
1

Vol.:(0123456789)

Scientific Reports |        (2024) 14:11390  | https://doi.org/10.1038/s41598-024-62143-7

www.nature.com/scientificreports

Three‑dimensional magnetic 
resonance imaging‑based 
statistical shape analysis 
and machine learning‑based 
prediction of patellofemoral 
instability
Keita Nagawa 1*, Kaiji Inoue 1*, Yuki Hara 1, Hirokazu Shimizu 1, Saki Tsuchihashi 1, 
Koichiro Matsuura 1, Eito Kozawa 1, Naoki Sugita 2 & Mamoru Niitsu 1

This study performed three‑dimensional (3D) magnetic resonance imaging (MRI)‑based statistical 
shape analysis (SSA) by comparing patellofemoral instability (PFI) and normal femur models, and 
developed a machine learning (ML)‑based prediction model. Twenty (19 patients) and 31 MRI scans 
(30 patients) of femurs with PFI and normal femurs, respectively, were used. Bone and cartilage 
segmentation of the distal femurs was performed and subsequently converted into 3D reconstructed 
models. The pointwise distance map showed anterior elevation of the trochlea, particularly at the 
central floor of the proximal trochlea, in the PFI models compared with the normal models. Principal 
component analysis examined shape variations in the PFI group, and several principal components 
exhibited shape variations in the trochlear floor and intercondylar width. Multivariate analysis 
showed that these shape components were significantly correlated with the PFI/non‑PFI distinction 
after adjusting for age and sex. Our ML‑based prediction model for PFI achieved a strong predictive 
performance with an accuracy of 0.909 ± 0.015, and an area under the curve of 0.939 ± 0.009 when 
using a support vector machine with a linear kernel. This study demonstrated that 3D MRI‑based SSA 
can realistically visualize statistical results on surface models and may facilitate the understanding of 
complex shape features.

Keywords Patellofemoral instability, Statistical shape analysis, Three-dimensional magnetic resonance 
image, Generalized Procrustes analysis

Patellofemoral instability (PFI) is a pathological condition characterized by recurrent patellar subluxation or 
dislocation. It mainly occurs in young and active populations, and accounts for approximately 3% of all knee 
 injuries1,2. PFI is a multifactorial disease. The known risk factors are trochlear dysplasia, patella alta, increased tib-
ial tubercle-to-trochlear groove distance, abnormal patellar lateral tilt, and coronal and torsional  malalignment3–6. 
The risk of recurrent instability varies widely after primary dislocation, ranging from 11 to 60%7–10. Various 
nonsurgical and surgical treatments are available to treat these underlying causes.

The imaging modalities for the study of knee conditions, including PFI, are plain radiographs, computed 
tomography (CT), and magnetic resonance imaging (MRI)6,11,12. Plain radiographs are essential for visualizing 
bones and surveying their abnormalities at a low radiation dose and cost. As for PFI, several radiographic signs 
have been reported, including the crossing sign, trochlear bump or depth, and patella alta  index5,27. However, 
plain radiographs are two-dimensional and may not adequately visualize complex articular structures. Sequential 
imaging modalities such as CT and MRI are preferred because they allow for more precise and more detailed 
visualization of the joint tissues. CT is preferred for investigating bones, whereas MRI is mainly used for soft 
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tissues. However, MRI may also play an alternative  role11. For example, MRI can detect several bone abnormali-
ties, such as contusions, fragments, deformities, and surrounding tissue abnormalities. The importance of MRI 
has increased with the development of high-resolution functional imaging techniques. In knee studies, our 
institution routinely uses a three-dimensional (3D) T2 star-weighted fast-field echo (T2* FFE) MRI sequence. 
Although this sequence is primarily intended for the high-resolution evaluation of cartilage, other tissues, includ-
ing the bone, are also clearly visualized. The 3D T2* FFE method provides volumetric data for 3D segmentation 
and shape model analysis.

The development of high-resolution 3D imaging techniques has enabled researchers to characterize the mor-
phological variations in complex biological structures using methods such as statistical shape analysis (SSA)13–17. 
A common approach when performing 3D SSA is to first acquire high-resolution images and then obtain the 
anatomical landmark information. These anatomical landmarks are then used in multivariate shape analyses. 
The general method of collecting landmark datasets involves manual registration by experts. Manual annotation 
of landmarks is laborious, time-consuming, low-throughput, and subject to inter-observer  biases18. Although 
automated approaches have been considered, most depend on high-end hardware and specialized MATLAB 
software and require more time to produce results than manual landmark  annotations18,19. Considering these 
points, we propose a cutting-edge open-source software to analyze 3D morphological data, SlicerMorph, on 
the 3D Slicer  platform20. This application contains a set of modules for automatic registration and SSA, among 
which a tool called automated marking through point-cloud alignment and correspondence analysis (ALPACA) 
enables fast and accurate automated landmarking through point-cloud-based deformable model  registration21.

