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Entanglement in photo‑ionization 
process
I. A. Ivanov 1* & Kyung Taec Kim 1,2

We report a study of the entanglement between the quantized photon field and an atom arising in 
the photo‑ionization process. Our approach is based on an ab initio solution of the time‑dependent 
Schrödinger equation (TDSE) describing the quantum evolution of a bipartite system consisting of 
the atom and the quantized electromagnetic field. Using the solution of the TDSE, we calculate the 
reduced photon density matrix, which we subsequently use to compute entanglement entropy. We 
explain some properties of the entanglement entropy and propose an approximate formula for the 
entanglement entropy based on the analysis of the density matrix and its eigenvalues. We present 
the results of a comparative study of the entanglement in the photo‑ionization process for various 
ionization regimes, including the tunneling and the multiphoton ionization regimes.

Entanglement is an intrinsic feature of quantum mechanics (QM) which is responsible for non-local correlations 
arising in quantum systems. For a bipartite system AB, consisting of two subsystems A and B, entanglement 
can be defined as  follows1. If HA and HB are the Hilbert spaces for the subsystems A and B respectively, than 
the Hilbert space of the combined system AB is the tensor product HA ⊗HB . A state of a bipartite system 
AB described by a vector |�AB� is entangled if it cannot be represented as a tensor product of two vectors |�A� 
and |�B� belonging to HA and HB , respectively. One needs more than one pair of |�A� and |�B� to describe an 
entangled state, so that:

for some set of vectors |�Ai � and |�Bi � . Decomposition (1) is, in general, not unique, essential is that for an 
entangled state there is more than one pair of |�Ai � and |�Bi � in the sum in the Eq. (1).

The standard prescriptions of QM imply that a system described by a state vector (1) possesses highly non-
classical properties, such as correlations and instantaneous action at a distance, existing even if the parts A and 
B of the bipartite system AB are sufficiently far away from each other to exclude any causal relations between 
them. This contradicts the idea of the local realism, i.e., the notion that a system can only be influenced by its 
nearby surroundings and prompted Einstein, Podolsky and Rosen to put forward, in their famous EPR  paper2, 
a conjecture that QM provides only an incomplete description of the physical reality. This paper led to many 
fascinating discussions of the foundations of the QM, which culminated in the famous Bell  inequality3, that any 
theory preserving local realism must obey. The QM violates the Bell inequality and so apparently does the Nature, 
as it was convincingly demonstrated  experimentally4,5.

These highly unusual nonclassical properties of the entanglement proved crucial for numerous potential appli-
cations, such as quantum  teleportation6,7, secure quantum  cryptography8 or the field of quantum  computing1,9. 
Various aspects of entanglement arising in different physical situations and systems, such as the electron-electron 
entanglement in multi-electron atoms in laser  fields10,11, the entanglement of orbital angular momentum in non-
sequential double  ionization12, or the electron-ion entanglement in ionization  process13–15 have been studied in 
the literature.  In16 exact analytic solutions of the energy eigenvalue equation for the bipartite system consisting 
of a free electron and a single mode quantized electromagnetic field were proposed. These eigenstates were 
used to study entangled states of this bipartite system. It was  found16 that these states are closely related to the 
number-phase minimum uncertainty states, i.e., the states minimizing product of uncertainties of the photon 
number and the phase  operators17.  In18 dynamic evolution of the bipartite system consisting of a free electron 
and a single mode quantized photon field interacting on a finite time interval was studied. The Von Neumann 
 entropies19 characterizing degree of the entanglement between the electron and the photon subsystems were 
analyzed and it was found that there is always an entropy production at the end of the process, when electron-
field interaction is switched off completely. In the  work20 the light-matter entanglement in the process of the 

(1)|�AB� =
∑

i

ci|�Ai � ⊗ |�Bi �
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above-threshold ionization has been studied using an appropriately modified version of the well-known Strong 
Field Approximation (SFA)21–26.

In the present work we report a study of the entanglement between the quantized photon field and an 
atom arising in the photo-ionization process for various regimes of ionization, including the tunneling and 
the multiphoton regimes of ionization. Our approach is based on an ab initio solution of the time dependent 
Schrödinger equation describing quantum evolution of a bipartite system consisting of the atom and the quan-
tized electromagnetic field.

The paper is organized as follows. In Sections Theory and Methods we describe theoretical and numerical 
techniques that we use. Our results and conclusions are presented in the Sections Discussion and Conclusions. 
Atomic units with ℏ = 1 , e = 1 , m = 1 and c = 137.036 with e, m being the charge and the mass of the electron 
and c the speed of light, are used throughout the paper.

Theory
To describe a one-electron atom interacting with the quantized electromagnetic field we use the numerical pro-
cedure proposed in the  work27. For readers convenience we recapitulate the main details of the procedure below.

In the Heisenberg representation the quantized vector potential can be written  as28,29:

Electromagnetic field is quantized in a finite volume V, ak,� are the photon annihilation operators. The Hilbert 
space of the bipartite atom and field system is the tensor product Hel ⊗Hfield , where Hel and Hfield are electron 
and photon sectors of the Hilbert space, respectively. The factor g(t) in Eq. (2) is an envelope function which 
rumps on the atom-field interaction, we will provide more detail about its particular form later.

The computational procedure we employ is based on the well-known fact that the photon Hilbert space is 
spanned by the Fock states |N� - the eigenstates of the operator N̂k,� = â†k,�âk,� of the number of photons in the 
mode k, � . We use only a single mode (k, �) of the quantized electromagnetic field, corresponding to a linear 
polarization in the z-direction and a particular photon frequency ω . We retain thus only one term in the expan-
sion (2) and we will omit, therefore, subscripts k, � in all the formulas below. We assume, moreover, the dipole 
approximation in the following. We neglect, therefore, the spatial exponential factors eik·r in the calculations. In 
the Fock states basis the matrix elements of the photon operators in Eq. (2), which we will need in the following, 
are given by the well-known  relations30:

The initial state of the combined system electron+field at the initial moment of time, t0 = 0 a.u., is a disentangled 
product state φ0 ⊗ |N0� , where φ0 is the ground atomic state and |N0� is the initial state of the field.

