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Harnessing LSTM and XGBoost 
algorithms for storm prediction
Ayyoub Frifra 1,2, Mohamed Maanan 1*, Mehdi Maanan 2 & Hassan Rhinane 2

Storms can cause significant damage, severe social disturbance and loss of human life, but predicting 
them is challenging due to their infrequent occurrence. To overcome this problem, a novel deep 
learning and machine learning approach based on long short-term memory (LSTM) and Extreme 
Gradient Boosting (XGBoost) was applied to predict storm characteristics and occurrence in Western 
France. A combination of data from buoys and a storm database between 1996 and 2020 was 
processed for model training and testing. The models were trained and validated with the dataset 
from January 1996 to December 2015 and the trained models were then used to predict storm 
characteristics and occurrence from January 2016 to December 2020. The LSTM model used to predict 
storm characteristics showed great accuracy in forecasting temperature and pressure, with challenges 
observed in capturing extreme values for wave height and wind speed. The trained XGBoost model, on 
the other hand, performed extremely well in predicting storm occurrence. The methodology adopted 
can help reduce the impact of storms on humans and objects.

Storms and extreme extratropical cyclones represent a significant risk to human life and the  environment1–5. 
They are the primary natural hazard affecting Western and Central Europe and frequently have a devastating 
impact on human activity and  infrastructure6–8. Most countries have experienced a rise in economic losses 
due to  storms9,10. However, extratropical cyclones are also necessary as they are responsible for the majority of 
precipitation in large parts of the world; over 70% of the total precipitation in Western and Central Europe and 
much of North America, for example, is associated with the passage of extratropical  cyclones11.

In Western France, several storms have resulted in significant human and material loss. On December 26 
and 28, 1999, Storms Lothar and Martin caused considerable damage and many fatalities; 92 people were killed, 
and 3.5 million households were left without electricity for several  weeks12. In addition, much damage was done 
to forests and buildings, with roofs either totally or partially blown  off13. Another tragic event, Storm Xynthia, 
occurred on February 28, 2010, leading to heavy loss of life and devastating damage to infrastructure. The 
combination of the storm and a high tide caused several sea walls to rupture, leading to extensive flooding in 
low-lying coastal zones, more than two billion euros’ worth of damage, and 47  fatalities14.

The increased likelihood of extreme weather events and their  risk15 have received considerable attention in 
recent  decades16–18. Predicting these events is highly challenging; Ensemble Prediction Systems (EPS) can gen-
erate short-term forecasts, for example the EPS at the European Centre for Medium-Range Weather Forecast 
(ECMWF) which predicted storms Anatol, Lothar, and Martin in December  199919. Predicting storms with 
lead times of more than a couple of weeks can be achieved with seasonal forecast systems, such as the DEM-
ETER (Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction) and 
ENSEMBLES (ENSEMBLE-based predictions of climate changes and their impacts) projects, which produce 
reliable forecasts of storms over the North Atlantic and  Europe20, and modern seasonal forecast systems from 
the ECMWF and the Met Office Hadley Centre, used to forecast the frequency of storms over the Northern 
 Hemisphere21. Storms can also be predicted by forecasting a specific variable associated with storm events, as is 
the case with the local sea wave model of the German Weather Service, which can predict severe winter storms 
connected with extraordinarily high  waves22.

The use of machine learning (ML) and deep learning (DL) models is increasingly common in the field of 
extreme weather events. Their main function is to predict storm characteristics; artificial neural networks com-
bined with wavelet analysis, for example, are used to predict extreme wave height during  storms23. Evaluation 
of the results has indicated that ML and DL solutions provide better results than traditional methods in terms 
of computational expense and accuracy of  predictions24, and can serve as an alternative tool to conventional 
models for forecasting  storms25.
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In recent years, recurrent neural networks (RNNs) have attracted considerable attention as a time-series 
prediction  tool26,27. Despite the ability of RNNs to understand and capture short-term dependencies, they expe-
rience difficulty with long-term dependencies due to the vanishing gradient  problem28; the backpropagation 
error disappears or vanishes in the earlier inputs after propagating through several steps. Consequently, the 
standard RNN cannot learn effectively, and the information from earlier stages is ignored in the prediction  task29. 
To overcome this drawback and improve the memorization of RNNs, a new model, the LSTM algorithm, was 
developed as an extension to RNNs, and can learn long-term dependencies from time series data and resolve the 
vanishing gradient  problem30. The LSTM algorithm has performed very well with a large variety of issues. It has 
successfully resolved many sequence learning problems and time-series predictions, such as speech  recognition31, 
machine  translation32, and wind speed  prediction33,34. The LSTM algorithm has also been used for predicting 
extreme weather events, for example the storm waves induced by two winter storms in the US North Atlantic 
 region25. The model was trained using buoy measurements and the findings demonstrated that the LSTM model 
can accurately predict the characteristics associated with storm  events25. In a second study, the LSTM model 
proved its efficiency in predicting storm characteristics by forecasting significant wave height and wave period 
at storm peaks, based on data from two offshore buoys. The results demonstrate its ability to capture all major 
wave events, including storm peaks, and serve as a tool for early storm  warning24.