The 3D SSA of knees with PFI has been previously studied. Some studies used  CT22,23, whereas others used 
 MRI24–26. Van Haver et al. conducted a CT-based study of trochlear  dysplasia22. In their study, the mean shape 
models of normal and trochlear dysplastic femur bones were obtained using generalized Procrustes analysis 
(GPA) and principal component analysis (PCA). Subsequently, the researchers evaluated the difference between 
the two mean models and found that the trochlea was anteriorized, proximalized, and lateralized, and that the 
mediolateral width and notch width were decreased in the trochlear dysplastic femur compared to the normal 
femur. They also developed an automated classification of trochlear dysplastic and normal femurs using a com-
bination of principal components, which achieved a sensitivity of 85% and specificity of 95%. MRI-based SSA of 
PFI has also been reported, and similar results have been obtained. Fitzpatrick et al. created an MRI-based 3D 
shape model of the patellofemoral joint and characterized shape variations in the patella alta-baja and depth of 
the sulcus  groove26. Considering the inevitable exposure to radiation in CT scans, and the versatility and utility of 
MRI studies, MRI-derived SSA is favorable. Furthermore, MRI can visualize cartilage as well as bone; therefore, 
3D shape models of bone and cartilage can be built using MRI-based SSA.

In this study, we aimed to build 3D MRI-based bone and cartilage models of normal femurs and femurs with 
PFI, and perform SSA to compare the two models using the SlicerMorph package. We also conducted a multivari-
ate analysis of shape components to identify the independent shape characteristics associated with PFI, evaluated 
confounding factors such as age and sex, and performed an adjusted multivariate analysis. Moreover, we devel-
oped a machine learning (ML)-based prediction model for PFI using shape components derived from the SSA.

Methods
Subjects and image acquisitions
This study was approved by the Research Ethics Committee of Saitama Medical University Hospital (approval 
number 2023–047). All experiments were performed in accordance with relevant guidelines and regulations. 
The requirement for informed consent was waived by the Research Ethics Committee of Saitama Medical Uni-
versity Hospital.

After receiving institutional review board approval, we identified a consecutive series of patients under 
40 years of age who underwent non-contrast non-arthrogram knee MRI between January 2017 and September 
2021, with an order from the Department of Orthopedics in our hospital. All patients diagnosed with PFI at 
our institution were included in this study. Although all patients initially underwent MRI for suspected PFI-
related injury, those with knee pain due to other etiologies such as fracture, arthritis, chondrosis, osseous stress 
response, or high-grade ligament sprains were excluded. A group of age- and sex-matched controls were also 
identified, defined as those with normal knee MRI findings and symptoms that did not involve the patellofemoral 
compartment of the knee. Controls with fractures, arthritis, chondrosis, osseous stress response, or high-grade 
ligament sprains were excluded.

All MRI scans were performed using a 3.0-T system (Ingenia Elition, Philips Healthcare, The Netherlands) 
with a vendor-specific 16-channel knee coil. In addition to the routine knee protocol including axial, sagittal, 
and coronal proton density sequences, a 3D T2* FFE sequence was performed in all patients. The specific imple-
mentation protocol for 3D T2* FFE was as follows: repetition time, 15 ms; echo time, 5 ms; flip angle, 30°; slice 
thickness, 1.5 mm; field of view, 15.0 × 17.1 cm.

