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prediction of patellofemoral
instability
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This study performed three-dimensional (3D) magnetic resonance imaging (MRI)-based statistical
shape analysis (SSA) by comparing patellofemoral instability (PFI1) and normal femur models, and
developed a machine learning (ML)-based prediction model. Twenty (19 patients) and 31 MRI scans
(30 patients) of femurs with PFl and normal femurs, respectively, were used. Bone and cartilage
segmentation of the distal femurs was performed and subsequently converted into 3D reconstructed
models. The pointwise distance map showed anterior elevation of the trochlea, particularly at the
central floor of the proximal trochlea, in the PFI models compared with the normal models. Principal
component analysis examined shape variations in the PFI group, and several principal components
exhibited shape variations in the trochlear floor and intercondylar width. Multivariate analysis
showed that these shape components were significantly correlated with the PFl/non-PFI distinction
after adjusting for age and sex. Our ML-based prediction model for PFl achieved a strong predictive
performance with an accuracy of 0.909 +0.015, and an area under the curve of 0.939 +0.009 when
using a support vector machine with a linear kernel. This study demonstrated that 3D MRI-based SSA
can realistically visualize statistical results on surface models and may facilitate the understanding of
complex shape features.

Keywords Patellofemoral instability, Statistical shape analysis, Three-dimensional magnetic resonance
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Patellofemoral instability (PFI) is a pathological condition characterized by recurrent patellar subluxation or
dislocation. It mainly occurs in young and active populations, and accounts for approximately 3% of all knee
injuries?. PFI is a multifactorial disease. The known risk factors are trochlear dysplasia, patella alta, increased tib-
ial tubercle-to-trochlear groove distance, abnormal patellar lateral tilt, and coronal and torsional malalignment®=.
The risk of recurrent instability varies widely after primary dislocation, ranging from 11 to 60%”-'°. Various
nonsurgical and surgical treatments are available to treat these underlying causes.

The imaging modalities for the study of knee conditions, including PFI, are plain radiographs, computed
tomography (CT), and magnetic resonance imaging (MRI)*'"'2, Plain radiographs are essential for visualizing
bones and surveying their abnormalities at a low radiation dose and cost. As for PFI, several radiographic signs
have been reported, including the crossing sign, trochlear bump or depth, and patella alta index>”. However,
plain radiographs are two-dimensional and may not adequately visualize complex articular structures. Sequential
imaging modalities such as CT and MRI are preferred because they allow for more precise and more detailed
visualization of the joint tissues. CT is preferred for investigating bones, whereas MRI is mainly used for soft
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tissues. However, MRI may also play an alternative role'!. For example, MRI can detect several bone abnormali-
ties, such as contusions, fragments, deformities, and surrounding tissue abnormalities. The importance of MRI
has increased with the development of high-resolution functional imaging techniques. In knee studies, our
institution routinely uses a three-dimensional (3D) T2 star-weighted fast-field echo (T2* FFE) MRI sequence.
Although this sequence is primarily intended for the high-resolution evaluation of cartilage, other tissues, includ-
ing the bone, are also clearly visualized. The 3D T2* FFE method provides volumetric data for 3D segmentation
and shape model analysis.

The development of high-resolution 3D imaging techniques has enabled researchers to characterize the mor-
phological variations in complex biological structures using methods such as statistical shape analysis (SSA)!*-"7.
A common approach when performing 3D SSA is to first acquire high-resolution images and then obtain the
anatomical landmark information. These anatomical landmarks are then used in multivariate shape analyses.
The general method of collecting landmark datasets involves manual registration by experts. Manual annotation
of landmarks is laborious, time-consuming, low-throughput, and subject to inter-observer biases'®. Although
automated approaches have been considered, most depend on high-end hardware and specialized MATLAB
software and require more time to produce results than manual landmark annotations'®!?. Considering these
points, we propose a cutting-edge open-source software to analyze 3D morphological data, SlicerMorph, on
the 3D Slicer platform?. This application contains a set of modules for automatic registration and SSA, among
which a tool called automated marking through point-cloud alignment and correspondence analysis (ALPACA)
enables fast and accurate automated landmarking through point-cloud-based deformable model registration®'.