The quantum evolution of the system is governed by the time-dependent Schrödinger equation (TDSE), where 
we use the minimal coupling interaction  Hamiltonian28 to describe the atom-field interaction:

The setup we are using is similar to the one employed  in18, where quantum evolution of the bipartite system 
consisting of a free electron and a single mode quantized photon field was studied. The main difference is that for 
that system an analytical solution of the TDSE can be  obtained18, while in the present case of an initially bound 
atomic electron we have to rely on a numerical procedure which is described below.

We use mixed representation of the quantum operators in Eq. (4). The electron subsystem is described using 
the more familiar Schrödinger picture, while quantized vector potential operators is described using the Heisen-
berg form (2). This representation can be obtained from the Schrödinger picture, in which neither electron nor 
field operators depend on time, by applying the unitary transformation exp

{

−iĤfieldt
}

 generated by the field 

Hamiltonian Ĥfield . This form of the TDSE using the mixed representation is convenient, since it looks similar 
to the form of the TDSE describing atom-field interaction in the calculations treating electromagnetic field clas-
sically. Using this fact, we were able to devise a procedure allowing to solve the TDSE (4), by modifying the 
numerical codes we have been using to solve the TDSE describing electron evolution in presence of the classical 
electromagnetic  field31–33.

In the Eq. (4) Ĥel is electron Hamiltonian, for which we use the non-relativistic form, Ĥel =
p̂
2

2
+ V(r) . We 

will consider below two different targets: the hydrogen atom with V(r) = −1/r and the Yukawa atom with with 
the short-range potential V(r) = −1.903e−r/r . The ground states of both systems are s− states with an ionization 
potential |ε0| = 0.5 a.u. The non-relativistic description of the electron subsystem, in particular the use of the 
dipole approximation, is legitimate for the moderate field intensities of the order of several units of 1014−1015 
W/cm2 that we consider below. To relate the intensity and the photon number N0 for the single-mode Fock state 
|N0� which we use as the initial state, we note that in this state the expectation value of the energy flux for the 

(2)Â(r, t) =
∑

k,�

√

2πc2

ωV
g(t)

(

ek,�âk,�e
−iωt+ik·r + h.c

)
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2

2c2

)

|�(t)�.



3

Vol.:(0123456789)

Scientific Reports |        (2024) 14:11378  | https://doi.org/10.1038/s41598-024-62198-6

www.nature.com/scientificreports/

quantum field described by Eq. (2) is ωcN0/V
30. The cycle-average of the Poynting vector, computed for the 

classical monochromatic linearly polarized wave wave E0 cosωt , is, on the other hand: cE20/(8π) . The Fock state 
|N0� carries, therefore, the same energy flux as the monochromatic wave with the field strength:

We will use below the value of E0 thus defined as a more familiar and convenient measure of the field strength.
In the process of the quantum evolution driven by the TDSE (4), the atom-field system becomes entangled. 

Such an entangled wave-function can be written using the completeness of the Fock states in Hfield as:

where |fN (t)� are vectors from the electron Hilbert space Hel , and the parameters n1 , n2 are to be chosen so as to 
ensure convergence of the expansion (6). More details of the procedure we use to solve the TDSE (4) using the 
expansion (6) are given in the Section Methods.

Discussion
Entanglement entropy
Different measures of entanglement have been proposed in the  literature34–36. We will use the von Neumann 
entanglement  entropy19,35, which for a bipartite system AB consisting of two entangled subsystems A and B can 
be defined as:

where ρ̂A = TrBρ̂AB and ρ̂B = TrAρ̂AB are reduced density operators describing subsystems A and B, ρ̂AB is the 
density operator describing the composite system. Operations TrA and TrB are partial traces consisting in trac-
ing over all the variables describing subsystems A and B respectively. Since it is immaterial which subsystem is 
used to calculate the von Neumann entanglement entropy, we can use the subsystem for which calculations can 
be performed easier. In our case it is the photon subsystem. The whole system electron+ field is in a pure state 
described by the state vector |�(t)� in Eq. (6) with the corresponding density operator |�(t)���(t)| . The partial 
trace with respect to electron variables can be easily computed, giving the following expression for the reduced 
density matrix describing the state of the field:

where ρF
N1,N2(t) = �fN2(t)|fN1(t)� is the scalar product of the vectors |fN (t)� from the electron Hilbert space Hel 

occurring in the expansion (6). Matrix elements of ρ̂F(t) in the basis of the Fock states can, therefore, be easily 
computed once the TDSE Eq. (4) is solved. The entanglement entropy can then be found as:

where �i(t) are the eigenvalues of the positive definite Hermitian matrix with the matrix elements ρF
N1,N2(t).