Construction of the 3D surface models
To create smooth 3D surface models of the knee bone and cartilage, MR images were loaded into an open-source 
software (ITK-SNAP version 3.8.0) in the Digital Imaging and Communications in Medicine (DICOM) format. 
Subsequently, the areas of femoral bone and cartilage were manually delineated in each slice. Two radiologists 
with 7 and 6 respective years of experience performed this independently, and subsequently reached a consensus. 
Both radiologists were blinded to the clinical information. From the delineated contours, a 3D surface model of 
each bone and cartilage was reconstructed and saved as a standard 3D model in the Neuroimaging Informat-
ics Technology Initiative (NIfTI) file format (*.nii.gz). These 3D surface models were subsequently loaded into 
another open-source software package (3D Slicer version 5.0.3) for 3D landmark-based shape model analysis.
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Application of the automated 3D landmarking and SSA
To develop an automated 3D landmark-based SSA, we performed the following procedures: (a) creation of a 
reference landmark set (automatic landmark placement on the surface model of the normal femur bone) using 
the pseudo-landmark generator algorithm, (b) automatic landmark registration using the ALPACA algorithm, 
(c) evaluation of shape differences based on GPA and PCA, (d) multivariate analysis of shape components, and 
(e) development of an ML-based prediction model for PFI.

Step 1. Creation of a reference landmark dataset
We started by obtaining reference landmark data using a pseudo-landmark generator module.

When developing automated landmarking methods, it is common to use a dataset of manually digitized 
samples as the reference set. However, we believe that performing automatic landmarking on a reference model 
is beneficial. The pseudo-landmark generator module generated a set of landmarks at regular intervals on the 
external surface of the sample model. We then applied this module to a shape model of a normal femur bone 
and obtained a reference sample of the landmarks.

Step 2. Automatic landmark registration using ALPACA algorithm
We applied the ALPACA framework to the surface bone models of the normal and PFI cases and obtained the 
corresponding landmark datasets. More specifically, point-cloud-based alignment and registration proceeded 
in the following steps: (a) a source model (the reference model used in Step (1) and a target model were down-
sampled into corresponding dense point clouds that were then rigidly aligned with each other; (b) a deformable 
transformation was subsequently performed, in which the source model was deformed to match the target 
model; and (c) the placement of landmarks in the source model was projected onto the target model using the 
point correspondence method. By repeating this registration step for all models of the normal and PFI cases, 
landmark datasets were obtained for subsequent analysis.

Step 3. Evaluation of shape differences based on GPA and PCA
To evaluate the shape differences between the normal and PFI cases, we implemented a GPA-based transforma-
tion of the surface model and landmark coordinate system and we calculated and compared the mean shape of 
each femur model. Pointwise signed distances between the mean normal and PFI surface models were calculated 
and projected onto the surface of the mean normal femur model. PCA was applied to the GPA-aligned coordinate 
system to explain the shape variations within each group, and the shape characteristics of each principal compo-
nent were evaluated. The GPA and PCA module on SlicerMorph visualized the 3D shape variations of each prin-
cipal component, and we subsequently plotted the shape corresponding to mean ± 2.5 standard deviations (SD).

Step 4. Multivariate analysis of shape components
In further studies, we conducted a multivariate analysis of the shape components. The main shape components 
obtained for a joint dataset of normal femurs and femurs with PFI in Step 3 were subsequently loaded into 
the Python platform along with the corresponding standard scores and parameters such as age, sex, and PFI/
non-PFI. Multivariate analysis was performed to identify the components that had a strong relationship with 
PFI. In addition, we used multivariate analysis to evaluate the relationship between the shape components and 
confounding variables such as age and sex. To identify components that had an independent relationship with 
PFI, we also conducted a multivariate analysis adjusting for age and sex.

Step 5. ML‑based prediction model for PFI
Following the results of Step 4, we determined which significant shape components exhibited a strong relationship 
with PFI, as well as which principal components were successful in discriminating between PFI and non-PFI 
femurs. A classification model was developed using these important shape components and four representative 
ML classifiers: linear discriminant analysis (LDA), support vector machine (SVM), k-nearest neighborhood 
(k-NN), and random forest (RF). In the SVM algorithm, various kernel functions provide different decision-mak-
ing abilities and versatility. In this study, we adopted two representative kernels – linear and rbf – separately and 
compared their results. Thus, we tested five different ML classifiers: LDA, SVM with linear and rbf kernels, k-NN, 
and RF. The number of shape components was reduced to five to prevent overfitting due to the small sample size 
used in our study. The performance of the classifiers was validated using a five-fold cross-validation method and 
evaluated using receiver operating characteristic (ROC) analysis and the area under the curve (AUC). Accuracy, 
sensitivity, and specificity were calculated based on the confusion matrix of the classification results.

All procedures were performed using the SlicerMorph module of the 3D Slicer platform. Multivariate analyses 
and ML-based predictions were performed using an open-source software package (Python scikit-learn 0.22.1). 
Statistical significance was set at P < 0.05. For the implementation details, we referred to methods described in 
previous  studies20–22.

