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A novel hybrid model for species 
distribution prediction using neural 
networks and Grey Wolf Optimizer 
algorithm
Hao‑Tian Zhang , Ting‑Ting Yang  & Wen‑Ting Wang *

Neural networks are frequently employed to model species distribution through backpropagation 
methods, known as backpropagation neural networks (BPNN). However, the complex structure of 
BPNN introduces parameter settings challenges, such as the determination of connection weights, 
which can affect the accuracy of model simulation. In this paper, we integrated the Grey Wolf 
Optimizer (GWO) algorithm, renowned for its excellent global search capacity and rapid convergence, 
to enhance the performance of BPNN. Then we obtained a novel hybrid algorithm, the Grey Wolf 
Optimizer algorithm optimized backpropagation neural networks algorithm (GNNA), designed for 
predicting species’ potential distribution. We also compared the GNNA with four prevalent species 
distribution models (SDMs), namely the generalized boosting model (GBM), generalized linear model 
(GLM), maximum entropy (MaxEnt), and random forest (RF). These models were evaluated using 
three evaluation metrics: the area under the receiver operating characteristic curve, Cohen’s kappa, 
and the true skill statistic, across 23 varied species. Additionally, we examined the predictive accuracy 
concerning spatial distribution. The results showed that the predictive performance of GNNA was 
significantly improved compared to BPNN, was significantly better than that of GLM and GBM, and 
was even comparable to that of MaxEnt and RF in predicting species distributions with small sample 
sizes. Furthermore, the GNNA demonstrates exceptional powers in forecasting the potential non‑
native distribution of invasive plant species.

Species distribution models (SDMs) use known geographical occurrences of species and corresponding envi-
ronmental conditions, such as bioclimatic variables and abiotic variables, to predict the potential distribution of 
 species1–3. SDMs have become important tools for ecologists to study ecological issues such as species  diversity4–6, 
species  conservation7–9 and biological  invasions10,11. In the last decades, a large number of SDMs have been 
proposed, including regression models (e.g., generalized linear model, GLM)12–15, classification models (e.g., 
generalized boosting model, GBM)16–18, complex models (e.g., random forest, RF; maximum entropy, Max-
Ent)16,19–21, and ensemble  models22,23. Notably, SDMs such as GLM, GBM, MaxEnt, and RF, are extensively 
applied in investigating ecological and evolutionary  theories24,25, assessing climate change  impacts8,26,27, managing 
invasive  species10,11, and identifying conservation  areas7,8.

Despite their widespread use, the predictive performance of SDMs can varies significantly across different 
 algorithms2,3,28,29, posing challenges for reliable  forecasts30–32. Most research in this filed has focused on com-
paring the predictive success of various SDMs, endorsing those with superior  performance2,3,33–35. However, 
there are few studies on optimization of SDMs that are abandoned due to poor predictive  performance36. With 
the development of machine learning, backpropagation neural networks (BPNN) have gained advantages in 
ecological research where data rarely meet parametric statistical assumptions and non-linear relationships are 
 prevalent37–39. However, BPNN also have some disadvantages, such as high dependency on the initial weights, 
the tendency to be trapped in the local optimum, and slow  convergence38,40,41, which are particularly pronounced 
in species distribution  predictions3,28.

Swarm intelligence optimization algorithms (SIOAs), known for their simplicity, flexibility, and high effi-
ciency, have been used as the primary technique to solve global optimization  problems42–44. It should be men-
tioned that the SIOAs mainly introduce randomness in the search process to reduce the possibility of falling into 
the local  optimum42. Therefore, it is of practical significance to use the SIOAs to obtain the optimal solution to 
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the global optimization problem. In the past decades, the SIOAs has developed rapidly and becomes a hotspot 
in many  fields42–48. So far, many different types of SIOAs have been proposed, such as the Grey Wolf Optimizer 
(GWO)  algorithm43, the butterfly optimization algorithm (BOA)44, and the sparrow search algorithm (SSA)42, 
each demonstrating success across different optimization  tasks41,49.

Motivated by these developments, our study introduced a novel hybrid algorithm that leverages the GWO to 
enhance the BPNN’s predictive performance for species distribution. We detailed the construction of this hybrid 
algorithm and evaluated its performance against BPNN and the prevalent SDMs (GBM, GLM, MaxEnt, and RF) 
using data on 23 species. Additionally, we explored the hybrid model’s ability to predict the spatial distribution 
of an invasive species, aiming to showcase its effectiveness in spatial distribution prediction.

