do so, we employed multivariate pattern analysis to identify brain regions that encoded information 
about overestimated and underestimated biases. Our third objective was to investigate the neural network of 
metacognitive systematic bias. The metacognitive network has been studied for over five  years25. Despite this, 
there is still limited knowledge about the neural substrates of metacognitive monitoring. It is crucial to utilize 
effective connectivity analysis to observe neural networks that overestimate or underestimate bias. This neural 
evidence is significant as it provides valuable insights into the neural substrates associated with metacognitive 
systematic bias. Specifically, it aids in the construction of a metacognitive brain network that can further our 
understanding of systematic bias.

Experiment
Methods
Participants
The sample size in the current study was roughly determined by following previous study using a similar task 
 paradigm26. 20 subjects participated in the experiments conducted in the current study. All participants were 
right-handed, had normal visual acuity or corrected visual acuity, and had no personal or family history of 
neurological or psychiatric disorders based on their self-report. This experiment was approved by the ethics 
committee of Northeast Normal University. The present study was in agreement with the Helsinki Declaration 
and approved by the ethics committee of the Northeast Normal University (Study No. 2022020).The participants 
signed an informed consent form before the experiment and were paid for completing the experiment and 
received a payment of 100 CNY once the experiment was completed.

Stimuli
The 126 abstract word pairs from Yu, Jiang, and Li (2020) were used, and each item is middle difficulty (0.3 to 
0.7) through a memory recognition  task27. Among them, 120 pairs of words were used for the formal experiment, 
and the remaining six pairs of abstract words were used for practice.

Procedure
In this study, we used an event-related design (Fig. 1). Figure 1 showed the details of the procedure. The formal 
scan consisted of 4 runs, with a short break given to the participants at the end of each run. The task took 
approximately 30 min to complete inside the scanner. In the scanner and each run, participants performed 
an encoding and immediate judgment of learning (JOLs) task. During the encoding and immediate JOLs 
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stage, participants saw random jitters on the center of the screen ranging from 0 to 4000 ms, followed by the 
presentation of an abstract word pair (e.g., “合格-风景”, written in Latin characters “qualified—scenery”) to be 
learned for 4000 ms (total 16 word pairs). After encoding each pair, participants saw one word from the pair (the 
cue) on the screen and were asked to predict how likely they would remember the unseen target in the post-scan 
recognition task on a four-point scale, with 1 indicating “will be absolutely forgotten” and 4 indicating “will be 
absolutely remembered”. Participants had 4000 ms to press a button to indicate their estimated performance, and 
responses were collected online using an MRI-compatible button box. After the encoding-JOLs, a distraction 
task outside the scanner was asked to complete for 3 min. Participants also were not in the scanner during the 
recognition-test phase. In a recognition test trial, participants saw a previous cue word that was studied at the 
top of the screen, and the target word and two distractor words appeared in random locations (left, center, or 
right) on the bottom. Participants were asked to indicate which of the three words on the bottom had been paired 
initially with the cue at the top in 3000 ms. Each trial was associated with a fixed-interval fixation of 500 ms.

fMRI data acquisition
Neuroimaging data were acquired on a UIH Prisma 3.0 T MRI scanner with a 64-channel head-neck coil. The 
participant was placed in a supine position with a sponge pad inside the coil to hold the head in place and was 
asked to keep the head and body still during the scanning process. The functional image was a 32-slice axial 
image, measured by a T1 -weighted echo-planar images (EPI) sequence, covering the entire cerebral cortex (main 
technical parameters: TR = 2000 ms, TE = 30 ms, Flip angle = 80°, FOV = 230 mm × 230 mm, Matrix size = 64 × 64, 
slice thickness = 3.5 mm, sequential acquisition = 32 axial slices, voxel size = 3.5 × 3.5 × 4.2 mm). Each functional 
scanning session contained 207 time points, with a total of 4 runs. Structural images were collected using a 
T1-weighted 3D MPRAGE sequence (TR = 7 ms, TE = 3 ms, Flip angle = 9°, FOV = 230 mm × 230 mm, Matrix 
size = 384 × 384, slice thickness = 1 mm, sequential acquisition = 160 axial slices, voxel size = 0.5 × 0.5 × 0.5 mm), 
in order to coregister with the functional images.

fMRI data preprocessing
Imaging analysis was performed using spm12 (http:// www. fil. ion. ucl. ac. uk/ spm)28. First, all the EPI DICOM 
data were converted to NIFTI format. The first three images from each run were automatically discarded by the 
scanner to allow scanner equilibrium. Second, all volume slice scan times were corrected to the middle time 
slice and realigned to the first scan to correct for head motion. Third, the structural images of each subject were 
coregistered with the mean functional images, and then the images were normalized to the Montreal Neurological 
Institute template. Fourth, all voxels were resampled to 3 × 3 × 3 mm. Last, all functional volumes were smoothed 
by using an 8-mm FWHM isotropic Gaussian kernel.