Results
Twenty MRI scans of femurs with PFI obtained from 19 patients (sex ratio, 8/12 [male/female]; age, 20.5 ± 6.8 
[mean ± SD]; side ratio, 7/13 [right/left], including both sides of the femur in one patient) and 31 MRI scans of 
normal femurs obtained from 30 patients (sex ratio, 13/18; age, 20.5 ± 3.9; side ratio, 16/15, including both sides 
of the femur in one patient) were used in the study. All the participants were Japanese.
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Evaluation of shape differences based on GPA and PCA
The mean normal and PFI surface models as well as the pointwise signed distances between them are shown in 
Fig. 1. In the anterior part of the distal femur, the trochlea was elevated anteriorly, proximalized, and lateralized 
in the PFI group compared with the normal group. Trochlear anteriorization in PFI was mainly observed in the 
middle of the trochlear floor (Fig. 1). Proximalization and anteriorization were highlighted by the deep red-
colored area (showing significant positive values) at the central floor of the trochlea, whereas lateralization was 
demonstrated by the slightly yellow area (showing slightly positive values) on the lateral side of the trochlea and 
the blue area (showing negative values) on the medial side of the trochlea. The intercondylar notch was narrower 
in the PFI group than in the normal group, with a slightly yellow area on the notch side and a blue area on the 
opposite side of both condyles. Almost all the other areas of the distal femur were green, indicating that almost 
no pointwise distances were observed between the PFI and normal femoral models.

The results of the PCA of the distal femur of the PFI group with the GPA-aligned coordinate system are shown 
in Figs. 2 and 3. The cumulative variance and the variance for each mode are shown in Fig. 2. The first three and 
ten principal components explained 41.6% and 68.7% of the observed population variance, respectively.

In Fig. 3, the 3D shape variations (corresponding to mean ± 2.5 SD) of the first three principal components 
are shown. The first principal component, which accounted for 22.0% of the variation, concerned the medial and 
lateral epicondyles and defined the horizontal size of the distal femur rather than the trochlea and condyles. The 

Figure 1.  Mean shape models of the normal distal femur (upper row) and the distal femur with patellofemoral 
instability (middle row) as well as a pointwise distance map between the two models (lower row) are shown. 
From left to right, the 3D shape models are exhibited in the following order: front, bottom, lateral, medial and 
rear side.

Figure 2.  Cumulative variance (line plot) and fraction of variance (bar plot) explained by principal components 
of the statistical shape models of the distal femur with patellofemoral instability.
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second and third principal components, accounting for 11.8 and 7.8% of the variation, respectively, were related 
to shape variations in the sulcus angle and intercondylar width. In the second component, the convexity of the 

Figure 3.  The shape variations (corresponding to mean ± 2.5 standard deviation [SD]) from the three first 
principal components (the first (a), second (b), third (c), fifth (d), sixth (e), eighth (f), ninth (g) and tenth (h) 
components) of the models of the distal femur with patellofemoral instability are shown. For each component, 
the front and bottom sides of the models are exhibited, in order of + 2.5 SD, mean, and –2.5 SD, from top to 
bottom.
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anterior trochlea was evident in the + 2.5 SD shape, whereas a concave anterior trochlea and large intercondylar 
notch width were observed in the – 2.5 SD shape. In the third component, smaller condyles and a broad inter-
condylar notch were observed in the + 2.5 SD shape, whereas a convex anterior trochlea, larger condyles, and 
a narrow intercondylar notch were observed in the − 2.5 SD shape. In both the fifth and eighth components, a 
narrow intercondylar notch and concavity of the anterior trochlea were observed in the + 2.5 SD shape, whereas 
the opposite was observed in the – 2.5 SD shape. These shape changes were more evident in the fifth component 
than in the eighth component. The tenth component was mainly associated with the anterior trochlea, which had 
a flattened morphology in the + 2.5 SD shape, but was anteriorized, especially in the medial part of the trochlear 
floor, in the − 2.5 SD shape.

Multivariate analysis of shape components
The results of the multivariate analysis of the shape components are summarized in Table 1. The second, third, 
fifth, eighth, and tenth principal components were significantly correlated with the distinction between PFI and 
non-PFI cases. These components showed significant correlations with the PFI/non-PFI distinction, even after 
adjusting for age and sex.