XGBoost is another robust ML algorithm widely used in many applications and given rave reviews by ML 
 practitioners35. This algorithm is a scalable ML-based technique for the tree boosting method introduced by 
 Friedman36. XGBoost, developed by Chen and  Guestrin37, has proven its efficiency in various classification 
and regression time series problems, such as rare-event classification; Ranjan et al. used highly imbalanced 
data from a pulp and paper mill as input for XGBoost to forecast paper break  events38. XGBoost is a flexible 
ML method capable of dealing with the non-linearity of time series with its efficient self-learning  ability39. It 
performs extremely well in time series prediction, with adequate computing time and memory resource  usage40. 
The XGBoost model has also been used to predict wind-wave conditions at storm peaks based on hourly wind, 
significant wave height, and peak wave period observations at buoy stations. The findings indicated the ability 
of XGboost to predict wave dynamics under extreme  conditions24.

Prior research has investigated the use of LSTM and XGBoost models in storm prediction, as shown by 
studies conducted by Hu et al.24 and Ian et al.41. Nevertheless, this study presents an innovative technique that 
deviates from current approaches. Prior investigations have mostly concentrated on using LSTM and XGBoost 
independently and comparing their performance in storm surge prediction, usually considering it as a regression 
problem. In contrast, the proposed approach in this paper cooperatively combines both models to forecast storm 
characteristics and occurrence. Specifically, LSTM was used for regression-based prediction of various storm 
characteristics, while XGBoost was used for classifying the days of storm occurrence. This integrated approach 
allows for a more thorough investigation of storm prediction. In addition, previous research has often focused 
on forecasting a limited number of storm variables, such as wave height or water level. This paper expands the 
forecast scope to include a wider variety of storm variables, such as wave height, wave period, wind speed, tem-
perature, pressure, and humidity. In summary, this study builds upon existing literature by including a broader 
spectrum of storm characteristics and using an innovative and comprehensive method for forecasting storms, 
which will help enhance preparation and mitigation strategies.

With the main goal of providing a new data-driven approach to forecasting storm occurrence and character-
istics, this article also aims to investigate the effectiveness of two of the best models currently available, XGBoost 
and LSTM, in terms of providing valuable predictions of rare events, such as storms. It then presents first the 
methods, followed by the results, discussion, and then conclusions.

Methods
The research roadmap involved two methods: LSTM and XGBoost. The first is designed to predict the different 
characteristics of storms, and the second to predict the occurrence of storms based on their characteristics.

Study site and data
The site for this study was the western coast of France, comprising four regions: Normandy, Brittany, Pays de la 
Loire, and Nouvelle-Aquitaine (Fig. 1). These regions have experienced unexpected storms, resulting in many 
human and material  losses12,14, highlighting the need for historical reconstruction of past storms. The study area 
has therefore been the subject of numerous studies to identify past storm dynamics, their relation to climatologi-
cal mechanisms, their trajectories, and the spatialization of  damage42,43. These studies have identified two main 
storm paths: The first estimated from west to east and impacting a restricted area of the French Atlantic coast, the 
second more extensive, with a southwest-to-northeast trajectory affecting a larger section of the  coast42. These 
results concur with the classification method known as Dreveton, which proposes a classification of storms based 
on the origin of the associated depression, either Atlantic or Mediterranean; those associated with low-pressure 
systems over the Atlantic are more frequent than those from the  Mediterranean44. Two classes of storm directly 
affect the Atlantic coast. The first relates to storms generated from depressions over the British Isles. The storm 
tracks, therefore, pass through Brittany then move up towards northern France, affecting either the north of 
France or the entire country. The other storm class relates to those generated from depressions over the Bay of 
Biscay. The trajectory of this second category of storms moves inland via the Pays de la Loire—Poitou—Charentes 
and continues towards the east of France and then Germany, affecting the northern part of France or the whole 
country. The studies conducted by Castelle et al.45,46 have greatly contributed to enhancing the comprehension 
of storm impacts and creating predictive tools for reducing coastal hazards in the study area. For example, their 
study of the effects of intense winter storms in 2013–2014 provides insights on the erosion patterns and the 
development of megacusp  embayments45. This research focuses on the correlation between storm wave attributes, 