Materials and methods
Backpropagation neural networks and Grey Wolf Optimizer algorithm
Backpropagation neural networks (BPNN) are capable of handling both continuous and categorical  data40,50. 
They exhibit some attractive properties, including the ability to capture nonlinearity and tolerance noise, but 
they also have some drawbacks, such as being highly dependent on initial solutions and falling into the local 
 optimum38,40,41. The Grey Wolf Optimizer (GWO) algorithm can effectively balance local optimization and global 
search with its adaptive convergence factor and information feedback mechanism and obtain high convergence 
speed and solution  accuracy43.

Construction of the hybrid algorithm
In this paper, we proposed a novel hybrid algorithm for predicting the potential distribution of species, called 
Grey Wolf Optimizer algorithm optimized backpropagation neural networks algorithm (GNNA). Specifically, 
we used the BPNN to construct GNNA. GNNA is not a simple combination of GWO and BPNN but uses the 
good global search ability and fast convergence ability of GWO to determine the optimal threshold and optimal 
weight of BPNN. The specific GNNA process is as follows:

1. Determine the basic structure of the BPNN. The three-layer BPNN was selected, the number of nodes in the hid-
den layer was determined to be 5 and the training set and test set were randomly generated according to 4:1.

2. Initialize the basic parameters. The gray wolf population size was set as 20, the maximum number of iterations 
was 100, the upper bound of the gray wolf was 1, and the lower bound of the gray wolf was − 1. Initialize the 
gray wolf position and parameters A, a and C. The dimension of each gray wolf position information was cal-
culated according to the number of layers in each layer of BPNN (dimension = input layer number × hidden 
layer number + hidden layer number + hidden layer number × output layer number + output layer number).

3. Determine the fitness function. The activation function in the hidden layer and the output layer were adopted 
Sigmoid type function. The learning rate was 0.01 and the training goal was 0.00001.

4. Calculate the fitness values of all search agents according to the threshold and weight and update the position 
information of the remaining gray wolves ω and parameters Ai, a and Ci.

5. Divide the data into test data and training data, and record the optimal search agent and its corresponding error.
6. Determine whether the maximum number of iterations was met. If the condition was met, terminate the 

cycle; otherwise, repeat steps (4) to (6).
7. Get the result. The final position of the gray wolf α , the minimum error of the position of the gray wolf α , 

and error between test data and training data.

Update the gray wolf position according to the following equations. First, calculate the distance vectors 
between the individual and the prey (Eqs. 1 and 2).

where, Ci(t)(i = 1, 2, 3) represents the random vectors; ri(t)(i = 1, 2, 3) represents the random vectors in which 
every element is in [0,1]; Dp(t)(p = α,β , δ) represents the distance vectors between p and other individuals, ◦ rep-
resents the Hadamard product, || represents the absolute value of each element in the vectors; Xp(t)(p = α,β , δ) 
represents the current position of p; X(t) represents the current position of the gray wolf.

Second, the positions of the first three wolves are updated according to the following equations:

where, Ai(t)(i = 1, 2, 3) represents the convergence vector; ri+3(t)(i = 1, 2, 3) represents the random vectors 
in which every element is in [0,1]; components of a(t) are linearly decreased from 2 to 0 during iteration; 
Xi(t)(i = 1, 2, 3) represents the updated position of the first three wolves.

Finally, adjust the position of the offspring gray wolf according to the following equations:

(1)Ci(t) = 2ri(t)(i= 1, 2, 3)

(2)Dp(t) =
∣

∣Ci(t) ◦ Xp(t)− X(t)
∣

∣

(

i = 1, 2, 3; p = α,β , δ
)

(3)Ai(t) = 2a(t) ◦ ri+3(t)− a(t)(i = 1, 2, 3)

(4)Xi(t) = Xp(t)− Ai(t) ◦ Dp(t)
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where, ωi(i = 1, 2, 3) represents respectively the learning rate of wolf ω to wolf α,β , δ ; ‖Xi(t)‖ represents the 
2-norm of position vector Xi(t) , and Xω(t + 1) represents the position of the offspring gray wolves. The pseudo 
code of the GNNA is shown as follows (Algorithm 1).