The 3D SSA of knees with PFI has been previously studied. Some studies used CT?*%, whereas others used
MRI?*#-2%, Van Haver et al. conducted a CT-based study of trochlear dysplasia®. In their study, the mean shape
models of normal and trochlear dysplastic femur bones were obtained using generalized Procrustes analysis
(GPA) and principal component analysis (PCA). Subsequently, the researchers evaluated the difference between
the two mean models and found that the trochlea was anteriorized, proximalized, and lateralized, and that the
mediolateral width and notch width were decreased in the trochlear dysplastic femur compared to the normal
femur. They also developed an automated classification of trochlear dysplastic and normal femurs using a com-
bination of principal components, which achieved a sensitivity of 85% and specificity of 95%. MRI-based SSA of
PFI has also been reported, and similar results have been obtained. Fitzpatrick et al. created an MRI-based 3D
shape model of the patellofemoral joint and characterized shape variations in the patella alta-baja and depth of
the sulcus groove®. Considering the inevitable exposure to radiation in CT scans, and the versatility and utility of
MRI studies, MRI-derived SSA is favorable. Furthermore, MRI can visualize cartilage as well as bone; therefore,
3D shape models of bone and cartilage can be built using MRI-based SSA.

In this study, we aimed to build 3D MRI-based bone and cartilage models of normal femurs and femurs with
PFI, and perform SSA to compare the two models using the SlicerMorph package. We also conducted a multivari-
ate analysis of shape components to identify the independent shape characteristics associated with PFI, evaluated
confounding factors such as age and sex, and performed an adjusted multivariate analysis. Moreover, we devel-
oped a machine learning (ML)-based prediction model for PFI using shape components derived from the SSA.

Methods

Subjects and image acquisitions

This study was approved by the Research Ethics Committee of Saitama Medical University Hospital (approval
number 2023-047). All experiments were performed in accordance with relevant guidelines and regulations.
The requirement for informed consent was waived by the Research Ethics Committee of Saitama Medical Uni-
versity Hospital.

After receiving institutional review board approval, we identified a consecutive series of patients under
40 years of age who underwent non-contrast non-arthrogram knee MRI between January 2017 and September
2021, with an order from the Department of Orthopedics in our hospital. All patients diagnosed with PFI at
our institution were included in this study. Although all patients initially underwent MRI for suspected PFI-
related injury, those with knee pain due to other etiologies such as fracture, arthritis, chondrosis, osseous stress
response, or high-grade ligament sprains were excluded. A group of age- and sex-matched controls were also
identified, defined as those with normal knee MRI findings and symptoms that did not involve the patellofemoral
compartment of the knee. Controls with fractures, arthritis, chondrosis, osseous stress response, or high-grade
ligament sprains were excluded.

All MRI scans were performed using a 3.0-T system (Ingenia Elition, Philips Healthcare, The Netherlands)
with a vendor-specific 16-channel knee coil. In addition to the routine knee protocol including axial, sagittal,
and coronal proton density sequences, a 3D T2* FFE sequence was performed in all patients. The specific imple-
mentation protocol for 3D T2* FFE was as follows: repetition time, 15 ms; echo time, 5 ms; flip angle, 30°; slice
thickness, 1.5 mm; field of view, 15.0x 17.1 cm.

Construction of the 3D surface models

To create smooth 3D surface models of the knee bone and cartilage, MR images were loaded into an open-source
software (ITK-SNAP version 3.8.0) in the Digital Imaging and Communications in Medicine (DICOM) format.
Subsequently, the areas of femoral bone and cartilage were manually delineated in each slice. Two radiologists
with 7 and 6 respective years of experience performed this independently, and subsequently reached a consensus.
Both radiologists were blinded to the clinical information. From the delineated contours, a 3D surface model of
each bone and cartilage was reconstructed and saved as a standard 3D model in the Neuroimaging Informat-
ics Technology Initiative (NIfTT) file format (*.nii.gz). These 3D surface models were subsequently loaded into
another open-source software package (3D Slicer version 5.0.3) for 3D landmark-based shape model analysis.