3

Vol.:(0123456789)

Scientific Reports |        (2024) 14:11381  | https://doi.org/10.1038/s41598-024-62182-0

www.nature.com/scientificreports/

such as wave height, duration, and angle of incidence, and the consequent patterns of  erosion45. In addition, 
Castelle et al.46 developed a new climate index based on sea level pressure, termed the Western Europe Pressure 
Anomaly (WEPA) index, which accurately accounts for the variations in winter wave height throughout the 
Western European coast. The WEPA index outperforms other prominent atmospheric modes in explaining winter 
wave variability and excels at capturing extreme wave height events, as demonstrated by its performance during 
the severe 2013–2014 winter storms that affected the study  area46. Moreover, Castelle et al.47 conducted a study 
on the changes in winter-mean wave height, variability, and periodicity in the northeast Atlantic from 1949 to 
2017, and examined their connections with climate indicators. Their research highlighted the growing patterns 
in the height, variability, and regularity of winter waves. These patterns are mainly influenced by climate indices 
like the North Atlantic Oscillation (NAO) and WEPA. As the positivity and variability of the WEPA and NAO 
increase, the occurrence of extreme winter-mean wave heights becomes more  common47, which makes these 
indices valuable predictors in forecasting coastal hazards.

This study combines data from a storm database and offshore buoy data from 1996 to 2020. The Meteo France 
website provided the storm database, containing all the storm events in the study area (http:// tempe tes. meteo. 
fr/ spip. php? rubri que6), and the historical measurements from the Brittany Buoy—station 62,163, with hourly 
records of wave height, wave period, wind speed, temperature, pressure, and humidity from January 1, 1996 to 
December 31, 2020 (https:// donne espub liques. meteo france. fr/? fond= produ it& id_ produ it= 95& id_ rubri que= 
32). These hourly records were transformed into daily values by calculating the average value for each day and 
adding this to the storm names and occurrences extracted from the storm database. Storm occurrence is defined 
as days with wind speed values ranking above the 98th percentile of historical wind speed measurements from 
buoy data and coinciding with the days identified in the storm database as having storm events. Using this 
definition of storm occurrence, we were able to identify all the storm events in the study area since 1996. The 
occurrence of storms followed a binomial probability distribution, where the value 1 represented the occurrence 
of a storm, and the value 0 represented no storm. The combination of buoy data and storm database provided 
multivariate time series data (Table 1) representing a day-by-day record of historical weather and marine data 
and the precise days on which storms occurred, which could be used to predict the occurrence of storms and 
their different characteristics.

Prediction of storm characteristics
The dataset was fed into a multivariate LSTM model to predict the values of the six storm characteristics at once. 
The following steps were taken to prepare the data for implementing the algorithm: first, any missing values 

Figure 1.  Location of the study area.

http://tempetes.meteo.fr/spip.php?rubrique6
http://tempetes.meteo.fr/spip.php?rubrique6
https://donneespubliques.meteofrance.fr/?fond=produit&id_produit=95&id_rubrique=32
https://donneespubliques.meteofrance.fr/?fond=produit&id_produit=95&id_rubrique=32
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for each attribute were replaced with the median value for all the known values of the attribute. This approach 
is more reliable than mean imputation when the data includes outliers or is skewed since the median is less 
impacted by extreme values. The LSTM model was then constructed in the Keras framework, the input to the 
LSTM consisting of a time series vector x for T time steps in the series.

Each input vector x(t) contained the six characteristics:

These input sequences were generated by moving a time window through the dataset, each time capturing 
a sequence of T input vectors. An input of 30-time steps was favored during hyperparameter optimization. 
Consequently, the characteristics from time (T-30) to (T-1) were used as features to predict the corresponding 
characteristics y at time T.

To train and test the LSTM model, the time series data were split into training and test sets at a ratio of 80% 
to 20%. Each division was given a continuous period of the time series to preserve the serial correlation between 
successive observations. This yielded a training dataset with an input size of [nx,T , v] = [7281, 30, 6] , where 
nx is the number of training sequences of length T and v is the number of variables, and a test dataset with an 
input size of [1821, 30, 6]. The training dataset only was used to select the optimal hyperparameters, and the test 
partition, used to test how well the model generalizes to unseen conditions, was set aside to avoid information 
leakage. After splitting the data, the standard score normalization (Z-Score) method was applied to normalize 
the input variables. The values for an attribute were normalized by subtracting the mean for each value in the 
distribution and dividing the result by the standard  deviation48. Normalization helps speed up the learning phase 
and prevents initially large-range attributes from outweighing initially smaller  ones48.