An ingredient of the calculation which we have yet to describe in more detail is the ramp-on function g(t) in 
Eq. (2), which describes the switching on of the atom-field interaction. We need a smooth ramp-on function g(t) 
to minimize the transient effects. On the other hand, we have to make sure that the particular form of g(t) that 
we use, does not affect the physical picture and the conclusions we make. We performed, therefore, calculations 
with different ramp-on functions g(t), defined so that g(0) = 0 , g(t) = 1 for t > τ , where a positive parameter τ 
defines duration of the ramping-on of the atom-field interaction. On the interval (0, τ) we used the polynomial:

and the trigonometric sine-squared:

profiles for g(t). For both profiles given by Eqs. (10) and (11), g(t) increases monotonously from zero to one on 
the switching interval (0, τ) . In Fig. 1 we present results we obtain for the Yukawa and hydrogen atoms for vari-
ous ionization regimes using the different ramp-on functions g(t). As mentioned above, we characterize the field 
in the Fock state using the equivalent field strength E0 defined in Eq. (5), and the photon frequency ω . It will 
also prove convenient below to employ an equivalent set of dimensionless parameters characterizing the field: 
the Keldysh  parameter21: γ = ω

√

2Ip/E0 (here ω , E0 and Ip are the field frequency, field strength and ionization 
potential of the target atom), and the multiquantumness parameter K = Ip/ω giving the number of photons 
needed to ionize the target atom. As it is well-known21–25,37, ionization process can proceed in distinctly differ-
ent ways depending on the value of the Keldysh parameter. For K ≫ 1 we may have either tunneling γ � 1 or 
multiphoton γ ≫ 1 regimes of ionization. One should note that fulfillment of the condition K ≫ 1 alone does 

(5)E0 =
√

8πωN0/V .

(6)|�(t)� =
N0+n2
∑

N=N0−n1

|fN (t)� ⊗ |N�

(7)S = −Tr
[
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]

= −Tr
[

ρ̂B log ρ̂B
]

(8)ρ̂F(t) = Trel|�(t)���(t)| =
∑
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�fN2(t)|fN1(t)�|N1��N2|

(9)S(t) = −
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i

�i(t) log �i(t)
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not necessarily mean that we are dealing with the multiphoton ionization  process38, the condition γ ≫ 1 should 
also be satisfied.

In the Fig. 1 we present the results for the multiquantum tunneling regime with γ = 1.07 and K = 8.77 
(Fig. 1a,b), the multiphoton regime with γ = 5.7 and K = 8.77 (Fig. 1c,d) regime, and the low-K ionization 
regime with participation of a small number of photons with γ = 3.74 , K = 2.5 (Fig. 1e,f). An observation that 
one can make upon inspecting the plots in Fig. 1 is that for the Yukawa atom entanglement entropy remains 
practically constant after the electric field is fully switched on for all the ionization regimes we consider. The 
entanglement entropy still grows for t > τ for the Yukawa atom, but in the multiquantum regime (Fig. 1a,c) this 
growth is so slow that it can hardly be discerned on the plots. For the low-K ionization regime of the Yukawa 
atom shown in (Fig. 1e) this growth is more pronounced, but is still rather slow. Moreover, as one can see, the 
entanglement entropies obtained for different ramp-on functions g(t) practically coincide when electric field 
is fully switched on. This means that for the Yukawa atom, entanglement entropy calculated at the moment 
t = τ , when the ramping-on of the interaction terminates, provides a well-defined measure of the field-atom 
entanglement, which does not depend on the particular details of the ramping-on of the atom-field interaction.

Figure 1.  (Color online) Entanglement entropy for the Yukawa and hydrogen atoms in presence of single mode 
quantized electromagnetic field as a function of time. Time is measured in optical cycles (o.c.) corresponding to 
the photon frequency ω.
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For the ionization of the hydrogen atom (Fig. 1b,d,f) dependence of the entanglement entropy on time for 
t > τ is more pronounced, especially in the case of the low-K ionization regime shown in Fig. 1f. For the more 
interesting multiquantum regimes shown in Fig. 1b,d this dependence is much weaker than for the low-K regime, 
and entanglement entropy calculated at the moment t = τ still provides a sensible characteristic of the field-atom 
entanglement even in the case of the hydrogen atom.

The main features of the behavior of the entanglement entropy can be understood with the help of a more 
detailed study of the reduced photon density matrix ρ̂F defined in Eq. (8) which we present in the next Section.

Properties of the reduced photon density matrix ρ̂F

Diagonal and non‑diagonal elements of ρ̂F

To get a better understanding of the behavior of the reduced photon density matrix (8), which we need to com-
pute the entanglement entropy in Eq. (9), we will present first a qualitative illustration of the time evolution of 
the elements of the reduced photon density matrix (8) which we obtain for different field parameters for the 
Yukawa and hydrogen atoms. In this Section we show the results we obtain for the ramp-on function (10) and 
τ = T , where T = 2π/ω - is an optical cycle corresponding to the photon frequency ω . As we saw above, for 
the moments of time t > τ the results are not sensitive to a particular choice of the ramping-on function g(t).

In Fig. 2 we show a general picture of the time-evolution of the diagonal elements of ρ̂F(t) for the Yukawa 
potential. It is convenient to label the diagonal matrix elements ρF

N ,N (t) of the matrix (8) as: ρF
N0−n,N0−n(t) , where 

N0 is the number of photons in the initial state of the electromagnetic field, and n an integer. With this definition 
the diagonal matrix elements ρF

N0−n,N0−n(t) with n ≥ 0 represent the probability Pn(t) to find the electron+field 
system in a state in which the electron absorbed n photons from the field at time t1.

We had to employ logarithmic scale in Fig. 2 since for the field parameters we consider the distribution of the 
diagonal elements of ρ̂F

N0−n,N0−n(t) is by far dominated by P0(t) = ρ̂F
N0,N0

(t) - the probability that no photons are 
absorbed or emitted. One can see that ρ̂F

N0−n,N0−n(t) have non-negligible values even for negative n, although 
their magnitude is considerably smaller than that of the ρ̂F

N0−n,N0−n(t) with positive n. With the notation we 
employ, the matrix element ρ̂F

N0−n,N0−n(t) with a negative n give us the probability for the atom to emit n photons. 
These matrix elements describe, therefore, the virtual processes in which atom emits n photons remaining in 
the ground state. The presence of such virtual processes does not contradict the energy conservation law since 
strict energy conservation is obtained in the limit of large evolution times, in agreement with the time-energy 
uncertainty relation �E�t ∼ 139.