Scientific Reports |

(2024) 14:11390 | https://doi.org/10.1038/s41598-024-62143-7 nature portfolio



www.nature.com/scientificreports/

Application of the automated 3D landmarking and SSA

To develop an automated 3D landmark-based SSA, we performed the following procedures: (a) creation of a
reference landmark set (automatic landmark placement on the surface model of the normal femur bone) using
the pseudo-landmark generator algorithm, (b) automatic landmark registration using the ALPACA algorithm,
(c) evaluation of shape differences based on GPA and PCA, (d) multivariate analysis of shape components, and
(e) development of an ML-based prediction model for PFI.

Step 1. Creation of a reference landmark dataset
We started by obtaining reference landmark data using a pseudo-landmark generator module.

When developing automated landmarking methods, it is common to use a dataset of manually digitized
samples as the reference set. However, we believe that performing automatic landmarking on a reference model
is beneficial. The pseudo-landmark generator module generated a set of landmarks at regular intervals on the
external surface of the sample model. We then applied this module to a shape model of a normal femur bone
and obtained a reference sample of the landmarks.

Step 2. Automatic landmark registration using ALPACA algorithm

We applied the ALPACA framework to the surface bone models of the normal and PFI cases and obtained the
corresponding landmark datasets. More specifically, point-cloud-based alignment and registration proceeded
in the following steps: (a) a source model (the reference model used in Step (1) and a target model were down-
sampled into corresponding dense point clouds that were then rigidly aligned with each other; (b) a deformable
transformation was subsequently performed, in which the source model was deformed to match the target
model; and (c) the placement of landmarks in the source model was projected onto the target model using the
point correspondence method. By repeating this registration step for all models of the normal and PFI cases,
landmark datasets were obtained for subsequent analysis.

Step 3. Evaluation of shape differences based on GPA and PCA

To evaluate the shape differences between the normal and PFI cases, we implemented a GPA-based transforma-
tion of the surface model and landmark coordinate system and we calculated and compared the mean shape of
each femur model. Pointwise signed distances between the mean normal and PFI surface models were calculated
and projected onto the surface of the mean normal femur model. PCA was applied to the GPA-aligned coordinate
system to explain the shape variations within each group, and the shape characteristics of each principal compo-
nent were evaluated. The GPA and PCA module on SlicerMorph visualized the 3D shape variations of each prin-
cipal component, and we subsequently plotted the shape corresponding to mean + 2.5 standard deviations (SD).

Step 4. Multivariate analysis of shape components

In further studies, we conducted a multivariate analysis of the shape components. The main shape components
obtained for a joint dataset of normal femurs and femurs with PFI in Step 3 were subsequently loaded into
the Python platform along with the corresponding standard scores and parameters such as age, sex, and PFI/
non-PFIL. Multivariate analysis was performed to identify the components that had a strong relationship with
PFI. In addition, we used multivariate analysis to evaluate the relationship between the shape components and
confounding variables such as age and sex. To identify components that had an independent relationship with
PFI, we also conducted a multivariate analysis adjusting for age and sex.

Step 5. ML-based prediction model for PFI

Following the results of Step 4, we determined which significant shape components exhibited a strong relationship
with PFI, as well as which principal components were successful in discriminating between PFI and non-PFI
femurs. A classification model was developed using these important shape components and four representative
ML classifiers: linear discriminant analysis (LDA), support vector machine (SVM), k-nearest neighborhood
(k-NN), and random forest (RF). In the SVM algorithm, various kernel functions provide different decision-mak-
ing abilities and versatility. In this study, we adopted two representative kernels — linear and rbf — separately and
compared their results. Thus, we tested five different ML classifiers: LDA, SVM with linear and rbf kernels, k-NN,
and RF. The number of shape components was reduced to five to prevent overfitting due to the small sample size
used in our study. The performance of the classifiers was validated using a five-fold cross-validation method and
evaluated using receiver operating characteristic (ROC) analysis and the area under the curve (AUC). Accuracy,
sensitivity, and specificity were calculated based on the confusion matrix of the classification results.

All procedures were performed using the SlicerMorph module of the 3D Slicer platform. Multivariate analyses
and ML-based predictions were performed using an open-source software package (Python scikit-learn 0.22.1).
Statistical significance was set at P <0.05. For the implementation details, we referred to methods described in
previous studies?*-*2.