Optimization of the LSTM model required decisions on a combination of large hyperparameters, such as 
the number of neurons, number of layers, batch size, and learning rate. A scalable hyperparameter optimization 
framework called Keras Tuner, based on the Bayesian optimization algorithm, was therefore applied to find the 
best hyperparameter values. To optimize the parameters, this neural network was trained using cross-validation 
and by setting mean absolute error (MAE) as a performance evaluator. The TimeSeriesSplit technique was used 
to apply the cross-validation. This strategy is especially appropriate for our investigation since it preserves the 
temporal order of the data, which is critical for the predictive accuracy of the LSTM model. The model was 
therefore trained and validated in three splits, which allowed us to systematically analyze and enhance the 
model’s performance by modifying hyperparameters using the Bayesian optimization strategy. Table 2 lists the 
details of hyperparameter value ranges and choices, and the following paragraph covers each hyperparameter 
tuned using the Keras Tuner.

Twenty different model configurations were tested to find the optimum set of hyperparameters. For each 
hyperparameter combination, the LSTM model was trained for a maximum of 100 epochs, and the epoch cor-
responding to the minimum validation set MAE was recorded. The Google Colab A100 GPU system was used to 
run the entire model training. The best-proposed model by the Keras Tuner applied three layers. The minimum 
and maximum numbers of neurons at each hidden layer were set as 32 and 512 respectively. The dropout layer, 
used to prevent overfitting by eliminating certain connections between neurons in each  iteration49, was defined 
within the range of 0 to 0.5. The output layer was then linked to a dense layer with six output neurons and the 
activation function was set to Linear. The network was compiled with a MAE loss function and Adam optimizer 
to update the weight of each layer after each iteration. The learning rate, which was set using Keras Tuner to 
one of three values (0.01, 0.001, or 0.0001), determined the size of the step at each iteration of the optimization 
 method49. Four other value choices (16, 32, 64, 128) were set for the batch size, representing the number of sub-
samples the network used to update the  weights49. Proceeding through the search space, the combination with 
the lowest validation set MAE was chosen as the optimum set of hyperparameters (Table 3).

x = [x(1), x(2), . . . , x(T)]

x(t) = [Temperature(t),Humidity(t),Windspeed(t), Pressure(t),Waveheight(t),Waveperiod(t)]

y(T) =
[
Temperature(T),Humidity(T),Windspeed(T), Pressure(T),Waveheight(T),Waveperiod(T)

]
.

Table 1.  Part of the dataset used for the prediction at Brittany Buoy—station 62,163.

Date Storm name Storm occurrence Wave height (m) Wave period (s) Wind speed (m/s) Temperature (K) Pressure (Pa)
Humidity 
(%)

01-01-1996 – 0 4.336 9.494 6.931 285.249 99,436.485 87.471

02-01-1996 – 0 3.452 8.236 7.457 286.219 101,116.521 88.826

… … … … … … … … …

26-12-1999 Lothar 1 7.795 9.757 23.95 286.046 97,000 81.588

27-12-1999 Martin 1 6.852 9.828 22.853 297.942 96,480 83.533

28-12-1999 – 0 5.404 8.875 9.315 285.420 101,280 70.210

… … … … … … … … …

30-12-2020 - 0 3.45 7 9.808 283.770 101,017.1 79.291

31-12-2020 - 0 2.654 6.041 9.704 282.508 101,144.6 67.833
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A comprehensive analysis of autocorrelation functions (ACF), together with a trial-and-error process, was 
used to identify the ideal input time steps for improving the model’s performance. The use of the ACF on the 
daily dataset demonstrates how each attribute corresponds with its historical observations. As seen in Fig. 2, the 
autocorrelation plots for pressure and wind speed indicate a shorter memory effect, with substantial correlations 
vanishing rapidly. In contrast, humidity has longer-term meaningful associations that stay generally steady over 
time. Temperature, wave period, and wave height show more gradual decay, indicating a longer memory effect. 
Based on the findings from the ACF analysis, a sequence length that captures the memory of the most persistent 
variable while still giving useful information for variables with shorter memories should be selected. As a result, a 
sequence length of 20-time steps was chosen as an ideal compromise. This input sequence was thought sufficient 
to capture the longer-term dependency found in temperature and wave-related variables, while also catching 
essential shorter-term information for pressure and wind speed. The model’s performance was then examined 
by training and validating the LSTM model using cross-validation with the initial sequence length selected 
based on the ACF results. The sequence length was further optimized by gradually decreasing and increasing the 
number of lags used to anticipate future values until the optimal sequence length was determined. This iterative 
procedure resulted in the discovery of an optimal input sequence of 30-time steps, allowing the LSTM model 
to achieve higher performance.