A closer look at the distribution of the absorbed photons can be obtained from Figs. 3 and 4, where we show 
ρ̂F
N0−n,N0−n(t) with n > 0 for various field parameters. We performed a detailed study of the distributions of 

absorbed photons for the ionization process driven by the quantized electromagnetic field in a Fock state in 
the  work40. The results we present in Figs. 3 and 4 agree with the qualitative conclusions we made there. In par-
ticular, one may note that the most probable numbers of the absorbed photons in the cases of the Yukawa and 
Coulomb potentials are approximately equal. On the other hand, the distributions of absorbed photons, which 
can be obtained by taking vertical slices of the distributions in Figs. 3 and 4 are generally wider for the Coulomb 
potential. Two mechanisms could account for this  effect40. In the case of the finite range interaction the motion 
of the ionized electron is essentially free, and the free electron, as is well known, cannot absorb a photon. In the 
case of the short range interaction, therefore, the process of the photon absorption is confined to the time interval 
when electron is inside the range of the short-range potential. Another mechanism which might contribute to a 

Figure 2.  (Color online) (a) Diagonal matrix elements ρ̂F
N0−n,N0−n

(t) . Logarithmic scale is used. (b) Matrix 
norms defined in Eq. (12) as functions of time.
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broader distribution of the number of absorbed photons is the photo-excitation process, which is absent in the 
case of the Yukawa atom which has only one bound state.

Figure 3.  (Color online) Absorption probability as a function of time for the Yukawa and hydrogen atoms for 
the Keldysh parameter γ = 0.5 . Time is measured in optical cycles (o.c.) corresponding to the photon frequency 
ω.
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The reduced photon density matrix ρ̂F is by no means defined by its diagonal elements only. To be able to 
gauge the relative importance of the diagonal and non-diagonal matrix elements of ρ̂F let us define the follow-
ing matrix norms:

The evolution of the norms introduced in Eq. (12) is shown in Fig. 2b. One can see that ||ρF ||diag and ||ρF ||diag 
are of the same order of magnitude on all the interval of the quantum evolution that we consider.

Eigenvalues of the reduced photon density matrix ρ̂F

An analysis of the eigenvalues of ρ̂F provides more information about the properties of the reduced photon 
density matrix and the entanglement entropy (9). The reason for this is that, as we shall see, for large values 

(12)

||ρF ||diag =
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|ρF
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Figure 4.  (Color online) Absorption probability as a function of time for the Yukawa and hydrogen atoms for 
the Keldysh parameter γ = 2 . Time is measured in optical cycles (o.c.) corresponding to the photon frequency 
ω.
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of the multiquantumness parameter K only first few eigenvalues of ρ̂F play important role in Eq. (9) for the 
entanglement entropy.

The set {�i} of the eigenvalues of the reduced photon density matrix satisfies a few easily deducible conditions. 
Since, by definition, ρ̂F is a positive definite Hermitian operator, all its eigenvalues �i are positive. Moreover, since 
the reduced photon density matrix satisfies the normalization condition, one must have:

where the partial trace operation TrF consists in tracing over the field variables.
In Fig. 5 we show the three largest eigenvalues �0 , �1 and �2 ( �2 < �1 < �0 ) as functions of time for the 

same targets and the same field parameters as in Fig. 1. We see that for the case of the large values of the 
parameter K we have, for both tunneling and multiphoton regimes of ionization, the following ordering of the 
eigenvalues �0 ∼ 1 ≫ �1 ≫ �2 . It is clear from the definition (8) of the reduced photon density matrix, that when 

(13)TrFOρ
F(t) =

∑

i

�i = 1

Figure 5.  (Color online) The largest eigenvalues of the reduced photon density matrix ρF(t) as functions of 
time for the Yukawa and hydrogen atoms. Time is measured in optical cycles (o.c.) corresponding to the photon 
frequency ω.
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|P0(t)− 1| ≪ 1 , we must have �0(t) ≈ P0(t) , where P0(t) is the probability that the atom neither absorbed nor 
emitted any photons. If we assume that all the eigenvalues �i with i > 1 are small and can be neglected in Eq. (9) 
for the entanglement entropy and in the trace relation (13), than we obtain an estimate �1(t) ≈ 1− P0(t) from 
the trace relation, which gives us the following approximate formula for the entanglement entropy:

According to the discussion we presented above, Eq. (14) should be approximately valid for ionization with 
K ≫ 1 in both tunneling and multiphoton regimes. The results for the entanglement entropy that we obtain 
using Eq. (14) are shown in Fig. 6 for the same field parameters and targets shown in Fig. 1. We present results 
of the exact calculation based on Eq. (9), with all the eigenvalues of ρ̂F(t) included in the sum, results of an 
approximation obtained by truncating the sum in Eq. (9) and including only two largest eigenvalues �0 , �1 kept 
in Eq. (9), and the results we obtain using the analytic estimate (14). One can see that by keeping only the terms 
with the two greatest eigenvalues �0 , �1 in Eq. (9), we obtain a good estimate for the entanglement entropy. This 

(14)S = −P0(t) log P0(t)− (1− P0(t)) log (1− P0(t)).

Figure 6.  (Color online) Entanglement entropy for the Yukawa and hydrogen atoms in presence of the single 
mode quantized electromagnetic field as a function of time. (Red) solid line: Eq. (9), (green) dashed line: Eq. (9) 
with only two greatest eigenvalues �0 , �1 kept in the sum, (blue) short dashed line: Eq. (14). Time is measured in 
optical cycles (o.c.) corresponding to the photon frequency ω.
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fact justifies the assumption we made above that the terms containing the eigenvalues �i with i > 1 play rela-
tively minor role in Eq. (9) in the ionization regimes with large K values. We see also, that the analytic formula 
Eq. (14), which follows from this assumption, agrees fairly well with the results of the exact calculation in the 
large-K regimes, and reproduces qualitatively correctly the behavior of the entanglement entropy even in the 
low-K cases shown in Fig. 6e,f.