Results

Twenty MRI scans of femurs with PFI obtained from 19 patients (sex ratio, 8/12 [male/female]; age, 20.5+6.8
[mean + SDJ; side ratio, 7/13 [right/left], including both sides of the femur in one patient) and 31 MRI scans of
normal femurs obtained from 30 patients (sex ratio, 13/18; age, 20.5 + 3.9; side ratio, 16/15, including both sides
of the femur in one patient) were used in the study. All the participants were Japanese.
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Evaluation of shape differences based on GPA and PCA

The mean normal and PFI surface models as well as the pointwise signed distances between them are shown in
Fig. 1. In the anterior part of the distal femur, the trochlea was elevated anteriorly, proximalized, and lateralized
in the PFI group compared with the normal group. Trochlear anteriorization in PFI was mainly observed in the
middle of the trochlear floor (Fig. 1). Proximalization and anteriorization were highlighted by the deep red-
colored area (showing significant positive values) at the central floor of the trochlea, whereas lateralization was
demonstrated by the slightly yellow area (showing slightly positive values) on the lateral side of the trochlea and
the blue area (showing negative values) on the medial side of the trochlea. The intercondylar notch was narrower
in the PFI group than in the normal group, with a slightly yellow area on the notch side and a blue area on the
opposite side of both condyles. Almost all the other areas of the distal femur were green, indicating that almost
no pointwise distances were observed between the PFI and normal femoral models.

The results of the PCA of the distal femur of the PFI group with the GPA-aligned coordinate system are shown
in Figs. 2 and 3. The cumulative variance and the variance for each mode are shown in Fig. 2. The first three and
ten principal components explained 41.6% and 68.7% of the observed population variance, respectively.

In Fig. 3, the 3D shape variations (corresponding to mean + 2.5 SD) of the first three principal components
are shown. The first principal component, which accounted for 22.0% of the variation, concerned the medial and
lateral epicondyles and defined the horizontal size of the distal femur rather than the trochlea and condyles. The

Figure 1. Mean shape models of the normal distal femur (upper row) and the distal femur with patellofemoral
instability (middle row) as well as a pointwise distance map between the two models (lower row) are shown.
From left to right, the 3D shape models are exhibited in the following order: front, bottom, lateral, medial and
rear side.

Variance explained (%)

5 10 15 20
Principal components

Figure 2. Cumulative variance (line plot) and fraction of variance (bar plot) explained by principal components
of the statistical shape models of the distal femur with patellofemoral instability.
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Figure 3. The shape variations (corresponding to mean + 2.5 standard deviation [SD]) from the three first
principal components (the first (a), second (b), third (c), fifth (d), sixth (e), eighth (f), ninth (g) and tenth (h)
components) of the models of the distal femur with patellofemoral instability are shown. For each component,
the front and bottom sides of the models are exhibited, in order of +2.5 SD, mean, and -2.5 SD, from top to
bottom.

second and third principal components, accounting for 11.8 and 7.8% of the variation, respectively, were related
to shape variations in the sulcus angle and intercondylar width. In the second component, the convexity of the
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anterior trochlea was evident in the +2.5 SD shape, whereas a concave anterior trochlea and large intercondylar
notch width were observed in the — 2.5 SD shape. In the third component, smaller condyles and a broad inter-
condylar notch were observed in the +2.5 SD shape, whereas a convex anterior trochlea, larger condyles, and
a narrow intercondylar notch were observed in the —2.5 SD shape. In both the fifth and eighth components, a
narrow intercondylar notch and concavity of the anterior trochlea were observed in the +2.5 SD shape, whereas
the opposite was observed in the - 2.5 SD shape. These shape changes were more evident in the fifth component
than in the eighth component. The tenth component was mainly associated with the anterior trochlea, which had
a flattened morphology in the + 2.5 SD shape, but was anteriorized, especially in the medial part of the trochlear
floor, in the — 2.5 SD shape.

Multivariate analysis of shape components
The results of the multivariate analysis of the shape components are summarized in Table 1. The second, third,
fifth, eighth, and tenth principal components were significantly correlated with the distinction between PFI and
non-PFI cases. These components showed significant correlations with the PFI/non-PFI distinction, even after
adjusting for age and sex.

We also examined the association with age and sex (Table 2). No significant correlation between shape factors
and age was observed. Regarding sex, the second, eighth, and ninth principal components were correlated with
sex after adjusting for PFI and age.