MAE, mean absolute percentage error (MAPE), root mean square error (RMSE), and coefficient of deter-
mination  (R2) were used to evaluate the performance of the LSTM model. These evaluation metrics are defined 
as follows:

Table 2.  Hyperparameters optimization of the LSTM and XGBoost models.

Hyperparameters

Value Ranges

Choices ValueMin Max Step

LSTM

Number of layers 1 4 – – –

LSTM layers units 32 512 32 – –

Dropout 0 0.5 0.1 – –

Learning rate – – – 0.01, 0.001, 0.0001 –

Batch size – – – 16, 32, 64, 128 –

Optimizer – – – – Adam

Objective – – – – val_mean_absolute_error

Max trials – – – – 20

Executions per trial – – – – 2

XGBoost

learning_rate – – – 0.0001, 0.001, 0.01, 0.1 –

max_depth – – – 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 –

gamma – – – 0, 0.1, 0.2, 0.3, 0.4 –

colsample_bytree – – – 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 –

reg_alpha – – – 0.00001, 0.01, 0.1, 1, 10, 100 –

reg_lambda – – – 0.00001, 0.01, 0.1, 1, 10, 100 –

Table 3.  Optimal set of hyperparameters found for LSTM and XGBoost.

Hyperparameters Best hyperparameter values

LSTM

Number of layers 3

LSTM layer 1 unit 192

LSTM layer 2 units 288

LSTM layer 3 units 32

Dropout 0.2

Activation function for output layer linear

Learning rate 0.01

Batch size 32

Optimizer Adam

Time steps 30

XGBoost

learning_rate 0.1

max_depth 12

gamma 0

colsample_bytree 0.4

reg_alpha 0.00001

reg_lambda 0.01
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where n is the number of samples, yi the real value, ŷi the predicted value, and Y  is the mean of the observed 
values. The best performance is achieved when the values of MAE, MAPE, and RMSE are close to 0 and the 
value of  R2 is close to 1.

The Pearson correlation coefficient (r) was also used to assess the performance of the LSTM model, specifi-
cally the strength of the linear association between the observed and predicted values. The definition of this 
measure is as follows:

where xi are the observed values, yi are the predicted values, x and y are the means of the observed and predicted 
values, respectively, and n is the number of samples.

(1)MAE =
1

n

n∑

i=1

∣∣yi − ŷi
∣∣

(2)MAPE =
100

n

∑n

i=1

∣∣∣∣
yi−ŷi

yi

∣∣∣∣

(3)RMSE =

√√√√ 1

n

n∑

i=1

(yi − ŷi)2

(4)R2 = 1−

∑n
i=1(yi−ŷi)

2

∑n
i=1(yi−Y)

2

(5)r =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)
2∑n

i=1(yi − y)2

Figure 2.  Autocorrelation Analysis (a) Autocorrelation of Wave Height (b) Autocorrelation of Wave Period 
(c) Autocorrelation of Temperature (d) Autocorrelation of Humidity (e) Autocorrelation of Pressure (f) 
Autocorrelation of Wind Speed.
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Prediction of storms
The objective of the second part was to predict the occurrence of storms based on their characteristics. To 
achieve this, an XGBoost binary classifier was developed using the XGBoost library. The XGBoost model used 
the six characteristics as input Xi , and storm occurrence was used as model output yi , given a binary class label 
yi ∈ {0, 1} , indicating the absence or occurrence of a storm, respectively (Table 1). The median value of each 
attribute was used to fill in the missing values of the independent variables Xi . The dataset was split into training 
and testing sets at the ratio of 80 to 20. The 20% testing data (unseen data) corresponding to the period from 
January 2016 to December 2020 was set aside to avoid information leakage. The training dataset from January 
1996 to December 2015 only was used for tuning the hyperparameters. The preprocessing phase of normal-
izing independent variables Xi was carried out using the method described in the section ‘Prediction of storm 
characteristics’. This section applied Bayesian optimization using the Hyperopt library in Python to find the best 
combination of hyperparameters. Bayesian optimization using Hyperopt is an effective method for Hyperpa-
rameter optimization of the XGBoost algorithm. It performs better than other widely-used approaches such as 
grid search and random  Search50.

The XGBoost model was trained using stratified k-fold cross-validation with K = 3. Stratified k-fold is highly 
appropriate for imbalanced data, as in our study, as it helps keep the class ratio in the folds the same as the training 
 dataset51. The training dataset was divided into three subintervals—two for training and one for evaluating. Six 
hyperparameters were optimized, namely Learning rate (eta), Maximum Tree Depth, Gamma, Column samples 
by a tree, Alpha, and Lambda, and the search space defined is shown in Table 2. Fifty different combinations were 
tested to find the optimum set of hyperparameters. For each combination, recall was set as the evaluation metric 
for cross-validation. The combination at which the highest recall value was found is identified as the best set of 
hyperparameters (Table 3). After identifying the best hyperparameters, XGBoost was trained with the entire 
training dataset and tested using the unseen dataset. The Google Colab A100 GPU system was used to run the 
hyperparameter optimization and model training.