Entanglement entropy for different ionization regimes
We demonstrated above, when discussing results shown in Fig. 1, that the entanglement entropies S(τ ) calculated 
at the moment t = τ when atom-field interaction is fully switched on, practically do not depend on a particular 
form of the ramp-on function g(t). We have seen also that for t > τ and for the large-K ionization regimes, 
S(t) is a very slowly growing function of time. It is justified, therefore, to use the entanglement entropy S(τ ) 
calculated at the moment t = τ as a quantitative measure of the atom-field entanglement for different ionization 
regimes provided they belong to the multiquantum large-K domain. We will adopt, therefore, S(τ ) as a measure 
allowing comparison of the entanglement for different ionization regimes. We will present below results of such 
a comparative study of the entanglement for the ionization regimes with large K and arbitrary γ , in other words, 
for the tunneling and multiphoton regimes of ionization.

In Figs. 7 and 8 we show S(τ ) calculated according to Eq. (9) for different ionization regimes. We used in these 
calculations the ramp-on function g(t) given by Eq. (10) with τ = T , where T is an optical cycle corresponding to 
the photon frequency ω . As we discussed above, the results are insensitive to the choice of the particular form of 
the ramp-on function. For brevity, we will call below S(τ ) the entanglement entropy (understanding, of course, 
that entanglement entropy still grows, albeit slowly, for t > τ ). We confine our study to the multiquantum domain 
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Figure 7.  (Color online) Entanglement entropy for different ionization regimes.
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Figure 8.  (Color online) Entanglement entropy for different ionization regimes. Contour plot.
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with K > 5 where, as we saw, S(τ ) provides a reliable characteristic of entanglement, and we present results for 
the Keldysh parameter γ ranging from tunneling ( γ = 0.5 ) to the multiphoton ( γ = 5 ) regimes. Calculations 
have been performed for both Yukawa and Coulomb systems.

One can see from the plots that, as a rule, for the same field parameters entanglement entropy is higher in 
the case of the Coulomb potential. This fact can be explained by recalling the discussion of the reduced photon 
density matrix we presented above. The distributions of absorbed photons, which can be obtained by taking 
vertical slices of the distributions shown in Figs. 3 and 4 tend to be wider in the case of the Coulomb interaction. 
This fact was also noted in the  work40. As an illustration, we show in Fig. 9 distributions of absorbed photons 
at t = τ for the Yukawa and Coulomb cases. Wider photon distributions in the case of the Coulomb potential 
entail larger entropy.

Another feature which is apparent from Figs. 7 and 8 is the general decrease of the entanglement entropy 
with increasing K for fixed values of γ , which is most clearly seen in the tunneling regime of small γ-values. This 
feature is illustrated in more detail in Fig. 10, where we present entropy as a function of γ for several values of K. 
This trend is a consequence of the fact that to keep γ constant while decreasing K, we have to decrease the photon 
frequency and proportionally decrease the effective field strength (5). In the tunneling regime this leads to the 
sharp decrease of the processes corresponding to absorption or emission of photons, so that we have |1− P0| ≪ 1 
in Eqs. (14), and (14) tells us that the entanglement entropy should decrease. If, on the contrary, we keep K (i.e. 
the photon frequency) constant and increase the value of the γ parameter, we gradually move from the tunneling 
into the multiphoton regime. The decrease of the entanglement entropy in this case can be qualitatively under-
stood by looking at the photon distributions in Fig. 9. Tunneling is a non-resonant  process41, so we generally 
have broader photon distributions, and consequently a larger number of terms which contribute significantly in 
the expansion (6) describing the entangled state, leading to larger values of the entanglement entropy.

Entanglement entropy on a larger time interval
We have considered so far the situation when atom-field interaction is slowly switched on on the time inter-
val (0, τ) with the ramp-on function g(t) in Eq. (2), describing the switching on process, having the following 

Figure 9.  (Color online) Distributions of absorbed photons computed at the moment t = T . T is an optical 
cycle corresponding to the photon frequency ω . Ramp-on function (10) with τ = T has been employed in the 
calculations.
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properties: g(t) is a continuous and never decreasing function of time, g(0) = 0 , g(t) = 1 for t > τ . An interesting 
question is what would happen if we switched off the atom-field interaction at some point in the future. On the 
physical grounds, one would expect that the entanglement entropy should remain constant. These expectations 
are supported by a simple calculation using the equations of motion for the observables. In the Heisenberg picture 
we have, for an observable described by the operator Ô , an equation of  motion39:

For the case Ô = −ρ̂F(t) log ρF(t) , where ρF(t) is the reduced photon density matrix, the Hamiltonian operator 
driving evolution of ρF(t) after atom-field interaction has been switched off, is just the Hamiltonian ĤF of the 
free electromagnetic field, so:

Taking trace with respect to the photon variables of both sides of this equation, using invariance of trace with 
respect to the cyclic permutations and recalling definition (9) of the entanglement entropy S(t), we obtain from 

Eq. (16): 
dS(t)

dt
= 0.