We also examined the association with age and sex (Table 2). No significant correlation between shape factors 
and age was observed. Regarding sex, the second, eighth, and ninth principal components were correlated with 
sex after adjusting for PFI and age.

ML‑based prediction model for PFI
The results of the ML-based prediction attempts are summarized in Table 3, and the ROC curves are shown in 
Fig. 4. Among the five ML classifiers we studied, the most favorable performance was observed in the SVM clas-
sifier with a linear kernel, with an accuracy of 0.909 ± 0.015 and an AUC of 0.939 ± 0.009. The confusion matrices 
of the prediction attempts are summarized in Supplementary Fig. S1.

Table 1.  Summary of the multivariate analysis of shape components for PFI. PC principal component, PFI 
patellofemoral instability, RC regression coefficient.

Adjusted by age 
and sex

PC RC P value RC P value

PC 1 − 0.18 0.914 0.41 0.807

PC 2 6.98 0.004 11.90 0.001

PC 3 − 9.81 0.001 − 8.07 0.007

PC 4 2.08 0.542 3.17 0.347

PC 5 − 23.17  < 0.001 − 22.31  < 0.001

PC 6 − 8.95 0.029 − 6.52 0.117

PC 7 4.45 0.271 3.25 0.399

PC 8 − 16.35  < 0.001 − 21.30 0.001

PC 9 2.20 0.630 7.34 0.140

PC 10 18.93  < 0.001 12.54 0.022

Table 2.  Summary of the multivariate analysis of shape components for age and sex. PC principal component, 
PFI patellofemoral instability, RC regression coefficient.

Age Sex

Adjusted by sex 
and PFI

Adjusted by age 
and PFI

PC RC P value RC P value RC P value RC P value

PC 1 22.50 0.627 12.53 0.796 2.70 0.093 2.48 0.113

PC 2 − 60.57 0.341 − 111.07 0.233 13.65  < 0.001 16.10  < 0.001

PC 3 -5.39 0.945 − 25.41 0.758 5.41 0.046 2.61 0.385

PC 4 52.51 0.576 32.63 0.739 5.38 0.099 5.60 0.080

PC 5 152.05 0.133 121.63 0.264 8.22 0.02 0.44 0.932

PC 6 51.24 0.639 15.60 0.896 9.64 0.013 6.68 0.095

PC 7 31.02 0.778 41.28 0.712 -2.77 0.462 − 1.71 0.646

PC 8 − 207.14 0.081 − 120.86 0.461 -23.32  < 0.001 − 26.57  < 0.001

PC 9 − 103.01 0.413 − 150.55 0.289 12.85 0.004 14.22 0.002

PC 10 259.01 0.058 300.69 0.054 − 11.27 0.017 − 7.64 0.156
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Discussion
In this study, we created 3D MRI-based shape models of femurs with PFI and normal femurs and compared 
the two models using SSA tools. Elevation of the trochlea in the PFI models compared with the normal models 
was observed on the central floor of the proximal trochlea. Furthermore, we applied PCA to the GPA-aligned 
coordinate system to evaluate the shape variations in the PFI group and found that several principal components 
were related to shape variations in the trochlear floor and intercondylar width. We used a multivariate analysis to 
show that these shape components were significantly correlated with the PFI/non-PFI distinction after adjusting 
for age and sex. In addition, we developed an ML-based prediction model for PFI using these shape components 
and obtained a favorable predictive performance.

Table 3.  Results of the machine learning-based prediction model for PFI. AUC  area under the curve, k‑NN 
k-nearest neighborhood, LDA linear discriminant analysis, PF patellofemoral instability, RF random forest, 
SVM support vector machine.