Behavioral data analysis
Using participants’ responses on the post-scan recognition test, we sorted trials based on JOLs magnitude and 
recognition performance. At the JOLs stage, participants were required to make immediate JOLs using a 1–4 scale. 
The 1 and 2 indicate that the participant will forget, while 3 and 4 indicate that the participant will remember. The 
four-point scale was used to fit the fMRI environment and was based on previous fMRI  studies29. In the post-scan 
recognition test, a correct recognition was recorded as 1, and a failed recognition or timeout was recorded as 0. 
Therefore, items were given either an R (will remember) or an F (will forget) estimation in the JOLs stage and 
were either subsequently remembered (r) or subsequently forgotten (f) in the post-scan recognition memory test. 
This study aimed to investigate metacognitive systematic bias by comparing overestimated bias to underestimated 

Figure 1.  Experiment paradigm. (A) The rapid event-related design was used to fit the encoding-JOLs phase 
better. The major procedure in fMRI contained encoding-JOLs phase. Recognition-test phase was outside the 
fMRI scanner. Also, the details of each typical trial were introduced. (B) The arrangement of scanning runs. 
There were four encoding-JOLs sessions in total.

http://www.fil.ion.ucl.ac.uk/spm
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bias. The classification of metacognitive systematic bias is of great importance. We classified metacognitive 
systematic bias into two  types14: (1) JOLs magnitude was high ("will remember" prediction) but was later failed 
to recognize in the post-scan recognition test  (JOLhighMlow), which is overestimated bias. (2) JOLs magnitude was 
low ("will forget" prediction) but was later correctly recognized in the post-scan recognition test  (JOLlowMhigh), 
which is underestimated bias. Regarding the classification of the 4-point scale data into two categories, this 
decision was a deliberate choice, tailored specifically to fulfill the research objectives of elucidating the neural 
mechanisms that underlie metacognitive biases. By organizing the data into two representative categories, the 
authors intended to pinpoint and contrast the neural disparities between the two types of metacognitive biases, 
ultimately disclosing their underlying formation mechanisms. The behavioral data analysis has three steps: First, 
we calculated response time (RT) and proportion between the  JOLhighMlow and  JOLlowMhigh conditions to test the 
feasibility of further fMRI analysis. This step was to confirm that both overestimated bias and underestimated 
bias were not happening by chance. Second, metacognitive sensitivity was calculated for each participant to 
evaluate the overall metacognitive monitoring accuracy via meta-d/d values in accordance with Maniscalco and 
Lau (2012). Then, metacognitive sensitivity was calculated for both  JOLhighMlow and  JOLlowMhigh conditions and 
should be compared between the  JOLhighMlow and  JOLlowMhigh conditions. This approach can provide evidence of 
which type of metacognitive systematic bias is more sensitive. Because metacognitive sensitivity is an index that 
measures the accuracy of  JOLs30. We have known that metacognitive systematic bias has low JOL accuracy, but 
it remains unclear whether overestimated bias or underestimated bias has less accuracy. Third, the recognition 
task performance was measured to ensure the effectiveness of the materials and tasks used in the experiment.