Start:

input bioclimatic variables data

output 0-1 data of species

Process:

01. initialize the weight and threshold of BPNN

02. repeat

03. initialize the position of the gray wolf population position 

04. initialize Ai, a and Ci

05. calculate the fitness of each search agent

06. Xα=optimal search agent, X =second best search agent, X =third best search agent

07. white (t < maximum number of iterations)

08.     for each search agent

09.        update the position of the current search agent position according to Equation (2.6)

10.     end for
11.     update Ai, a and Ci

12.     calculate the fitness value of all search agent

13.     update Xα, X  and X
14.     t=t+1

15. end while
16. return Xα
17. train BPNN with the optimized weight and threshold

18. output = accuracy of GNNA test set

Algorithm 1 Pseudo code of the GNNA.

Comparing GNNA predictive performance with BPNN and four commonly used SDMs
We first compared the predictive performance of GNNA with BPNN, posing the explicit hypothesis that GNNA 
would outperform BPNN and achieve good absolute predictive performance. To this aim, we downloaded occur-
rence records for 23 species after 1970 from the Global Biodiversity Information Facility (GBIF, http:// www. 
gbif. org/) and removed duplicate records within a 5 km radius. These species have diverse characteristics in the 
climate, elevation, and range of their habitat (the number of records and details for each species are shown in 
Table S1 and Table S2 in Supporting Information). We also categorized the 23 species into three kinds of sample 
sizes according to the number of occurrence records (Table S1 in Supporting Information). In addition, for 
each species, we randomly generated pseudo-absence data according to three times the number of occurrence 
records. Each occurrence and pseudo-absence point is associated with a vector composed of climate values, cor-
responding to bioclimatic variables, which are downloaded from WorldClim 2.1 (http:// www. world clim. org/) 
at a raw resolution of 2.5 arc-min51 and selected by Pearson’s correlation test (r) with |r|< 0.7. Abbreviations and 
full names of bioclimatic variables are listed in Table S3, and the bioclimatic variables obtained for each species 
are shown in Table S4.

As a preliminary step, we constructed SDMs for all 23 species through BPNN and GNNA. Specifically, for 
each species, we first randomly split 80% of the species data into training data and the remaining 20% into test-
ing data. We then evaluated the predictive performance of the model by computing three metrics widely used in 
ecological research, namely the area under the receiver operating characteristic curve (AUC,  Swets52), Cohen’s 
kappa (KAPPA,  Cohen53), and the true skill statistic (TSS, Allouche et al.54). We repeated this splitting procedure 
12 times and then took the median of the evaluation metrics. In this study, we used a threshold value at which 
the TSS is maximized to determine presences and absences.

We then applied four commonly used SDMs, namely  GLM14,15,  GBM16,18,  RF19, and  MaxEnt20, to all 23 spe-
cies and compared their predictive performance with GNNA. We followed Brun et al.55 and Zhang et al.56 to set 
complex parameters for each of the four SDMs involved in the comparison, aiming to make them sufficiently 
comparable to GNNA. For GLM, the response curve was set to polynomial and the search direction for stepwise 
regression was set to both; for RF, the number of variables randomly sampled as candidates at each split was set 

(6)Xω(t + 1) =
ω1X1(t)+ ω2X2(t)+ ω3X3(t)
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to 5, the number of trees to grow was set to 1000, and the minimum size of terminal nodes was set to 5; for GBM, 
the maximum depth of each tree was set to 3, the total number of trees was set to 1000, and a shrinkage parameter 
applied to each tree in the expansion was set to 0.01; for MaxEnt, the maximum number of iterations was set 
to 100. We performed these SDMs in the R environment (version 4.1.1, R Core Team, 2021) using the packages 
‘stats’ (version 4.0.5), ‘randomForest’ (version 4.6–14), ‘gbm’ (version 2.1.8), and ‘dismo’ (version 1.3–5). The data 
(i.e., species data and bioclimatic variables) and data partitioning used for the four SDMs (i.e., GLM, GBM, RF, 
and MaxEnt) described above are the same as GNNA and BPNN, which is to facilitate the direct comparison of 
the predictive performance of the four SDMs with that of GNNA.