Accuracy Sensitivity Specificity AUC 

LDA 0.893 ± 0.018 0.827 ± 0.033 0.950 ± 0.018 0.927 ± 0.009

SVM with linear kernel 0.909 ± 0.015 0.884 ± 0.030 0.931 ± 0.012 0.939 ± 0.009

SVM with rbf kernel 0.845 ± 0.022 0.776 ± 0.032 0.905 ± 0.030 0.909 ± 0.013

k-NN 0.778 ± 0.019 0.656 ± 0.032 0.884 ± 0.027 0.850 ± 0.017

RF 0.823 ± 0.023 0.799 ± 0.034 0.844 ± 0.029 0.893 ± 0.018

Figure 4.  The receiver operating characteristic (ROC) curves and area under the curve (AUC) values of 
machine learning-based classification models for differentiating between patellofemoral instability (PFI) and 
non-PFI groups using shape components derived from three-dimensional statistical shape analysis, with a linear 
discriminant analysis (LDA) classifier (red line), support vector machine (SVM) classifier with a linear kernel 
(green line) and rbf kernel (blue line), k-nearest neighborhood (k-NN) classifier (orange line), and random 
forest (RF) classifier (purple line).
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The morphological analysis of PFI has been previously reported. Earlier studies examined radiographic 
signs and several specific measurements, such as the crossing sign, trochlear bump or depth, and patella alta 
 index5,27. However, these morphological parameters are primarily qualitative or quasi-quantitative, leading to 
high inter-reader variability and insufficient reliability. To overcome these shortcomings and understand com-
plex articular structures more realistically, computer-aided morphological analyses using 3D shape models 
have been  conducted28,29. Using 3D models of bone and articular cartilage, Yamada et al. demonstrated the 
proximalization and lateralization of the trochlear cartilage and the associated wider convex trochlea in  PFI29. 
However, the approach used in this study was still based on a limited set of discrete geometric variables such 
as angles, heights, and distances. SSA is thought to be suitable for visualizing and systematically understanding 
anatomical structures and their  changes13. SSA can be used to estimate shape variability within samples, acquire 
mean shapes from groups, and perform clustering and testing for differences between groups. Landmark-based 
techniques, also called point distribution models, are often used to identify anatomical characteristics and align 
these point cloud sets using Procrustes transformations and statistics such as PCA to estimate shape variations. 
An early two-dimensional study analyzed the curvature of the trochlear groove in PFI 30. In a more recent study, 
Van Haver et al. reported a CT-based 3D SSA to obtain mean shape models of normal and trochlear dysplastic 
femurs and evaluated their  differences22. Although this 3D SSA of PFI was mostly based on CT, some studies have 
used 3D MRI. Fitzpatrick et al. created an MRI-based 3D shape model of the patellofemoral joint and showed 
that the principal components concerned variations in the patellar position and depth of the sulcus  groove26. In 
a more recent study, Yang et al. performed an MRI-based 3D SSA and described a shallower trochlear groove 
and decreased anteroposterior and mediolateral dimensions of the femoral condyles in femurs with  PFI25.

The largest risk factor for PFI is trochlear dysplasia, and the proximal trochlea has been shown to be more 
anterior in femurs with PFI than in normal  femurs27. Van Harver et al. performed a 3D SSA on trochlear dys-
plasia and demonstrated that the largest differences between the mean normal and trochlear dysplastic femur 
models were observed in the proximal part of the  trochlea22. This study suggested that the proximal trochlea in 
cases of trochlear dysplasia was anteriorly elevated compared with the normal trochlea. Furthermore, trochlear 
anteriorization was most pronounced on the central floor of the proximal  trochlea22. In our study, similar to these 
findings, trochlear anteriorization in PFI was mainly observed in the middle of the trochlear floor. We showed 
that anteriorization gradually decreased toward the notch, which is consistent with the findings of a previous 
study. Lateralization of the trochlea has also been reported, in addition to anteriorization and proximalization. 
Van Harver et al. also demonstrated a lateral shift of the trochlea in a trochlear dysplasia model, although this 
was less obvious than anteriorization and  proximalization22. In the present study, trochlear lateralization was sug-
gested by a slight lateral shift in the medial and lateral sides of the trochlea. It has been suggested that the articular 
cartilage of the trochlea may adapt to contact the articular cartilage of the  patella29. Therefore, anteriorization, 
proximalization, and lateralization of the trochlea may be associated with a high-riding and lateralized patella. 
However, in the present study, we could not perform correlation tests for patellar position.

In this study, we performed PCA to assess the shape variations in the PFI group. Our findings showed that the 
first principal component concerned the medial and lateral epicondyles, defining the horizontal size of the distal 
femur rather than the trochlea or condyle. The first component is usually the size variation, which is not neces-
sarily related to PFI, as described in previous  studies22,26. Our study showed that the second and third principal 
components were related to the shape variations in the sulcus angle and intercondylar width, which were related 
to the actual shape changes of PFI. Similar results were obtained in a previous study which demonstrated that 
the second and third components were related to the sulcus angle and intercondylar width, respectively 22. It has 
been reported that there is a close relationship between the sulcus angle and intercondylar notch  width27, and 
both are related to the anteriorization of the central trochlea, which is the main factor in trochlear dysplasia, as 
described above.