Univariate analysis
The GLM method, as implemented in the SPM toolbox, was used to analyze the BOLD responses to metacognitive 
systematic bias. For all analysis, events were modeled at the time of the stimulus onset and convolved with the 
canonical hemodynamic response function (HRF) using a double-gamma function. These events were then 
superimposed for all trials to fit with the fMRI signals of each voxel. At the JOLs stage, the event was time-locked 
to the onset of the stimuli, with a duration that was the summation of the presentation period (4 s) and the same 
duration as the event. The GLM model was based on the JOLs task. The GLM model was based on JOLs task, 
we separated two task-related events, including JOLs magnitude was high ("will remember" prediction) but was 
later failed to recognize in post-scan recognition test  (JOLhighMlow) and JOLs magnitude was low ("will forget" 
prediction) but was later correct recognized in post-scan recognition test  (JOLlowMhigh). Motion correction 
parameters were entered as covariates of no interest, along with a constant term per run. The regressors were 
convolved with a canonical hemodynamic response function. Low-frequency drifts were excluded with a 
1/128 Hz high-pass filter. Missed trials were not modeled. We defined two contrasts:  JOLhighMlow vs.  JOLlowMhigh 
(1 -1),  JOLlowMhigh vs.  JOLhighMlow (− 1 1). Contrasts constructed at the single participant level were then input 
into a second-level group analysis using a random-effects model. At the group level, metacognitive systematic 
bias fMRI activation was first obtained by applying a parametric one-sample t-test, then a paired sample t-test was 
used to compare the activation between different metacognitive systematic bias  (JOLhighMlow versus  JOLlowMhigh, 
and vice versa). All reported clusters survived a threshold with p < 0.05 after correcting for multiple comparisons 
using the false discovery rate (FDR) method and consisted of ten or more significant voxels.

Regions of interest (ROI) analysis
ROIs were defined from previous literature 11,12,14. Voxels meeting p < 0.05 (FDR correction) threshold 
requirement and lying in the proximity of previously published coordinates of dorsomedial prefrontal cortex 
(dmPFC) [-6,2,58], ventromedial prefrontal cortex (vmPFC) [− 32,6,54], dorsolateral prefrontal cortex (dlPFC) 
[-48,24,28], and anterior cingulate cortex (ACC) [0,32,2]11,12,14 were taken to be the ROIs used in this study. Beta 
values were extracted from subjects’ contrast images for the  JOLhighMlow and  JOLlowMhigh univariate analyses, 
respectively.

Multivariate pattern analysis
Multivariate pattern analysis (MVPA) was performed in MATLAB using the CoSMoMVPA Toolbox (https:// 
www. cosmo mvpa. org/)31. According to research on the use of MVPA for decoding in the same  field12, we 
classified runwise beta images from GLMs modeling  JOLhighMlow and  JOLlowMhigh activity patterns in ROI and 
whole-brain searchlight analyses. ROI MVPA was performed on normalized, non smoothed images using the 
ROI spheres as masks. Previous work has shown that these preprocessing steps have minimal impact on linear 
discriminant analysis (LDA) classification accuracy while allowing meaningful comparison across subject-specific 
differences in anatomy, as in standard fMRI  analyses32,33. A single accuracy value per subject, per condition, 
and per ROI was extracted and used for group analysis and statistical testing. Whole-brain searchlight analyses 
used 3 mm-radius spheres centered around a given voxel for all voxels on spatially realigned and slice-time 
corrected images from each subject to create whole-brain accuracy maps. The significance of the classification 
accuracies of all voxels was tested using a non-parametric random permutation test (n = 5000) and results were 
corrected for multiple comparisons using the false discovery rate (FDR) approach (the significance threshold 
was set at p < 0.05).

For group-level analyses, these individual searchlight maps were spatially normalized and smoothed using 
a Gaussian kernel (8 mm FWHM) and entered into one-sample t-tests against chance  accuracy34. Whole-brain 
cluster inference was performed in the same manner as in univariate analysis. For metacognitive systematic bias 
classifications, we conducted independent leave-one-run-out cross-validations on  JOLhighMlow activity patterns 
and  JOLlowMhigh activity patterns. Pattern vectors from three of the four runs in each condition were used to 
train an LDA to predict the same classes in the vectors from the left-out run. We compared the true labels of the 

https://www.cosmomvpa.org/
https://www.cosmomvpa.org/
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left-out run with the labels predicted by the model and iterated this process for the other run to calculate a mean 
cross-validated accuracy independently for each condition.

Effective connectivity analysis
Dynamic Causal Modeling (DCM) is an effective connectivity analysis method for making inferences about 
causal relationships between brain regions. In this study, DCM was performed in SPM12 to compare brain 
connectivity strength between  JOLhighMlow and  JOLlowMhigh. Specifically, the volumes of interest (VOI) were 
defined based on brain regions that have significant activation in the univariate analysis and multivariate pattern 
analysis. In other words, only VOIs were significant in univariate analysis, and multivariate pattern analysis 
included DCM analysis. Within each VOI, we chose the radius of 8 mm as centers of spherical VOIs based 
on contrasts within a GLM:  JOLhighMlow versus  JOLlowMhigh and  JOLlowMhigh versus  JOLhighMlow. According to 
previous  studies35, in DCM analysis, three parameters need to be determined: matrix A (internal parameter), 
matrix B (modulation parameter), and matrix C (driving input parameter). Matrix A represents the intrinsic 
coupling among brain regions in the absence of external perturbations, and in this study, matrix A represents 
the whole metacognitive systematic bias. Matrix B is the change in brain region caused by the experiment, i.e., 
the  JOLhighMlow or  JOLlowMhigh in this study. Matrix C is the perturbation of brain activity due to external input.