As an additional consistency and accuracy check of our calculations, we performed a calculation modeling the 
situation when atom-field interaction is switched off at some point in the future. We solved the TDSE describing 
evolution of the bipartite system consisting of the atomic electron and the quantized field on the time interval 
(0, 8T) (where T = 2π/ω is an optical cycle corresponding to the field frequency ω ) using the following form of 
the function g(t) describing the atom-field interaction strength in Eq. (2):

In other words, we use the same switching on procedure as in the case of the ramp-on function (10) with τ = T , 
and switch off the atom-field interaction symmetrically on the interval t ∈ (6T , 7T) . The function g(t) defined by 
Eq. (17) is shown in Figs. 11. Figure 11 also shows entanglement entropy as a function of time for the same field 
parameters and the target atom as in Fig. 1e. One can see that calculated entanglement entropy indeed behaves in 
agreement with the properties we deduced above using the general arguments. During the process of the electron-
field interaction certain amount of entropy is produced, which remains constant after the complete switch-off 
of the interaction. This behavior of the von Neumann entropy is, to some extent, similar to the case of the free 
electron interacting with the quantized electromagnetic field considered  in18. In the case of the initially bound 
electron that we consider, just as in the case of the free electron studied  in18, a net entropy production is found 
on the time interval when the electron and the field interact. The photon and the electron subsystems, therefore, 
always end up in an entangled state after the moment when the electron-photon interaction is switched off.
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Conclusions
We performed a study of the entanglement between electron and quantized electromagnetic field subsystems 
for the process of ionization of the Yukawa and hydrogen atoms. Our study was based on the numerical ab 
initio solution of the TDSE describing quantum evolution of the bipartite system consisting of the atom and the 
quantized electromagnetic field.

Using solution of the TDSE we calculated the reduced photon density matrix ρ̂F , which was subsequently 
used to compute the entanglement entropy. We were able to explain some properties of the entanglement entropy 
by analyzing ρ̂F and its eigenvalues. The approximate Eq. (14) obtained as a result of this analysis, was shown 
to reproduce satisfactorily behavior of the entanglement entropy in both multiphoton and tunneling regimes 
of ionization.

We have shown that in the ionization regimes, characterized by large values of the mutiquantumness 
parameter K, the entanglement entropy is a slowly varying function of time on the time interval where atom-
field interaction is switched on completely. Moreover, the value of the entanglement entropy at the moment 
of time τ , when the switching on of the atom-field interaction terminates, does not depend on the particular 
form of the ramp-on function describing details of the switching process. This observation allows to use 
the entanglement entropy calculated at the moment t = τ as a quantitative characteristics of the atom-field 
entanglement and allows a comparative study of the entanglement for different ionization regimes with large 
values of the multiquantumness parameter K.

Such a comparative study showed that for the same set of the field parameters, entanglement entropy for 
the hydrogen atom is larger than for the Yukawa atom, which can be attributed to the effects of the long range 
Coulomb force on the ionized electron. We have shown also that for a fixed value of the Keldysh parameter γ and 
increasing multiquantumness parameter K, and for a fixed K and increasing γ , entanglement entropy decreases. 
We gave qualitative explanation of this behavior of the entanglement entropy on the basis of the analysis of the 
properties of the reduced photon density matrix.

We have considered the case of the quantized electromagnetic field prepared in the Fock state. Fock states are 
highly non-classical states for which the photon number operator N̂k,� = â†k,�âk,� in the mode k, � has a definite 
value. Consequently, in these states the conjugate variable, i.e. the phase of the  field1, is completely undefined. A 
question arises, therefore, to what extent the present results are applicable for the case of the atomic ionization 
driven by the commonly used laser pulses. Quantum state of the electromagnetic field for such a pulse can be 
well modeled by a coherent state of the  field30:

where cN = vN√
N

 , v = |v|e−iφ is an arbitrary complex number. Unlike the Fock states we have considered above, 
the coherent states have non-zero expectation values of the field operators. In particular, form Eqs. (2) to (18) 
one obtains for the vector potential  for the one-mode case we consider presently : 

�v|Â(r, t)|v� =
√

8π |v|2c2
ωV

ez cos (ωt − k · r + φ).
We examined the case of the coherent initial state of the field and compared atomic ionization driven by 

the field in the Fock state and in the coherent state in the  work40. This study was based on a semiclassical rep-
resentation of the quantized electromagnetic field proposed  in42. This approach can be used when the number 
of photons in the Fock state is N0 ≫ 1 . This theoretical procedure is described in detail in the Section Methods 
below. The results obtained  in40 show that the atomic characteristics, such as the spectra of the ionized electrons, 
ionization probabilities, etc., are virtually identical for the calculations using coherent initial states and the Fock 
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Figure 11.  (Color online) Entanglement entropy for the Yukawa atom in presence of the single mode quantized 
electromagnetic field as a function of time with the function g(t) in Eq. (2) given by Eq. (17). Time is measured 
in optical cycles (o.c.) corresponding to the photon frequency ω.
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initial state with the same equivalent field strength defined as prescribed by the Eq. (5). This fact was implicitly 
understood for a long time. The first studies of the statistical distributions for the number of absorbed photons 
in the process of the strong field ionization were published long time  ago25,43. These studies were based on the 
standard SFA approach, which uses completely classical description of the electromagnetic  field25,43. The  paper43, 
in particular, relying on the standard SFA approach with the field considered entirely classically, discusses the 
non-Poissonic character of the statistical distributions of absorbed photons for the process of strong field ioni-
zation. We presented in the  work40 a detailed comparison of the results for the distributions of the number of 
absorbed photons obtained using the SFA based  approach25,43, and the results obtained using the approach rely-
ing on the semiclassical quantum treatment of the electromagnetic field developed  in42. The results proved to be 
qualitatively quite similar, with some minor differences which can be attributed to the approximate character of 
the SFA method. The semiclassical theory developed  in42 explains the reason for this as follows.

In the framework of the theoretical approach proposed  in42 the effect of the totally undefined phase of the 
field in the Fock state can be accounted for by performing a suitable averaging of the electron density matrices 
obtained for the classical monochromatic waves with the same field strength and different carrier envelope phases 
(CEP) (the averaging prescription is given by the Eq. (30) below). For the long pulses the CEP effects fade and can 
be neglected, Therefore, the reduced electron density matrices obtained for the cases of the Fock and coherent 
initial states give virtually identical results for the statistical distributions of various observables. Entanglement 
entropy was calculated in the present work using Eq. (8) and expressing it in terms of the reduced photon density 
matrix. As Eq. (7) shows, we could use for this purpose the reduced electron density matrix, obtaining the same 
result. We saw also that the entanglement entropy becomes a very slowly growing function of time after the 
moment when the atom-field interaction is switched on completely. We can expect, therefore, that on the long 
time intervals, when the CEP effects can be neglected, our results for the entanglement entropy obtained for the 
initial Fock state of the field, should be applicable for the case of the initial coherent state of the field.