Comparison of spatial distribution predictions—an application case of an invasive species
In addition to the comparison of predictive performance (measured by metrics), the comparison of the prediction 
of spatial distribution should be taken into consideration. The prediction of spatial distribution is concerned with 
practical application, especially that of invasive species. We provided an example for predicting the distribution 
of an invasive plant, Mimosa bimucronata (DC.) Kuntze (M. bimucronata), which is native in South America 
and has now invaded the southern coastal region of China. We applied GNNA, BPNN, and the four commonly 
used SDMs to predict the native and non-native distribution of the species under the current environment, 
respectively. We used native occurrence records to train the SDMs and predicted both native and non-native 
potential distributions. At the same time, non-native occurrence records were used to verify the prediction 
performance of the SDMs for the potential distribution. The occurrence records of M. bimucronata in South 
America were obtained from GBIF (http:// www. gbif. org/), and the occurrence records of M. bimucronata in 
China were obtained from the study of Xie et al.57. The environmental variables and parameter settings of the 
SDMs were consistent with those described above in section “Comparing GNNA predictive performance with 
BPNN and four commonly used SDMs”.

Results
Comparison of predictive performance between GNNA and BPNN
Overall, the three evaluation metrics consistently showed that GNNA had better predictive performance than 
BPNN (Fig. 1a–c). Specifically, 20 out of 23 species performed better with GNNA based on having higher metric 
values for two or more metrics (Fig. 1d–f). The percentage improvement in predictive performance of GNNA 
over BPNN, no matter which metric was used to measure it, decreased as the sample size increased (Table 1). 
When the sample size was small, the predictive performance of GNNA was improved by about 2% compared 
with that of BPNN, while when the sample size was large (middle and big), the predictive performance of GNNA 
was improved by less than 0.3% compared with that of BPNN (Table 1). The predictive performance of GNNA 
gradually stabilized with increasing sample size, with a wide inter-quartile range (IQR) when the sample size 
was small and a narrower IQR when the sample size was large (middle and big) (Table 1).

Comparison of predictive performance between GNNA and four commonly used SDMs
Overall, the predictive performance of GNNA was better than that of GBM and GLM, but slightly lower than that 
of RF and MaxEnt (Fig. 2b–d). Specifically, 14 out of 23 species (about 61% of species) showed better predictive 
performance of GNNA than GBM, and 12 out of 23 species (about 52% of species) showed better predictive per-
formance of GNNA than GLM (Fig. 2a). Only about five out of 23 species (about 22% of species) showed better 
predictive performance for GNNA than for RF and MaxEnt (Fig. 2a). The predictive performance of GNNA was 
comparable to that of MaxEnt and RF in predicting the distributions of species with small sample sizes (such as 
S. dareiformis and C. flavum) (Fig. 2e–g).

Comparison of spatial distributions predicted by GNNA, BPNN, and the four commonly used 
SDMs
The native distribution is mainly concentrated on the southern edge of Brazil (Fig. 3), as shown by the almost 
identical findings from GNNA, BPNN, and the four commonly used SDMs (i.e., MaxEnt, RF, GBM, and GLM) 
in predicting native distribution areas. However, there are some obvious differences when predicting non-native 
distribution areas. In addition to the prediction results, all models consistently show that Guangxi, Guangdong, 
and Hainan are the main distribution areas of non-native species (Fig. 4). The prediction results of GNNA, Max-
Ent, and RF also showed a high probability of invasion in Chongqing, which is consistent with the occurrence 
record of M. bimucronata found in Chongqing (Fig. 4a–c).

Discussion
The proposed hybrid algorithm, GNNA, demonstrates a substantial enhancement in predictive performance 
over the traditional BPNN, as evidenced by three distinct evaluation metrics. The advancement of predictive 
performance remains a primary goal in developing new methods for creating  SDMs36,58, and our research pro-
vides a new idea for combining existing SDMs with SIOAs to develop SDMs. In addition, the stability of GNNA 
is affected by the sample size and increases with the increase in sample size. Nevertheless, certain species within 
our study did not exhibit this trend when applying GNNA, which may be attributed to either their widespread 
geographical distribution or potential inaccuracies in occurrence records which sourced from the GBIF.