Our primary interest was to estimate the quantitative differences between  JOLhighMlow and  JOLlowMhigh in 
connectivity strength. Therefore, we focused on quantitative comparisons of the DCM parameters (in particular, 
matrix B) between  JOLhighMlow and  JOLlowMhigh. The full model described above was first estimated at the 
individual level to derive DCM parameters for hypothesis testing at the group level. Then, groups of multiple 
subjects were averaged using PEB (Parametric Empirical Bayes) and BMR (Bayesian Model Reduction)35. The 
posterior probability (P) > 0.95 was used to indicate the significance of the model. Pairwise tests were also 
performed between  JOLhighMlow and  JOLlowMhigh conditions, with posterior probabilities (P) > 0.95 indicating 
the significance of each brain region.

Results
Behavioral results
Paired sample t-tests revealed no significant difference in RT and proportion between  JOLhighMlow (MRT = 1024.83; 
Mproportion = 0.23) and  JOLlowMhigh (MRT = 1169.64; Mproportion = 0.23), t(16) = −  1.75, p = 0.099,  BF10 = 0.876; 
t(16) = 0.039, p = 0.969,  BF10 = 0.249 (see Fig. 2), indicating suitable classification per systematic bias type for further 
fMRI analysis. Metacognitive sensitivity for each participant was measured via meta-d/d values in accordance 
with Signal Detection  Theory30, indicating that participants had lower metacognitive sensitivity, M = -1.26 ± 0.23. 
Then metacognitive sensitivity of  JOLhighMlow and  JOLlowMhigh were measured, and paired sample t-tests showed 
significant difference, t(16) = –4.30, p < 0.001,  BF10 = 63.11, means  JOLhighMlow have lower metacognitive sensitivity 
than  JOLlowMhigh. The correct recognition rate for all subjects was 56.60% ± 18%, indicating that the subjects 
completed the task carefully.

Univariate analysis results
Metacognitive systematic bias whole-brain responses were first analyzed using the conventional GLM method. As 
shown in Fig. 3A,B,  JOLhighMlow, and  JOLlowMhigh all activated left dlPFC and left dmPFC. Other regions activated 
included left supramarginal, right precuneus, right superior frontal gyrus (SFG), left middle temporal gyrus 
(MTG), and right superior temporal gyrus (STG) under  JOLhighMlow condition. We found elevated activity in 
ACC and left insula under  JOLlowMhigh condition (see Fig. 3 and Table 1). Furthermore, comparing metacognitive 
systematic bias BOLD activation between  JOLhighMlow and  JOLlowMhigh showed other regions activated included 
left inferior parietal lobule (IPL) and left middle cingulate cortex (MCC) in  JOLhighMlow >  JOLlowMhigh contrast, 
left parahippocampal in  JOLhighMlow <  JOLlowMhigh contrast (see Fig. 3C,D).

The ROI analysis results showed no significant difference between  JOLhighMlow and  JOLlowMhigh in left dlPFC 
(M = 0.23, M = 0.30), left dmPFC (M = 0.40, M = 0.35), and left vmPFC (M =—0.23, M =—0.37). ACC were more 
activated in  JOLlowMhigh than  JOLhighMlow condition, paired sample t-tests : t(17) = 4.95, p < 0.001.

Figure 2.  Behavior results in experiment 1. The left panel showed the RT results between  JOLhighMlow and 
 JOLlowMhigh. The right panel represents proportion results and metacognitive sensitivity results between 
 JOLhighMlow and  JOLlowMhigh. **p < 0.01.
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Multivariate pattern analysis (MVPA) results
A series of MVPAs were performed to obtain activity patterns of metacognitive systematic bias when 
remembering abstract word pairs. If systematic bias is shared across  JOLhighMlow and  JOLlowMhigh, then common 
regions would be found in these two kinds of metacognitive systematic bias.