In this study, we performed a multivariate analysis to examine which shape features were correlated with the 
PFI/non-PFI distinction. The second and third principal components described above were significantly corre-
lated with the distinction between PFI and non-PFI cases. In addition, other shape components, such as the fifth, 
eighth, and tenth components, were also correlated with the PFI/non-PFI distinction. These shape features also 
describe variations in the depth of the anterior trochlear floor and the intercondylar notch width. Multivariate 
analyses of shape variance can be useful when comparing groups with several confounding factors, as is the case 
with ordinary statistical analyses. In the current study, we chose age and sex as possible confounding parameters 
other than PFI/non-PFI. We confirmed that the principal components that significantly contributed to the PFI/
non-PFI distinction (i.e., the second, third, fifth, eighth, and tenth components) were independent discrimina-
tory factors even after adjusting for age and sex. We further examined age- and sex-related shape components 
using multivariate analysis. No significant correlation between shape factors and age was observed in this study. 
A previous study showed that prior to the progression of osteoarthritis, knee shape does not change significantly 
over time 31. Although age-related changes may inevitably include changes associated with osteoarthritis, the 
current study did not include people over 50 years of age, in whom osteoarthritis often occurs; therefore, there 
is no need to consider this factor. Regarding sex, several shape components showed correlations in this study; 
the second, eighth, and ninth principal components were significantly correlated with sex after adjusting for PFI 
and age. There have been several reports on sex-related changes in knee shape, which showed that compared with 
males, females had deepening of the intercondylar fossa, broader shaft width relative to epicondylar width, and 
decreased inferior protrusion of the medial and lateral condylar heads relative to the patellar  groove31,32. In our 
study, the second and eighth principal components had overlapping correlations not only with PFI but also with 
sex; however, they appeared to have clearer variations in epicondylar width than the other components. Further-
more, the ninth principal component was only correlated with sex, and its shape variation was mainly related 
to the shaft width relative to the epicondylar width, which was consistent with previous studies on sex-related 
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knee shape  changes31,32. The inferior prominence of both condyles and the deepening of the intercondylar fossa 
were not conspicuous in our results.

In this study, we evaluated the ML-based prediction of PFI using discriminative shape features obtained from 
the preceding 3D SSA. Previous studies have tested predictive models using discriminant analysis for the PFI/
non-PFI classification. Van Harver et al. reported an automated classification of trochlear dysplastic and normal 
cases using 3D SSA-based shape components, with a sensitivity of 85% and specificity of 95%22. Their classifica-
tion model used only a linear discriminant  model22. To our knowledge, ML classifiers other than LDA have not 
been previously examined. SVM exhibits high generalizability because we can select linear or non-linear kernels, 
and a linear kernel could be the most suited to our models. LDA also afforded a favorable outcome, but other 
non-linear classifiers, such as SVM with an rbf kernel, k-NN, and RF, were slightly inferior to LDA and SVM 
with a linear kernel. Possibly because of its small scale, this study could not build an efficient non-linear model. 
Furthermore, we used default hyperparameters in the non-linear classifier without parameter tuning during 
training. This may have led to favorable results for the linear classifier over the non-linear classifier.

The present study has several limitations. The sample size of this study was small; therefore, a sufficient 
statistical evaluation could not be performed. For accurate comparison, a control group of healthy volunteers 
matched for age, sex, and ethnic background would have been preferable. Furthermore, only the distal femur 
was evaluated, as the patella and proximal tibia could not be evaluated. Ideally, the overall knee shape should be 
considered. These issues should be addressed in future studies.

In conclusion, this study reports a 3D MRI-based SSA of PFI shape models and normal femurs. The pointwise 
distance map showed that the elevation of the trochlea in the PFI models compared with the normal ones was 
observed at the central floor of the proximal trochlea. In the PCA examining the shape variations in the PFI 
group, several principal components exhibited shape variations in the trochlear floor and intercondylar width. 
Using a multivariate analysis, we showed that these shape components were significantly correlated with the 
PFI/non-PFI distinction after adjusting for age and sex. We further developed an ML-based prediction model 
for PFI using these shape components and obtained a favorable predictive performance. 3D MRI-based SSA 
can provide realistic visualization of statistical results on surface models and may facilitate the understanding 
of complex shape features. Further studies are needed to confirm the feasibility of 3D SSA and elucidate the 
disease mechanism of PFI.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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