All the calculations above were performed for the case when only a single mode (k, �) of the electromagnetic 
field is present. Another aspect in which the present procedure might be generalized or modified is the case when 
several modes of the electromagnetic field have to be included in the consideration. This might be necessary, 
for instance, for the study of the pulse shape effects, where the effect of the pulse envelope can be represented 
by including additional modes in the expansion (2). Yet more interesting could be a study of the high harmonic 
generation (HHG) for the atom driven by the field in a Fock state, which would necessitate inclusion of the 
additional modes corresponding to the emission of harmonic photons. From the purely theoretical point of 
view, the present numerical procedure that we used to solve the TDSE for the bipartite system could be modi-
fied relatively easily for the multi-mode case. The only obstacles we could meet moving in this direction are of 
purely computational character. Computational cost of our numerical procedure is roughly the same as the cost 
of the numerical procedures used to solve the TDSE for atomic systems described in the Single Active Electron 
Approximation, driven by the classical elliptically polarized electric field. With heavy parallelization, the time 
for such a calculation to complete on a supecomputer is usually in the order of several hours. Adding more 
modes would linearly increase the computing time making such a calculation computationally costly, but still 
feasible. We did not need to include additional modes for the present calculation. We neglected, in particular, 
all the modes we would need to describe emission of the harmonic photons. In this respect, our procedure is 
similar to the semiclassical procedure proposed  in42 which is briefly described below in the Methods Section. 
An essential feature of this procedure is a convenient representation of the annihilation and creation operators 
obtained in the limit when N0 → ∞ , |m| ≪ N0 in Eq. (20). From the physical point of view taking this limit 
corresponds to the neglect of the processes of spontaneous photon emission or absorption and account of only 
the stimulated photon emission or absorption processes, which essentially coincides with the physical content 
of our approach. Mathematically, the neglect of the spontaneous emission processes corresponds to the neglect 
of the terms of the order of 1/N0 in the dynamic  equations42. For the typical field frequency ω and the equivalent 
field strength E0 that we consider, N0-values are in the range of 105–106 (the procedure we use to determine N0 is 
discussed in detail in the subsection Numerical Solution of the TDSE of the Section Methods), which certainly 
makes permissible the neglect of the terms of the order of 1/N0.

An interesting question is that of the possibility of experimental observation and measure of the atom-field 
entanglement. For an entangled state of a bipartite system, the reduced density matrices of both subsystems 
represent mixed rather than pure  states1. The reduced density matrix of any of the subsystems can be used for the 
calculation of the entanglement entropy. To detect entanglement one can, therefore, analyze the reduced density 
matrix characterizing one of the subsystems. For the case in question of the bipartite system consisting of atom 
and quantized photon field it is easier to analyze the reduced density matrix describing the electron subsystem 
after the moment of time when the atom-field interaction has been switched off. Such an analysis, allowing to 
reconstruct the density matrix by performing a set of incompatible measurements on a system, can be done 
using the methods of quantum  tomography44. It is important to note that such a measurement is meaningful 
only when atom-field interaction has been completely switched off. During the interval of the pulse duration 
the separation of the bipartite system in the electron and the field subsystems is, strictly speaking, unphysical. 
Indeed, such a separation depends on the gauge used to describe interaction of the electron and the quantized 
field. Instead of using the minimal coupling interaction Hamiltonian in Eq. (4) we might use, for instance, the 
Goppert-Mayer gauge, which is a generalization of the well-known quantum-mechanical length gauge for the case 
of the quantized electromagnetic field. Corresponding Hamiltonian could be obtained from the Hamiltonian (4) 
by means of the Goppert-Mayer  transformation45, which would affect reduced density matrices describing photon 
and electron subsystems. This transformation would, therefore, generally affect the entanglement entropy (9) 
for the times inside the laser pulse duration. Only when atom-field interaction is switched off and entanglement 
entropy ceases to vary, one obtains results independent of the gauge.
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Methods
Numerical solution to the TDSE
We use the coordinate representation for the vectors |fN (t)� in Eq. (6). We omit, therefore Dirac notation for 
these vectors and will write them simply as functions fN (r, t) of coordinates and time. Just as in the case of the 
ordinary TDSE, which treats the atom-field interaction  classically31–33, we represent fN (r, t) as a series in spherical 
harmonics (we assume that the field given by Eq. (2) is polarized in z-direction):

The radial variable r is treated by discretizing the TDSE on a grid with a step-size δr = 0.05 a.u. in a box of the 
size Rmax . The initial ground state of the system was obtained by using a variational calculation employing the 
Slater basis  set46,47 with subsequent propagation in imaginary  time48,49 on the spatial grid we described above.

By substituting expansions (6) and (19) into the TDSE (4), projecting the result on the vectors Yli0(n)⊗ |Ni� 
with different li , Ni , and using the formulas (22) for the matrix elements, one obtains system of coupled differential 
equations for the functions fNl(r, t) . This system of differential equations has been solved using a matrix iteration 
 method50. Computationally, this procedure is quite similar to the procedure employed for the solution of the 
ordinary  TDSE31–33.

Parameters n1 , n2 in Eq. (6) and parameter lmax in Eq. (19) were chosen to ensure convergence of these 
expansions. A rule of thumb we used when choosing the values for the parameters n1 and n2 was that they 
should exceed the maximum number of photons which can be absorbed (parameter n1 ) or emitted (parameter 
n2 ) during the evolution. To choose parameters lmax and Rmax properly, we used the values which were known 
to produce accurate results from the previous experience of solving ordinary TDSE for the classical field with 
strength related to the photon number N0 according to the relation (5). Thus, for the equivalent field strength 
E0 = 0.0534 a.u. and the photon frequency ω = 0.057 a.u., the choice of Rmax = 500 a.u., lmax = 50 , n1 = n2 = 50 
allows to obtain convergent results for the atom-field evolution on the interval (0, 4T), where T = 2π/ω is an 
optical cycle corresponding to the frequency ω.