ROI MVPA analysis results
We performed an LDA decoding analysis using as input vectors the runwise beta images pertaining to  JOLhighMlow 
and  JOLlowMhigh trials obtained from a GLM (12 input vectors in total). For  JOLhighMlow/JOLlowMhigh classification, 
we used standard leave-one-out independent cross-validations for each condition  (JOLhighMlow/JOLlowMhigh), and 
we performed one sample t-test for each ROI and each condition, then conducted paired t-test for  JOLhighMlow 
versus  JOLlowMhigh to obtain which region decoding metacognitive systematic bias information.

Mean accuracy in classifying  JOLhighMlow and  JOLlowMhigh was significantly above chance level in all ROIs 
(one-sample t-tests Bonferroni corrected for multiple comparisons α = 0.05/4 = 0.0125), shown in Fig. 4. In 
details, the mean accuracy of  JOLhighMlow in each ROI: left dlPFC, t(16) = 21.68, p < 0.001; left dmPFC, t(16
) = 20.37, p < 0.001; left vmPFC, t(16) = 4.06, p < 0.001; ACC, t(16) = 20.66, p < 0.001; and  JOLlowMhigh in each 
ROI: left dlPFC, t(16) = 9.76, p < 0.001; left dmPFC, t(16) = 7.29, p < 0.001; left vmPFC, t(16) = 5.12, p < 0.001; 
ACC,  t(16) = 15.09,  p < 0.001. In particular, paired  t-test  used to analyze the common regions in ROI 
analysis showed  JOLhighMlow classification accuracy was significantly different from  JOLlowMhigh in left 
dlPFC (t(16) = 21.68, p < 0.001), left dmPFC (t(16) = 14.46, p < 0.001), left vmPFC (t(16) = 5.12, p < 0.001), 
ACC (t(16) = 15.09, p < 0.001) (see Fig. 4C). Consistent with our hypothesis,  JOLhighMlow and  JOLlowMhigh 
representations could be decoded in parts of the PFC and temporal cortex.

Searchlight analysis results
We ran a similar decoding analysis using an exploratory whole-brain searchlight, obtaining a classification 
accuracy value per voxel when classifying  JOLhighMlow and  JOLlowMhigh. As shown in Fig. 4E,F, Consistent with our 
ROI results, we observed significant accuracy classification under  JOLhighMlow condition (Fig. 4E) in left dlPFC 
(t(16) = 15.97, p < 0.001), left dmPFC (t(16) = 35.74, p < 0.001), left vmPFC, (t(17) = 14.53, p < 0.001), ACC (t(16) = 20.06, 
p < 0.001), and significant accuracy classification under  JOLhighMlow condition in left dlPFC (t(16) = 25.68, 
p < 0.001), left dmPFC (t(16) = 14.46, p < 0.001), left vmPFC, (t(17) = 5.12, p < 0.001), ACC (t(16) = 15.09, p < 0.001) 
(one-sample t-test Bonferroni corrected for multiple comparisons α = 0.05/4 = 0.0125). Searchlight analysis found 
other regions decoded  JOLhighMlow information (Fig. 4F), specifically, left supramarginal gyrus (t(16) = 16.33, 
p < 0.001), right precuneus (t(16) = 20.26, p < 0.001), and other regions decoded  JOLlowMhigh information: left insula 

Figure 3.  Univariate analysis of metacognitive systematic bias activity in experiment. (A)  JOLhighMlow activates 
left dlPFC, left supramarginal, right precuneus, right SFG, left MTG, right STG. (B)  JOLlowMhigh activates left 
dlPFC, ACC, and left insula. (C) univariate BOLD activation in left IPL and left MCC showed a significant 
difference in  JOLhighMlow >  JOLlowMhigh contrast. (D) univariate BOLD activation in the left parahippocampal on 
 JOLhighMlow <  JOLlowMhigh contrast. p < 0.05 FDR correction.
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(t(16) = 15.14, p = 0.000), left IFG (t(16) = 10.13, p < 0.001), right precuneus (t(16) = 11.26, p < 0.001). Furthermore, 
a paired t-test was used to analyze the common regions in searchlight analysis and showed higher decoding 
accuracy for  JOLhighMlow than  JOLlowMhigh in the right precuneus (t(16) = 2.73, p = 0.016). These results revealed 
that the different part of the brain region represents information about specific metacognitive systematic bias, 
and common regions of PFC shared information across  JOLhighMlow and  JOLlowMhigh.