ML-based prediction model for PFI

The results of the ML-based prediction attempts are summarized in Table 3, and the ROC curves are shown in
Fig. 4. Among the five ML classifiers we studied, the most favorable performance was observed in the SVM clas-
sifier with a linear kernel, with an accuracy of 0.909+0.015 and an AUC of 0.939 +0.009. The confusion matrices
of the prediction attempts are summarized in Supplementary Fig. SI.

Adjusted by age

and sex
PC RC Pvalue |RC P value
PC1 -0.18 0914 0.41 0.807
PC2 6.98 0.004 11.90 0.001
PC3 -9.381 0.001 -8.07 0.007
PC4 2.08 0.542 3.17 0.347
PC5 -23.17 <0.001 | -22.31 <0.001
PCé6 -8.95 0.029 —6.52 0.117
PC7 4.45 0.271 3.25 0.399
PC8 -16.35 <0.001 | -21.30 0.001
PC9 2.20 0.630 7.34 0.140
PC 10 18.93 <0.001 12.54 0.022

Table 1. Summary of the multivariate analysis of shape components for PFI. PC principal component, PFI
patellofemoral instability, RC regression coefficient.

Age Sex

Adjusted by sex Adjusted by age

and PFI and PFI
PC RC Pvalue |RC Pvalue |RC Pvalue |RC P value
PC1 22.50 | 0.627 12.53 | 0.796 2.70 0.093 2.48 0.113
PC2 —60.57 | 0.341 - 111.07 | 0.233 13.65 <0.001 16.10 <0.001
PC3 -5.39 | 0.945 —2541 |0.758 5.41 0.046 2.61 0.385
PC4 52.51 | 0.576 32.63 | 0.739 5.38 0.099 5.60 0.080
PC5 152.05 | 0.133 121.63 | 0.264 8.22 0.02 0.44 0.932
PCé6 51.24 | 0.639 15.60 | 0.896 9.64 0.013 6.68 0.095
PC7 31.02 | 0.778 41.28 | 0.712 -2.77 0.462 -1.71 0.646
PCs8 —207.14 | 0.081 —120.86 | 0.461 -23.32 <0.001 | —26.57 <0.001
PC9 —103.01 | 0.413 —150.55 | 0.289 12.85 0.004 14.22 0.002
PC10 259.01 | 0.058 300.69 | 0.054 -11.27 0.017 - 7.64 0.156

Table 2. Summary of the multivariate analysis of shape components for age and sex. PC principal component,
PFI patellofemoral instability, RC regression coeflicient.
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Accuracy Sensitivity Specificity AUC
LDA 0.893+0.018 0.827+0.033 0.950+0.018 0.927 £0.009
SVM with linear kernel 0.909+0.015 0.884+0.030 0.931+0.012 0.939+0.009
SVM with rbf kernel 0.845+0.022 0.776 £0.032 0.905+0.030 0.909+0.013
k-NN 0.778+0.019 0.656+0.032 0.884+0.027 0.850+0.017
RF 0.823+0.023 0.799+0.034 0.844+0.029 0.893+0.018

Table 3. Results of the machine learning-based prediction model for PFI. AUC area under the curve, k-NN
k-nearest neighborhood, LDA linear discriminant analysis, PF patellofemoral instability, RF random forest,
SVM support vector machine.
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Figure 4. The receiver operating characteristic (ROC) curves and area under the curve (AUC) values of
machine learning-based classification models for differentiating between patellofemoral instability (PFI) and
non-PFI groups using shape components derived from three-dimensional statistical shape analysis, with a linear
discriminant analysis (LDA) classifier (red line), support vector machine (SVM) classifier with a linear kernel
(green line) and rbf kernel (blue line), k-nearest neighborhood (k-NN) classifier (orange line), and random
forest (RF) classifier (purple line).