Due to the low frequency of storm occurrence, the following performance measures were used to evaluate 
the accuracy of the model: Recall, specificity, false positive rate (FPR), and false negative rate (FNR). These 
assessment metrics are not sensitive to imbalanced  data52 and can be calculated using the following equations:

where:

• TP : true positives, where the model predicted samples correctly as positive. In this case, the storms were 
classified as ‘storm’.

• TN  : true negatives, where the model predicted samples correctly as negative (no storms predicted as ‘no 
storm’).

• FP : false positives, where the model wrongly predicted samples as positive (no storms predicted as ‘storm’).
• FN : false negatives, where the model wrongly predicted samples as negative (storms predicted as ‘no storm’).

The performance of the model was also measured using ROC (receiver operating characteristics) curve. ROC 
curve is a two-dimensional graph where the x-axis is the FPR and the y-axis the TPR (true positive rate), and it is 
generated by changing the threshold on the confidence score. The ROC curve is not sensitive to imbalanced data 
and can illustrate the diagnostic capability of a binary  classifier52. The area under the ROC curve (AUC) metric 
is used to assess the performance of the XGBoost model since there is no scalar value representing the expected 
performance in the ROC curve. The AUC metric ranges from 0 to 1, and a perfect model will have an AUC of 1.

Results
LSTM results
The trained LSTM model was used to predict storm characteristics for the unseen test period from January 2016 
to December 2020. The prediction errors are summarized in Table 4. Figure 3 shows the prediction outcomes 
of the LSTM model. The blue curve is the actual values and the orange curve is the forecast results. The figure 
shows that the model provides a good representation of the observed values for most of the time period as the 
actual and predicted curves roughly correspond.

The LSTM model demonstrated impressive accuracy in temperature predicting, as shown by a low MAE of 
0.7574 K, an RMSE of 0.9881 K, and a MAPE of 0.26%. In addition, the model’s  R2 score of 0.8753 and Pearson 
Correlation Coefficient of 0.9385 indicate that it effectively captures a substantial amount of the temperature 
data’s variability and exhibits a robust linear association with the actual values.

(6)Recall(Sensitivity) = Truepositiverate =
TP

TP + FN

(7)Specificity = Truenegativerate =
TN

TN + FP

(8)FPR =
FP

FP + TN

(9)FNR =
FN

FN + TP



8

Vol:.(1234567890)

Scientific Reports |        (2024) 14:11381  | https://doi.org/10.1038/s41598-024-62182-0

www.nature.com/scientificreports/

The performance of the model for humidity forecasts was less accurate, with MAE and RMSE values of 
6.0851% and 7.6008%, respectively. The moderate value of the  R2 score (0.3272) and the comparatively high 
MAPE value (7.61%) show the model’s limited skill in capturing the variation in humidity. The Pearson Cor-
relation Coefficient of 0.5843 suggests a moderate linear connection, however with much opportunity for 
improvement.

The LSTM model faced a larger difficulty in predicting wind speed, as evidenced by the high MAPE of 32.76%, 
MAE of 2.0061 m/s and RMSE of 2.5666 m/s. In addition, the low  R2 score (0.2337) and modest Pearson Correla-
tion Coefficient (0.5482) demonstrate the model’s limitations in predicting wind speed. The low performance of 
the LSTM for wind speed prediction might be due to the complex and varied nature of wind behavior, and the 
presence of very extreme values (outliers) at storm events.

The model’s performance for pressure prediction was relatively good, with MAPE of 0.46% indicating that the 
model’s predictions closely match the actual pressure levels. The  R2 score of 0.5536 and the Pearson Correlation 
Coefficient of 0.7495 indicate that the model is capable of capturing the variability in pressure.

The predictions of wave conditions (wave height and period) by the LSTM model were reasonable, with MAE 
values of 0.6271 m and 0.6439 s, respectively, and RMSE values of 0.8617 m and 0.8189 s, respectively. However, 
the high MAPE of 24.27% in wave height shows a considerable relative error, demonstrating the underestima-
tion of the model in wave height prediction during storm events. The  R2 scores of 0.6083 and 0.6522 for wave 
height and period, together with Pearson Correlation Coefficients of 0.7914 and 0.8141, imply a high predictive 
association with the actual values.