Effective connectivity results
Figure 5A,B shows the PEB analysis results for the modulatory effects on the effective connectivity between 
the modeled nodes. Connection strengths of the parameters whose posterior probability was higher than 
0.95 (P > 0.95) are reported. The results under  JOLhighMlow >  JOLlowMhigh condition found a significant single 
connection from left dlPFC to right precuneus, and bidirectional connections between left dmPFC and ACC, 
right precuneus and ACC, left dmPFC and left supramarginal gyrus, left insula and left supramarginal gyrus.

The results under the  JOLlowMhigh >  JOLhighMlow condition showed a significant single connection from 
left dlPFC to left dmPFC, left insula to ACC, and bidirectional connections between left dmPFC and left 
supramarginal gyrus (Fig. 5B).

Discussion
A critical question in metacognitive monitoring is why individuals are sometimes inclined to overestimate 
or underestimate their memory performances. The neural mechanism of metacognitive systematic bias for 
overestimate prediction versus underestimate prediction was examined in this study using fMRI, machine 
learning decoding, and effective connectivity. In particular, we direct our attention on whether metacognitive 
brain regions and working memory regions engage in the formation of systematic bias when making JOLs. We 
found dissociated neural mechanisms that supported overestimated bias and underestimated bias, and the results 
should deepen our understanding of the cognitive and neural mechanisms of metacognitive systematic bias and 
thus help to answer the question of how this bias occurs.

Neural correlates of metacognitive systematic bias
Our results could help clarify the role of dlPFC in JOLs and the working memory process. As a typical 
metacognitive monitoring region, the activation of dlPFC was found in previous studies 13,14,36,37. One possible 
explanation posits that increased dlPFC activity reflects partial retrieval of the target word in working  memory14, 
but this hypothesis is contradicted by the fact that dlPFC is more dorsal to the regions involved in semantic 
 elaboration29. The debate on dlPFC was partly resolved through a TMS study. Rounis et al. (2010) found causal 

Table 1.  MNI coordinates and corresponding Z scores for brain areas activated by  JOLhighMlow and 
 JOLhighMlow conditions.

contrast Anatomical Region MNI coordinates (x, y, z) Z score p value Hemisphere

JOLhighMlow >  JOLlowMhigh

Inferior parietal lobule − 52,− 42,56 4.40 p < 0.001
p = 0.00001 Left

Middle cingulate cortex − 4,− 26,36 3.71 p < 0.001
p = 0.0002 Left

JOLhighMlow <  JOLlowMhigh Parahippocampal − 18,− 18,− 24 4.18 p < 0.001
p = 0.00003 Left

JOLhighMlow

Middle cingulate cortex − 4,− 26,36 3.35 p < 0.001
p = 0.0008 Left

Dorsolateral prefrontal cortex − 48,24,28 6.26 p < 0.001
p = 0.000000004 Left

Dorsomedial prefrontal cortex − 6,2,58 5.15 p < 0.001
p = 0.0000002 Left

Supramarginal − 58,− 24,28 7.09 p < 0.001
p = 0.00000000001 Left

Precuneus 10,− 52,28 5.11 p < 0.001
p = 0.0000003 Right

Superior frontal gyrus 8,68,14 5.2 p < 0.001
p = 0.0000002 Right

Middle temporal gyrus − 60,− 24,− 14 6.72 p < 0.001
p = 0.00000000001 Left

Superior temporal gyrus 48,− 20,6 6.5 p < 0.001
p = 0.00000000001 Right

JOLlowMhigh

Dorsolateral prefrontal cortex − 48,24,28 5.01 p < 0.001
p = 0.0000005 Left

Dorsomedial prefrontal cortex − 6,2,58 4.03 p < 0.001
p = 0.00005 Left

Anterior cingulate cortex 0,32,2 5.55 p < 0.001
p = 0.0000003 Left/Right

Insula − 38,− 15,7 3.69 p < 0.001
p = 0.0002 Left
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evidence that dlPFC TMS decreases metacognitive  accuracy38. Using the JOLs paradigm and MVPA analysis, 
this study found strong evidence that dlPFC represents metacognitive monitoring. Specifically, univariate fMRI 
analysis showed that the JOL stage evoked metacognitive monitoring-related BOLD activity in dlPFC, and 
MVPA revealed that the decoding accuracy in dlPFC was significantly above the chance level in the experiment. 
It is suggested that dlPFC, as a metacognitive monitoring region, plays a fundamental role in the formation of 
metacognitive systematic bias.