Discussion

In this study, we created 3D MRI-based shape models of femurs with PFI and normal femurs and compared
the two models using SSA tools. Elevation of the trochlea in the PFI models compared with the normal models
was observed on the central floor of the proximal trochlea. Furthermore, we applied PCA to the GPA-aligned
coordinate system to evaluate the shape variations in the PFI group and found that several principal components
were related to shape variations in the trochlear floor and intercondylar width. We used a multivariate analysis to
show that these shape components were significantly correlated with the PFI/non-PFI distinction after adjusting
for age and sex. In addition, we developed an ML-based prediction model for PFI using these shape components
and obtained a favorable predictive performance.
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The morphological analysis of PFI has been previously reported. Earlier studies examined radiographic
signs and several specific measurements, such as the crossing sign, trochlear bump or depth, and patella alta
index™”. However, these morphological parameters are primarily qualitative or quasi-quantitative, leading to
high inter-reader variability and insufficient reliability. To overcome these shortcomings and understand com-
plex articular structures more realistically, computer-aided morphological analyses using 3D shape models
have been conducted®®?. Using 3D models of bone and articular cartilage, Yamada et al. demonstrated the
proximalization and lateralization of the trochlear cartilage and the associated wider convex trochlea in PFI%.
However, the approach used in this study was still based on a limited set of discrete geometric variables such
as angles, heights, and distances. SSA is thought to be suitable for visualizing and systematically understanding
anatomical structures and their changes'®. SSA can be used to estimate shape variability within samples, acquire
mean shapes from groups, and perform clustering and testing for differences between groups. Landmark-based
techniques, also called point distribution models, are often used to identify anatomical characteristics and align
these point cloud sets using Procrustes transformations and statistics such as PCA to estimate shape variations.
An early two-dimensional study analyzed the curvature of the trochlear groove in PFI *°. In a more recent study,
Van Haver et al. reported a CT-based 3D SSA to obtain mean shape models of normal and trochlear dysplastic
femurs and evaluated their differences??. Although this 3D SSA of PFI was mostly based on CT, some studies have
used 3D MRI. Fitzpatrick et al. created an MRI-based 3D shape model of the patellofemoral joint and showed
that the principal components concerned variations in the patellar position and depth of the sulcus groove®. In
a more recent study, Yang et al. performed an MRI-based 3D SSA and described a shallower trochlear groove
and decreased anteroposterior and mediolateral dimensions of the femoral condyles in femurs with PFI%.

The largest risk factor for PFI is trochlear dysplasia, and the proximal trochlea has been shown to be more
anterior in femurs with PFI than in normal femurs?”. Van Harver et al. performed a 3D SSA on trochlear dys-
plasia and demonstrated that the largest differences between the mean normal and trochlear dysplastic femur
models were observed in the proximal part of the trochlea®. This study suggested that the proximal trochlea in
cases of trochlear dysplasia was anteriorly elevated compared with the normal trochlea. Furthermore, trochlear
anteriorization was most pronounced on the central floor of the proximal trochlea?. In our study, similar to these
findings, trochlear anteriorization in PFI was mainly observed in the middle of the trochlear floor. We showed
that anteriorization gradually decreased toward the notch, which is consistent with the findings of a previous
study. Lateralization of the trochlea has also been reported, in addition to anteriorization and proximalization.
Van Harver et al. also demonstrated a lateral shift of the trochlea in a trochlear dysplasia model, although this
was less obvious than anteriorization and proximalization®. In the present study, trochlear lateralization was sug-
gested by a slight lateral shift in the medial and lateral sides of the trochlea. It has been suggested that the articular
cartilage of the trochlea may adapt to contact the articular cartilage of the patella®. Therefore, anteriorization,
proximalization, and lateralization of the trochlea may be associated with a high-riding and lateralized patella.
However, in the present study, we could not perform correlation tests for patellar position.

In this study, we performed PCA to assess the shape variations in the PFI group. Our findings showed that the
first principal component concerned the medial and lateral epicondyles, defining the horizontal size of the distal
femur rather than the trochlea or condyle. The first component is usually the size variation, which is not neces-
sarily related to PF], as described in previous studies?>?°. Our study showed that the second and third principal
components were related to the shape variations in the sulcus angle and intercondylar width, which were related
to the actual shape changes of PFI. Similar results were obtained in a previous study which demonstrated that
the second and third components were related to the sulcus angle and intercondylar width, respectively > It has
been reported that there is a close relationship between the sulcus angle and intercondylar notch width?, and
both are related to the anteriorization of the central trochlea, which is the main factor in trochlear dysplasia, as
described above.