The model’s forecasts at storm events for temperature and pressure were particularly accurate, whereas humid-
ity revealed inconsistencies when compared to the observed values. Predictions of wave-related variables were 
consistent but underlined the necessity for refinement, specifically for wave height, which showed a tendency 
to be underpredicted during storm events. An even bigger underprediction can be seen towards the extreme 
values of wind speed during storm events.

The low frequency of storm occurrence can explain these findings; storm events represent only 0.7% of the 
total data used in this study. Most of the available data for training therefore covers lower wave height and wind 
speed values, which correspond to non-storm events. More storm observations are required in the training 
dataset to improve further the accuracy of the model in predicting storm characteristics.

In conclusion, the LSTM model exhibits proficiency in predicting temperature and pressure characteristics 
of storms with high accuracy. The model provides a robust foundation for temperature and pressure forecasts, 
while the prediction of humidity, wind speed, and wave characteristics shows potential but requires further 
optimization.

XGBoost results
The trained XGBoost model was used to predict storm occurrence for the unseen test period of January 2016—
December 2020. There were five storms in this period: Zeus on March 6, 2017, Eleanor on January 3, 2018, 
storm on December 13, 2019, Ciara on February 10, 2020, and Bella, a two-day storm on December 27 and 28, 
2020. There are two classes: Storm and No-storm. The Storm class is positive, and the No-storm class is negative. 
Figure 4a shows the prediction of storm occurrence; predicted storms are represented by light orange points and 
actual storms by light blue points. As shown in the figure, the predicted storms concur precisely with the actual 
storms; the model predicted the occurrence of all the storms. The confusion matrix of the XGBoost model is given 
in Fig. 4b. Six samples are correctly classified as Storm and 1821 correctly classified as No-storm; the respective 
TN, TP, FN, and FP values are therefore 1821, 6, 0, and 0. The classification metrics are given in Table 4. The 
proposed XGBoost classifier performed very well in predicting storm occurrence. Recall and specificity values, 
which represent the correctly predicted samples, are equal to 1, while the FPR and FNR, which represent the 
incorrectly predicted samples, are equal to 0. Figure 4c shows the AUC value of the model. As shown, the model 
has an AUC of 1, which implies higher accuracy in predicting storm occurrence.

Discussion
This study applied a new data-driven approach based on LSTM and XGBoost to forecast storm characteristics 
and occurrence in Western France. There were two main elements to the study. First, comprehensive research 
into storm prediction using six different storm attributes and the days on which they occurred. Second, exploring 

Table 4.  Evaluation metrics of the LSTM and XGBoost models.

MAE RMSE MAPE R2 r

LSTM Wave height 0.6271 0.8617 24.27% 0.6083 0.7914

Wave period 0.6439 0.8189 9.69% 0.6522 0.8141

Temperature 0.7574 0.9881 0.26% 0.8753 0.9385

Humidity 6.0851 7.6008 7.61% 0.3272 0.5843

Pressure 467.2703 630.4106 0.46% 0.5536 0.7495

Wind speed 2.0061 2.5666 32.76% 0.2337 0.5482

XGBoost Recall Specificity FPR FNR – –

1 1 0 0 – –
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the efficiency of the ML and DL methods in capturing rare events such as storms. Experiments were conducted 
to build a multivariate LSTM model to predict storm characteristics. The LSTM model was evaluated using the 
unseen test period data from January 2016 to December 2020. In a second step, an XGBoost binary classifier 

Figure 3.  Prediction outcomes of the LSTM model for the unseen test partition (a) Wave height prediction 
results (b) Wave period prediction results (c) Temperature prediction results (d) Humidity prediction results (e) 
Pressure prediction results (f) Wind speed prediction results..
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was developed to predict the occurrence of storms based on their characteristics, and data from January 2016 to 
December 2020 was used for model evaluation. The following key points elaborate on the outcome of this study.

The LSTM model was found to perform well in predicting the six variables (wave height, wave period, wind 
speed, temperature, humidity, and pressure) over all the unseen test period. The visual comparison of forecasted 
and observed values demonstrated that the model typically produced a decent representation of actual values. 
During storm events, the accuracy of the LSTM model in forecasting storm features fluctuated significantly. It 
excelled in anticipating temperature and pressure, displaying high accuracy. However, it proved less effective in 
forecasting humidity and notably underpredicted wave-related variables and wind speed during storms. This 
tendency to underestimate wave height and wind speed can be explained by the limited number of extreme wave 
heights and wind speeds available for model training. Comparable results were found by Hu, Haoguo, et al. for 
predicting wave height during storm  events24. The models tended to underestimate extreme wave height and 
perform extremely well for regular  events24. To overcome this issue, Dixit &  Londhe23, Prahlada &  Deka53 applied 
a discrete wavelet transform to decompose time series data into low and high-frequency components. Separate 
neural network models were then trained for both parts, potentially increasing the accuracy of extreme event 
 prediction23,53.