Another region was found in ACC, which is known for performance  monitoring11, integration of detected 
 conflicts39, and attentional control  mechanisms40. It has been shown that the cingulate cortex plays a major role in 
detecting discrepancies between the intended and the actual outcome of an  action41. The significant classification 
accuracy of the ACC in the context of predicting memory performance (JOLs) might reflect its engagement 
in general performance monitoring. This result was supported by previous univariate fMRI analysis, and this 
study observed the ACC through machine learning decoding that supports the basic function of the ACC in the 
formation of metacognitive systematic bias.

As has been mentioned previously, making metacognitive monitoring predictions requires retrieval of 
the target word in working  memory9,10,14. This is because at that time, the slow memory traces are weak, and 
participants will overestimate or underestimate their memory performance. Some regions represent the storage 

Figure 4.  MVPA results. (A) Pattern vectors of two classes (e.g.,  JOLhighMlow and  JOLlowMhigh) were used to 
train a decoder in a leave-one-run-out design that was then tested in the left-out pair. The process was iterated 
four times to test pairs from every run. (B) Mask used in ROI MVPA analysis (C) ROI results for  JOLhighMlow 
versus  JOLlowMhigh classification accuracy in experiment. (D) Searchlight analysis results for  JOLhighMlow 
classification accuracy in experiment. (E) Searchlight analysis for  JOLlowMhigh classification accuracy in 
experiment. ***p < 0.001. All clusters in D and E are significant at a cluster-based permutation test (p < 0.05), 
corrected for multiple comparisons at pFDR < 0.05.
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of working memory, e.g., inferior parietal lobule (IPL), supramarginal gyrus (SMG), angular gyrus, thalamus, 
superior parietal lobule (SPL)42–44. These regions associated with working memory were found in the results 
of univariate analysis of the experiment. In particular, the decoding accuracy of SMG in MVPA results was 
significantly above the chance level, which suggested SMG as a region involved in metacognitive systematic bias.

Just as working memory retrieval is an inference in metacognitive monitoring  studies9,10, partial evidence 
could support the former hypothesis if working memory representations were found in metacognitive 
monitoring. This study detected that the working memory representation (SMG) provides critical evidence 
that making metacognitive monitoring predictions requires information from working memory, giving certain 
neural mechanism evidence to the dual-memories hypothesis and memory strength hypothesis. Furthermore, 
SMG not only has a single function for memory monitoring but also works in tandem with other brain regions 
to predict memory. The working memory trace is a possibility to produce overestimate or underestimate bias. 
The cognitive and neural mechanisms of overestimate bias and underestimate bias will be discussed in the brain 
connectivity “Results” section.

Moreover, through searchlight analysis, we discovered an interesting finding: a significantly higher decoding 
accuracy for  JOLhighMlow compared to  JOLlowMhigh within the right precuneus. This area of the brain, the 
precuneus, has been recognized as integral to metacognition, as supported by correlational evidence derived 
from functional activity analyses. For example, previous research has demonstrated a connection between 
metacognitive performance related to memory decisions and the  precuneus12,45,46. Furthermore, the precuneus 
plays a pivotal role in retrospective confidence ratings, exhibiting greater activation when individuals express 
low  confidence47. These observations suggest that the activation level of the precuneus serves as an indicator of 
both high and low confidence ratings. Notably, the present study focused on prospective confidence ratings and 
discovered that  JOLhighMlow decoded more information from the precuneus than  JOLlowMhigh, thereby indicating 
that the precuneus reflects varying levels of confidence.

Throughout various phases of memory, the precuneus exhibits distinct patterns of activity. Specifically, 
when individuals provide confidence ratings immediately after encoding (judgments of learning), a stronger 
activation pattern is observed in the precuneus for higher confidence levels, while a weaker pattern is evident 
for lower confidence. Conversely, when confidence ratings are made following memory testing (judgments 
of confidence), a greater degree of precuneus activation is associated with lower confidence levels. Not only 
does the current study reveal variations in precuneal activity during confidence ratings, but it also suggests 
that the precuneus serves as the neural foundation for metacognitive biases. Furthermore, it appears that the 
precuneus contributes differentially to two types of metacognitive biases. In particular, it seems to play a more 
significant role in overestimation biases compared to underestimation biases, resulting in stronger activation 
and, consequently, higher decoding accuracy. This result not only corroborates the hypothesis of the involvement 
of the precuneus in metacognition  processes48,49, but also strengthens the view of a domain-specificity in the 
assessment of  metacognition12.