Our comparative analysis reveals that the predictive performance of GNNA was better than that of GLM and 
GBM, and delivering predictive results on compare with MaxEnt and RF when species with small sample sizes. 
Despite the notable superiority of GNNA over the four commonly used SDMs in certain cases (e.g., S. darei-
formis and C. flavum), relying solely on a single SDM could result in skewed interpretations within ecological 
 research3,59. It is well-established that no single SDM can consistently deliver high predictive performance across 

http://www.gbif.org/
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diverse species and  regions29,35,60. In ecological research, researchers often depend on the consistent results of 
multiple SDMs or ensemble models to fortify the credibility of their  findings2,23,61–63. Therefore, our proposed 
GNNA has great potential to serve as an integral base learner within ensemble model constructions.

Furthermore, biological invasion is a global issue that ecologists have been concerned about for  decades64–67. 
Effectively predicting the potential distribution of invasive alien plants provides is crucial for developing 

Figure 1.  Comparison of predictive performance between GNNA and BPNN under three evaluation metrics 
(AUC, KAPPA, and TSS). (a–c) Represent the density distribution of 23 species under AUC, KAPPA, and TSS, 
respectively. (d–f) Show the comparison of predictive performance of GNNA and BPNN under AUC, KAPPA, 
and TSS for each species, respectively.

Table 1.  Predictive performance of GNNA and BPNN for different sample sizes, measured using AUC, 
KAPPA, and TSS, percentage improvement in predictive performance (Increment), and inter-quartile range 
(IQR).

GNNA BPNN Increment IQR

AUC KAPPA TSS AUC KAPPA TSS AUC KAPPA TSS

GNNA BPNN

AUC KAPPA TSS AUC KAPPA TSS

Small 0.877 0.665 0.667 0.860 0.652 0.653 2.03% 1.99% 2.14% 0.061 0.074 0.065 0.050 0.063 0.062

Middle 0.949 0.834 0.838 0.947 0.833 0.836 0.19% 0.12% 0.24% 0.014 0.019 0.021 0.013 0.021 0.023

Big 0.932 0.688 0.694 0.931 0.687 0.692 0.12% 0.15% 0.29% 0.007 0.009 0.008 0.007 0.015 0.016
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prevention and control strategies against their  spread68,69. SDMs have been increasingly used to predict the 
potential distribution of invasive plants in recent  years11,57,69. The GNNA proposed in this study also showed 
superior ability in predicting the non-native potential distribution of invasive plants.

Conclusions
This study introduces an SIOA GWO into SDMs, and constructs a hybrid algorithm GNNA to improve the 
predictive performance of SDMs. Specifically, compared with BPNN, the predictive performance of the hybrid 
algorithm GNNA proposed in this paper is significantly improved. In addition, GNNA, which has excellent pre-
dictive performance comparable to common SDMs such as MaxEnt and RF, can be used as a good base learner 

Figure 2.  Comparison of the predictive performance of the GNNA model with four commonly used species 
distribution models (SDMs, i.e., GBM, GLM, RF, and MaxEnt) under three evaluation metrics (i.e., AUC, 
KAPPA, and TSS). (a) Represents how many species out of the 23 species show that GNNA has better predictive 
performance than four commonly used SDMs. GNNA > ** means that the predictive performance of GNNA is 
better than that of ** under the same species, and ** means the four commonly used SDMs. (b–d) Represent the 
comparison of the predictive performance of GNNA and four commonly used SDMs under the three evaluation 
metrics, respectively. (e–g) Represent the predictive performance of the 23 species under GNNA and four 
commonly used SDMs under the three evaluation metrics, respectively.
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Figure 3.  Current distribution of M. bimucronata in South America (native) based on GNNA, BPNN, and the 
four commonly used SDMs (i.e., MaxEnt, RF, GBM, and GLM), respectively. The black point represents the 
occurrence records of M. bimucronata in South America. Figures were created using R 4.1.1 (https:// www.R- 
proje ct. org/).

https://www.R-project.org/
https://www.R-project.org/
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for ensemble models. Up to now, many different types of SIOAs have been proposed, and these SIOAs have been 
tested to have superior optimization capabilities. We will try to combine more SIOAs with SDMs in future work.

Data availability
The cleaned occurrence records for the 23 real plant species investigated in this study: Dryad https:// datad ryad. 
org/ stash/ share/ XhPyz K093j JB0x3 cyH4x 0ujpb DTkAg mqBDD UjZcS h3o.
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