In practical calculations we have to fix the value of the volume V in Eq. (2) for the quantized vector potential. 
We choose this volume to be a box with the size of 103 a.u. For a given equivalent field strength we then determine 
the value of N0 using Eq. (5). For the range of the frequencies and the equivalent field strengths that we consider, 
N0 thus defined is in the range of 105–106 . For instance, for E0 = 0.0534 a.u. (corresponding to the intensity of 
1014 W/cm2 ) and ω = 0.057 a.u. (wavelength of 800 nm) we obtain N0 = 1990525.

Semiclassical approach
We describe in this Section a semiclassical  method42 for the description of quantum evolution of the bipartite 
system consisting of the atom and the quantized electromagnetic field. The method is particularly illuminating 
since it demonstrates a simple connection between the quantum and classical treatments of the electromagnetic 
field. The method is based on the following realization of the Fock space. This representation proposed  in42 
consists in mapping the Fock states |N0 +m� in Eq. (6) on the set of exponential functions of angle θ:

Under this mapping the photon part of the Hilbert space Hfield becomes a Hilbert space of functions f (θ) , 
defined on the interval θ ∈ (0, 2π) , with the scalar product:

The creation and annihilation operators become operators acting on the functions depending on θ as follows:

It is easy to see that this representation agrees with the usual properties a|N� =
√
N |N − 1� , 

a†|N� =
√
N + 1|N + 1� of the creation and annihilation operators.

Representation (22) is an exact mapping. If we assume that in Eq. (20) N0 → ∞ , |m| ≪ N0 , i.e., we are 
interested in strong enough fields and the processes with not too large numbers of absorbed of emitted photons, 
Eq. (22) simplifies to:

Using these asymptotic relations the quantized vector potential (2) can be written in the limit N0 → ∞ as:

(19)fN (r, t) =
lmax
∑

l=0

fNl(r, t)Yl0(n).

(20)|N� = |N0 +m� = eimθ

(21)�f |g� = 1

2π

2π
∫

0

f ∗(θ)g(θ) dθ .

(22)
a =e−iθ

(

N − i
∂

∂θ

)
1
2

a† =
(

N − i
∂

∂θ

)
1
2

eiθ

(23)
a =e−iθ

√
N0

a† =eiθ
√
N0



16

Vol:.(1234567890)

Scientific Reports |        (2024) 14:11378  | https://doi.org/10.1038/s41598-024-62198-6

www.nature.com/scientificreports/

One should note that taking the asymptotic large −N0 limit in Eq. (23) one discards certain processes, such as 
spontaneous emission or absorption of photons. These processes acquire an additional factor of 1/N0 comparing 
to the stimulated emission or absorption processes, and cannot, therefore be described using the leading order 
of the 1/N0 expansion. The processes of the stimulated emission and absorption which are of interest to us in 
the present work, on the other hand, can be considered in the leading order of 1/N0-expansion. The expression 
in (24) has a form of the classical expression for the vector potential. One should realize,  however42, that it is an 
operator in the photon sector of the Hilbert space Hfield because of the dependence on the angle θ.

The quantum electrodynamic (QED) time-evolution propagator Û(t, 0) driving evolution of the bipar-
tite system consisting of atomic electron and quantized electromagnetic field in the combined Hilbert space 
Hel ⊗Hfield can be written in a closed form using the Dyson time-ordering operator T̂51:

where Ĥ(t) = Ĥel +
Âp̂

c
+ Â

2

2c2
Using the representation (20), expression (24), and the definition (21) of the scalar product in Hfield , one can 

see that in the limit of large N0 the matrix elements of the QED time-evolution propagator Û(t, 0) calculated in 
the basis of the Fock states can be written  as42:

here Û(t, 0;φ) is an operator acting in the electron Hilbert space Hel only. This operator satisfies the familiar 
time-dependent Schrödinger  equation42:

where A(θ) is now a classical field:

with the amplitude A0 =
√

8Nπc2

ωV
 . All we have to do, therefore, to find the matrix elements of the complete 

QED propagator in the basis of the Fock states is to find the electron propagator Û(t, 0; θ) in Eq. (27) as a function 
of the phase θ , and to calculate the integral in the Eq. (26). Using this prescription and acting with the QED 
propagator (26) on the initial state of the bipartite system, one obtains the following expression for the vectors 
|fN (t)� from the electron Hilbert space Hel in the expression (6) for the wave-function of the system:

Another formula that one can derive from the Eqs. (20) and (29) is the representation for the electron density 
matrix at time t, which can be obtained by taking partial trace with respect to photon degrees of freedom, with 
the  result42:

where ρ̂el(0) = |φ0��φ0| is the initial electron density matrix, and Û(t, 0; θ) is the electron propagator (27) 
describing evolution driven by the monochromatic field (28).

Equations (29) and (30) demonstrate that the time evolution of the bipartite system consisting of the atom 
and quantized electromagnetic field prepared in the Fock state, can be modeled by solving ordinary quantum-
mechanical TDSE describing evolution driven by the classical monochromatic field (28) with different phases θ . 
All one has to do is to solve the TDSE and perform certain “phase-average” as prescribed by Eqs. (29), (30). From 
the physical point of view this recipe is quite natural. This “phase-average” takes into account the well-known 
fact, that since Fock state of the field is characterized by the fixed definite number of photons, the conjugate 
variable, i.e. the phase of the  field1, is completely undefined.
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∂Û(t, 0; θ)

∂t
=

(
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