Despite the limited availability of storm data for model training, the XGBoost model performed well and 
predicted all storms in the unseen test period. Most accuracy-driven ’vanilla’ machine learning methods suffer 
a decline in performance when they encounter a label-imbalanced classification  situation54. In this experiment, 
the number of samples in the Storm and No-storm classes was 68 (0.7%) and 9064 (99.3%), respectively. If the 
model were to predict all the samples as ’no storm,’ then the accuracy would be 99%, which is remarkably high. 
However, failure to predict any storm can lead to severe consequences. The most commonly used evaluation 
metrics, such as accuracy and precision, were therefore not considered in this study due to their sensitivity to 
imbalanced  data52.

Consequently, the model was evaluated using recall, specificity, FPR, FNR, and AUC metrics and provided 
values of 1, 1, 0, 0, and 1, respectively. These assessment metrics are not sensitive to changes in data distribution 

Figure 4.  Prediction of storms using XGBoost model (a) Storm occurrence prediction results (b) Confusion 
matrix of the XGBoost model (c) ROC curve of the XGBoost model.
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and can be used to evaluate classification performance with imbalanced  data52. Kabir & Ludwig also suggest 
addressing the problem of imbalanced data by adopting several data resampling techniques before applying 
XGBoost for  classification55. More recently, Wang et al. introduced imbalance-XGBoost. The aim of this XGBoost-
based Python package is to deal with binary label-imbalanced classification issues by implementing weighted 
cross-entropy and focal loss functions on  XGBoost54.

As part of our future work, we plan to implement a multilevel decomposition of data using a discrete wavelet 
transform. A separate model will then be trained on the low-frequency components (extreme wave height, wave 
period and wind speed partition) to improve prediction accuracy and predict the characteristics of storm events 
precisely. To overcome the data imbalance problem, we must also investigate the sampling-based approach of 
modifying the dataset to balance the class distribution before using it to train the XGBoost classifier. Future 
research may extend the outcomes of this study to other regions, deep learning model architectures, and hyper-
parameter tunings.

Conclusions
This paper considerably expands on past storm prediction research by adopting a unique, integrated strategy 
that uses both LSTM and XGBoost models to anticipate a wide range of storm characteristics as well as storm 
occurrence along France’s western coast. The detailed investigation reported in this research led to the following 
conclusions:

• Relevance to Previous Studies: Building on the existing literature that studied the usage of LSTM and XGBoost 
models in isolation, this study proposes a unique technique that leverages both models in unison. While past 
work focused largely on specific features of storm prediction, such as storm surges, and approached them as 
regression issues, the present method blends regression and classification approaches to give a more holistic 
understanding of storm dynamics. This dual-model technique provides for the thorough prediction of varied 
storm parameters (temperature, pressure, humidity, wind speed, wave height, and wave period) as well as 
the prediction of storm occurrence days.

• Performance of the LSTM Model: The LSTM model has shown great accuracy in forecasting temperature 
and pressure, key elements for understanding and anticipating storm conditions. However, it revealed limits 
in reliably forecasting factors linked with high variability and extreme circumstances (extreme values), such 
as wind speed and wave height, particularly during severe storm events. This shows that although the LSTM 
model is resilient under stable conditions, more refinement and enhancement are required to capture the 
entire spectrum of storm-induced variabilities.

• Efficiency of the XGBoost Model: The XGBoost model successfully predicted storm occurrences with extraor-
dinary accuracy, indicated by flawless recall and specificity scores. This accuracy is crucial for practical 
applications in storm forecasting, where the cost of FN (failing to anticipate a storm) can be extraordinarily 
significant. The performance of the XGBoost model in this situation underlines its promise as a trustworthy 
tool in operational meteorology.

In essence, this study indicates a big step forward in storm prediction. It not only expands the scope of 
forecasted storm features but also combines the capabilities of LSTM and XGBoost, opening up new paths for 
increasing storm preparation and risk reduction measures. The method adopted in this study is not only relevant 
to the western coast of France but also has possibilities for adaption and usage in other places prone to extreme 
weather events.

Data availability
The final dataset analyzed in this study is available on GitFront: https:// gitfr ont. io/r/ user- 93744 64/ JTvFd sL1Q3 
C5/ Storm- Predi ction/.

Code availability
Scripts reproducing the experiments of this paper are available at GitFront https:// gitfr ont. io/r/ user- 93744 64/ 
JTvFd sL1Q3 C5/ Storm- Predi ction/.
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