The different cognitive mechanisms between overestimated bias and underestimated bias
Through the formation of overestimate prediction and underestimate prediction, we found that SMG played 
an important role. However, the behavioral evidence showed that overestimate bias  (JOLhighMlow) had lower 
metacognitive accuracy than underestimate bias  (JOLlowMhigh), suggesting different cognitive mechanisms 
behind them. The effective connectivity analysis results provided a network interpretation of the metacognitive 
accuracy difference. It revealed that higher brain connectivity was observed between the working memory 
region (IPL, SMG) and uncertainty signals region (insula) in overestimated prediction. Conversely, elevated 
metacognitive monitoring connectivity was found in underestimate prediction. A possible explanation for the 
lower metacognitive accuracy in overestimate bias is that more information increases participants’  confidence50. 
When making judgments of learning, individuals require more resources (e.g., working memory resources 

Figure 5.  Effective connectivity results in experiment. (A) Effective connectivity results for 
 JOLhighMlow >  JOLlowMhigh. (B) Effective connectivity results for  JOLlowMhigh >  JOLhighMlow. Posterior probability 
was higher than 0.95 (P > 0.95).
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and metacognitive monitoring resources). A series of irrelevant information can interrupt an individual’s 
metacognitive monitoring, leading to overestimated predictions due to inflated memory performance. Conversely, 
when individuals have limited information, the available resources guide them to make underestimated 
predictions. The brain connection focuses more on metacognitive monitoring regions, providing neural network 
evidence for underestimated biases. Previous studies have focused on the behavioral mechanism of metacognitive 
systematic  bias5–7,51 and the measurement of bias using the behavioral method. However, they lack direct evidence 
comparing overestimated bias and underestimated bias. This study provides clear neural evidence regarding 
the formation of overestimated and underestimated biases and interprets the cognitive mechanism from an 
information availability perspective.

Dissociable neural networks supporting metacognitive systematic bias
When people are overconfident or underconfident in their memory predictions, dissociable neural connectivity 
is observed. The effective connectivity results provide evidence that the dlPFC and dmPFC play a central role 
in metacognitive monitoring processes, as significant connectivity was observed between the dlPFC and SMG, 
dmPFC, and SMG, especially for overestimate bias. The function of the dlPFC and dmPFC should be discussed 
in detail. Metacognitive monitoring studies have shown that the dlPFC and dmPFC are key brain regions when 
making metacognitive monitoring  judgments13,14,29,36,37, while executive function studies suggest that the dlPFC 
and dmPFC are involved in working memory  processes52,53. Using the JOLs paradigm and MVPA analysis, 
we found that the dlPFC and dmPFC are correlated with metacognitive monitoring, and the SMG represents 
the working memory process, indicating different neural mechanisms between metacognitive monitoring 
and working memory. Moreover, connectivity between the PFC and parietal cortex has been implicated in 
metacognition and decision-making  studies13,36,54. In studies of decision-making, the ACC, vmPFC, and 
insula have been found to reveal uncertainty in decision-making55. The connectivity between the ACC and 
vmPFC, as well as the ACC and insula, was found to indicate uncertain decision-making, particularly in cases 
of underestimated bias, across two experiments. These findings suggest that different neural substrates are 
involved when making overestimated or underestimated biases. It is proposed that multiple regions, including 
metacognitive monitoring, working memory, and uncertainty, contribute to the formation of overestimated bias, 
while the collaboration of uncertainty monitoring and decision-making-related brain connectivity leads to the 
development of underestimated bias.

Conclusion
It is concluded that the present study has found a remarkable dissociation between the neural processes that 
underlie overestimate bias and underestimate bias. The results of MVPA and effective connectivity analyses 
lend support to the hypothesis that working memory is engaged in metacognitive monitoring, and systematic 
bias relies on the available information one acquires during the learning process. The different patterns of brain 
connectivity observed between frontal and parietal regions suggest the formation of distinct metacognitive 
systematic biases. These findings should enhance our understanding of the neural basis of human metacognitive 
systematic bias.

Data availability
The data sets generated for this study are available on request to the corresponding author.
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