In this study, we performed a multivariate analysis to examine which shape features were correlated with the
PFI/non-PFI distinction. The second and third principal components described above were significantly corre-
lated with the distinction between PFI and non-PFI cases. In addition, other shape components, such as the fifth,
eighth, and tenth components, were also correlated with the PFI/non-PFI distinction. These shape features also
describe variations in the depth of the anterior trochlear floor and the intercondylar notch width. Multivariate
analyses of shape variance can be useful when comparing groups with several confounding factors, as is the case
with ordinary statistical analyses. In the current study, we chose age and sex as possible confounding parameters
other than PFI/non-PFI. We confirmed that the principal components that significantly contributed to the PFI/
non-PFI distinction (i.e., the second, third, fifth, eighth, and tenth components) were independent discrimina-
tory factors even after adjusting for age and sex. We further examined age- and sex-related shape components
using multivariate analysis. No significant correlation between shape factors and age was observed in this study.
A previous study showed that prior to the progression of osteoarthritis, knee shape does not change significantly
over time . Although age-related changes may inevitably include changes associated with osteoarthritis, the
current study did not include people over 50 years of age, in whom osteoarthritis often occurs; therefore, there
is no need to consider this factor. Regarding sex, several shape components showed correlations in this study;
the second, eighth, and ninth principal components were significantly correlated with sex after adjusting for PFI
and age. There have been several reports on sex-related changes in knee shape, which showed that compared with
males, females had deepening of the intercondylar fossa, broader shaft width relative to epicondylar width, and
decreased inferior protrusion of the medial and lateral condylar heads relative to the patellar groove*"*2. In our
study, the second and eighth principal components had overlapping correlations not only with PFI but also with
sex; however, they appeared to have clearer variations in epicondylar width than the other components. Further-
more, the ninth principal component was only correlated with sex, and its shape variation was mainly related
to the shaft width relative to the epicondylar width, which was consistent with previous studies on sex-related
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knee shape changes®*2. The inferior prominence of both condyles and the deepening of the intercondylar fossa
were not conspicuous in our results.

In this study, we evaluated the ML-based prediction of PFI using discriminative shape features obtained from
the preceding 3D SSA. Previous studies have tested predictive models using discriminant analysis for the PFI/
non-PFI classification. Van Harver et al. reported an automated classification of trochlear dysplastic and normal
cases using 3D SSA-based shape components, with a sensitivity of 85% and specificity of 95%%2 Their classifica-
tion model used only a linear discriminant model*%. To our knowledge, ML classifiers other than LDA have not
been previously examined. SVM exhibits high generalizability because we can select linear or non-linear kernels,
and a linear kernel could be the most suited to our models. LDA also afforded a favorable outcome, but other
non-linear classifiers, such as SVM with an rbf kernel, k-NN, and RE, were slightly inferior to LDA and SVM
with a linear kernel. Possibly because of its small scale, this study could not build an efficient non-linear model.
Furthermore, we used default hyperparameters in the non-linear classifier without parameter tuning during
training. This may have led to favorable results for the linear classifier over the non-linear classifier.

The present study has several limitations. The sample size of this study was small; therefore, a sufficient
statistical evaluation could not be performed. For accurate comparison, a control group of healthy volunteers
matched for age, sex, and ethnic background would have been preferable. Furthermore, only the distal femur
was evaluated, as the patella and proximal tibia could not be evaluated. Ideally, the overall knee shape should be
considered. These issues should be addressed in future studies.

In conclusion, this study reports a 3D MRI-based SSA of PFI shape models and normal femurs. The pointwise
distance map showed that the elevation of the trochlea in the PFI models compared with the normal ones was
observed at the central floor of the proximal trochlea. In the PCA examining the shape variations in the PFI
group, several principal components exhibited shape variations in the trochlear floor and intercondylar width.
Using a multivariate analysis, we showed that these shape components were significantly correlated with the
PFI/non-PFI distinction after adjusting for age and sex. We further developed an ML-based prediction model
for PFI using these shape components and obtained a favorable predictive performance. 3D MRI-based SSA
can provide realistic visualization of statistical results on surface models and may facilitate the understanding
of complex shape features. Further studies are needed to confirm the feasibility of 3D SSA and elucidate the
disease mechanism of PFL

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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